氮氧化物分析仪分析原理
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
热电42i氮氧化物分析仪技术资料方法标准:ISO7996-1985方法名称:化学发光法山东美吉佳环境科技有限公司目录第一章简介(性能和工作原理)第二章使用说明书第三章设备保养维修操作规程一、仪器安装二、校准三、日常维护保养四、故障诊断和排除简介产品性能42i 化学发光法分析仪结合检测技术,轻松利用菜单驱动软件和高级诊断提供了极其卓越的适应性和可靠性。
42i 分析仪具有以下的特征:·320*240液晶图像显示·菜单驱动软件·区域可定量程·用户自选单/双/自动量程模式·多重用户自定义模拟输出·模拟输入选择·高灵敏度·快速响应时间·全量程线性·独立NO-NO2-Nox量程·NO2 转化炉可替代选择·用户自选数字输入/输出容量·标准通讯特色包括RS232/485和以太网·C-Link, MODBUS协议,以及流动数据协议工作原理42 i 分析仪原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42i分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下:NO + O3 ──NO2 + O2+ h仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。
NO2是通过钼转换器完成NO2到NO的转换. 其转换器的加热温度约为325℃(可选不锈钢转化器加热温度为625℃)。
如图1-1所示, 样品气通过标有SAMPLE的进气口被抽入42i分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测NO X方式)。
在反应室前装有限流毛细管和流量传感器, 以控制和测量样气的流量。
热电42i氮氧化物分析仪技术资料方法标准:ISO7996-1985方法名称:化学发光法美吉佳环境科技目录第一章简介(性能和工作原理)第二章使用说明书第三章设备保养维修操作规程一、仪器安装二、校准三、日常维护保养四、故障诊断和排除第一章简介产品性能42i 化学发光法分析仪结合检测技术,轻松利用菜单驱动软件和高级诊断提供了极其卓越的适应性和可靠性。
42i 分析仪具有以下的特征:·320*240液晶图像显示·菜单驱动软件·区域可定量程·用户自选单/双/自动量程模式·多重用户自定义模拟输出·模拟输入选择·高灵敏度·快速响应时间·全量程线性·独立NO-NO2-Nox量程·NO2 转化炉可替代选择·用户自选数字输入/输出容量·标准通讯特色包括RS232/485和以太网·C-Link, MODBUS协议,以及流动数据协议工作原理42 i 分析仪原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42i分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下:NO + O3── NO2 + O2+ h仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。
NO2是通过钼转换器完成NO2到NO的转换. 其转换器的加热温度约为325℃(可选不锈钢转化器加热温度为625℃)。
如图1-1所示, 样品气通过标有SAMPLE的进气口被抽入42i分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测NO X 方式)。
在反应室前装有限流毛细管和流量传感器, 以控制和测量样气的流量。
一、实验目的1. 掌握大气中氮氧化物(NOx)的测定方法。
2. 了解实验原理和实验操作步骤。
3. 学会使用分光光度计进行定量分析。
二、实验原理大气中的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2)。
测定大气中的氮氧化物浓度,通常采用盐酸萘乙二胺分光光度法。
该方法的原理是:先将NO氧化成NO2,然后NO2与吸收液中的对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。
通过比色定量,计算空气中的氮氧化物浓度。
三、实验仪器与试剂1. 仪器:多孔玻板吸收管、双球玻璃管(内装三氧化铬-砂子)、空气采样器、分光光度计、容量瓶、移液管、烧杯、玻璃棒等。
2. 试剂:三氧化铬-砂子、冰乙酸、对氨基苯磺酸、盐酸萘乙二胺、亚硝酸钠标准溶液、蒸馏水等。
四、实验步骤1. 准备工作:称取5.0g对氨基苯磺酸,置于容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解。
继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。
2. 采样:将制备好的吸收原液与等体积的水混合,配成采样用吸收液。
用空气采样器以每分钟300毫升的速度采集空气样品,采样时间根据实验要求确定。
3. 氧化:将采样后的样品放入装有双球玻璃管(内装三氧化铬-砂子)的容器中,将空气样品中的NO氧化成NO2。
4. 显色:将氧化后的样品溶液倒入比色皿中,用分光光度计在波长540nm处测定吸光度。
5. 标准曲线绘制:用亚硝酸钠标准溶液配制一系列不同浓度的标准溶液,按照与样品溶液相同的步骤进行显色,绘制标准曲线。
6. 计算结果:根据样品溶液的吸光度,从标准曲线上查得对应的NO2浓度。
根据NO2与NO的转换系数0.76,计算空气样品中的氮氧化物浓度。
五、实验结果与分析1. 实验结果:通过实验,测定出空气样品中的氮氧化物浓度为X mg/m³。
2. 分析:本次实验采用盐酸萘乙二胺分光光度法测定大气中氮氧化物浓度,实验结果与理论值基本相符,说明实验方法可靠。
feno检测原理
FENO(氮氧化物呼气测定)是一种用于检测气道炎症的方法,常用于哮喘的诊断和监测。
其原理如下:
1. 氮氧化物(NO)是一种由气道上皮细胞产生的气体分子,其浓度在气道炎症时会增加。
2. FENO检测使用一种称为呼气流量计的仪器,患者通过该仪器呼出气体。
3. 在呼气过程中,仪器会测量呼出气体中的NO浓度。
4. 如果气道炎症存在,气道上皮细胞会产生更多的NO,导致呼出气体中的NO浓度升高。
5. FENO检测结果通常以ppb(parts per billion)为单位表示,正常人的FENO浓度通常在10-25 ppb之间。
6. 高于正常范围的FENO浓度可能表明气道炎症存在,而低于正常范围的FENO浓度则可能排除气道炎症的存在。
需要注意的是,FENO检测并不能用于确定具体的炎症原因,仅能作
为一种辅助诊断手段。
因此,对于FENO检测结果异常的患者,还需要结合其他临床症状和检查结果进行综合判断。
氮氧化物分析仪原理IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。
IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NOX/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。
分析原理IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
氮氧化物分析仪(42C)作业指导书1.检测细则1.1概述1.1.1方法原理42C分析仪是一种化学发光法NOx分析仪,原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42C分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下:NO + O3── NO2+ O2+ h仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。
NO2是通过钼转换器完成NO2到NO的转换。
样品气通过标有SAMPLE的进气口被抽入42C分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测NO X方式)。
臭氧与样气中的NO进行反应生成激发态的NO2分子, 然后由光电倍增管检测NO2返回基态时发出的萤光。
仪器计算在NO和NO X方式下所检测的NO和NO X浓度,同时利用两个浓度的差值计算出NO2浓度。
1.1.2适用范围环境空气1.2仪器试剂42C化学发光法NO-NO2-NOx分析仪(Chemiluminescence NO-NO2-NOx analyzer)1.3操作步骤a.打开电源。
b.让仪器预热并稳定90分钟。
c.根据具体情况设置仪器的参数。
(包括单位、量程、平均时间等)d.在仪器进行实际监测以前,对仪器进行一次校准。
e.进入实际监测。
1.4计算1.5注意事项a.保持仪器运行环境的温度在25℃左右,湿度在60%以下,保持环境清洁干净。
b.定期更换干燥剂、活性炭、滤膜,清洁机内积尘,清洗滤网、毛细管等。
c.定期检查仪器的运行情况,并填写巡检记录。
d.定期对仪器进行校准,并填写校准记录。
1.6相关文件《42C化学发光法NO-NO2-NOx分析仪(Chemiluminescence NO-NO2-NOx analyzer)说明书》1.7相关记录2.设备操作维护规程2.2适用范围环境空气2.3操作步骤a.打开电源。
氮氧化物分析仪是如何标定的呢?氮氧化物是一类紧要的环境污染物,它们是大气中的臭氧、酸雨和大气细颗粒物等的重要成分之一、为了监测和掌控这些污染物的排放量,氮氧化物分析仪被广泛应用于环境监测和工业过程中。
然而,由于氮氧化物的多而杂性质和化学反应动力学,氮氧化物分析仪的标定是一项特别紧要的任务,它直接影响着仪器的精度和牢靠性。
本文将介绍氮氧化物分析仪的标定方法。
一、氮氧化物分析仪的工作原理氮氧化物分析仪是一种基于化学反应的仪器,重要用于测定氮氧化物的浓度。
通常情况下,氮氧化物分析仪可以分为两种类型:光度法和电化学法。
光度法是利用化学反应中产生光汲取的特性来测定氮氧化物的浓度。
通常使用光谱仪来测量光汲取的强度,进而计算出氮氧化物的浓度。
电化学法则是通过化学反应中的电流变化来测定氮氧化物浓度。
在典型的电化学法中,氮氧化物通过电解或化学反应与电极反应来生成电流信号,然后通过订立的计算公式计算浓度。
二、氮氧化物分析仪的标定方法标定是氮氧化物分析仪的关键环节,它不仅可以帮忙检测到仪器的误差,而且还可以明确测试参数,提高检测结果的精准性和牢靠性。
下面我们将简要介绍氮氧化物分析仪的标定步骤和实在方法。
1. 准备标准气体在进行氮氧化物分析仪的标定前,首先需要准备标准气体,以便用于仪器的校准。
标准气体是一种已知浓度的气体,通常可以从国家化学品供应商或试验室购买。
2. 调整仪器参数为了确保氮氧化物分析仪能够精准测量标准气体的浓度,必需设置仪器参数。
通常,这些参数包括仪器的零点,放大倍数和灵敏度等。
零点是仪器的输出在没有任何测量气体时的基本值。
可以通过检测零浓度气体并自动调零仪器来校准零点。
放大倍数是仪器输出和输入之间的比率。
灵敏度是在输入信号变化时仪器的反应程度。
3. 进行零点校准将仪器与标准气体相连,然后将仪器调零。
测量零浓度气体,调整仪器,使输出值为零。
仪器的零点应当在每次测试前进行校准。
4. 进行标准值校准将仪器与标准气体连接并测量气体浓度。
汽车排放分析系统中NOX转换效率的计算分析摘要:本文介绍了汽车排放气体分析系统中氮氧化物分析仪的工作原理,并对汽车排放气体分析系统中氮氧化物的转换效率如何计算进行了详细分析;上述内容对汽车尾气排放试验人员有一定参考价值。
关键词:汽车排放分析系统;氮氧化物的转换效率;计算分析前言氮氧化物NOX是汽车尾气排放的主要污染物之一,所带来的环境效应多种多样,它是酸雨的成因之一,可导致地表水的酸化,大气能见度降低,增加水体中有害于鱼类和其他水生生物的毒素含量等。
因此检测分析汽车尾气中氮氧化物的含量对环境污染控制具有重要意义。
氮氧化物NOX包括NO2和NO,由于NOX分析仪不能直接检测出NO2的含量,需将NO2转换为NO才能进行检测,该转换过程由NOX转换器完成(NOX的转换效率指的是将NO2转换为NO的转换效率)。
NOX的转换效率直接影响NOX的测量结果,因此为确保NOX分析仪检测数据的准确可靠,应定期检查转换效率是否符合要求。
1.NOX分析仪1.1 化学发光法的原理基态下的NO2不具有发光性,不能被化学发光法检测出来,但化学发光法可以检测出NO,因此须将NO2通过转换器转换为NO。
化学发光法的原理如下:NO和O3发生化学反应产生激发态的NO2,大约有10%的NO2处于激发状态。
当激发态的NO2*返回到基态NO2时,将产生波长为600—2400nm,中心波长为900nm的近红外荧光,其中一份光子的能量为hv。
在一定的压力和温度条件下,荧光强度(或光子能量)只与反应前的NO的浓度成正比。
利用光电倍增管吸收光子产生光电流,光电流强度与NO的浓度成线性,可通过光电强度测得NO的浓度。
1.2 NOX转换器原理NOX转换器效率装置简图如图1所示,NO和O2进入气路系统,将流量电磁阀控制开关置于闭合状态,自耦变压器产生高压使臭氧发生器工作,产生化学反应:生成的O3与NO再进入分析仪进行分析。
NOX转换器效率装置本质上是提供了一个外置的臭氧发生器。
我国近年来在全国各地建成了许多环境空气自动监测站,由于空气自动监测站具有长期性、连续性、自动化运行的特点,所以在运行中经常出现了一些问题,只有通过高质高效的管理维护才能保证仪器设备稳定运行及监测数据准确有效;化学发光法氮氧化物分析仪是一台能够监测NO 、N Ox 、N O 2的多参数分析仪,该仪器主要是由电路系统和气路系统组成,内部部件比较多,仪器相对比较复杂,所以仪器会经常出现一些故障。
本文以DASIBI1000系统氮氧化物分析仪为例,从仪器的电路系统、气路系统两方面分析故障产生的原因,并提出解决方案,希望对仪器的正常运行提供一些有益的参考。
1 仪器的工作原理该分析仪是利用O 3和NO的气相反应所发出的光强大小,来衡量大气中N O 浓度的,这种方法被称作化学发光法;在这个反应中生成物NO 2的外层电子处于激发态,它将立刻回到基态,同时释放出600n m ~2400nm的光波,其峰值波长为1200nm;反应中产生的光强大小是与N O 的浓度成比例的,所以用这种方法就可以直接测出大气中的NO 浓度;测量NO 2的方法与此类似,它是用一种间接的方法,首先将N O 2还原为NO ,再将还原得到的N O 与O 3反应,测得这个反应中的发光强度大小,就可得出NO 2浓度的大小。
如图1所示。
2 常见故障分析与解决方案2.1气路系统常见故障2.1.1总流量低故障原因分析:外置泵老化吸力明显下降;光学平台反应室内样气限流被异物堵塞;外置泵管接头或后面板排气管接头连接处没有拧紧;仪器有漏气现象;外置泵有轻微的漏气现象。
解决方案:及时更换2108外置泵维护套件,定期更换外置泵活性炭过滤筒;清理限流管内异物,用头发或细铜丝将限流管透通;如果堵的太死,更换限流管;更换滤筒后连接外置泵时一定要把1/4管接头拧紧,确保仪器后面板排气口与外置泵管接头连接畅通无阻;分别将仪器采样进气口和臭氧进气口用死堵堵死,这时总流量和臭氧流量的浮子流量计会慢慢下降,直到下降到流量计底部“0”值时,证明该仪器不漏气,如果下不到底部,该仪器有漏气现象;须用排除法和短接法将仪器漏点找出并且堵住漏点;应重点检查仪器各管接头处;检查外置泵,维修漏点。
T200 氮氧化物NO/NO2/NO x分析仪
测量原理
T200采用化学发光的检测原理,结合最先进的微处理器
技术,可提供精确可靠的低含量水平的氮氧化物检测,满足环
境空气在线监测和稀释法污染源在线监测的应用要求。
仪表特性
◆具备温度补偿和压力补偿功能
◆独立测量NO、 NO2、NO X
◆彩屏显示,触屏操作◆具有连续自动零点校正功能
◆微处理器实现多功能操作◆前面板的USB接口,具有储存卡数据采集功能◆可连续自检并带自动报警功能◆具有信号过滤器,优化反应时间
◆仪器工作参数以数字状态输出◆内置零漂/跨漂检查(可选)
◆内置的1分钟到365天的多重平均数据存储◆两个双向RS-232端口用于远程控制
◆多任务软件允许在操作过程中监测测试数据
仪表技术参数。
氮氧化物的测定
氮氧化物是指氮和氧元素组成的化合物,它们是大气中最主要的污染物之一,
也是空气污染的主要来源。
氮氧化物的测定是检测大气污染物的重要方法,它可以帮助我们了解大气污染的程度,从而采取有效的措施来减少污染。
氮氧化物的测定主要是通过气相色谱法(GC)和气体测定仪(GMD)来实现的。
气相色谱法是一种分析技术,它可以检测气体中的氮氧化物,并将其分离出来,以便进行测定。
气体测定仪是一种用于测量气体浓度的仪器,它可以测量氮氧化物的浓度,以及其他气体的浓度。
此外,还可以使用其他技术来测定氮氧化物,如离子色谱法(IC)、原子吸收
光谱法(AAS)和紫外-可见分光光度计(UV-Vis)等。
这些技术可以检测氮氧化物的浓度,并可以准确地测量氮氧化物的含量。
氮氧化物的测定是一项重要的任务,它可以帮助我们了解大气污染的程度,从
而采取有效的措施来减少污染。
因此,我们应该加强对氮氧化物的测定,以便更好地保护我们的环境。
氮氧化物检测设备机理氮氧化物是大气中重要的一类污染物,对人体健康和生态环境产生严重的危害。
为了准确监测和控制氮氧化物的排放,各种氮氧化物检测设备被开发出来。
本文将对现行的氮氧化物检测设备的机理进行介绍,主要包括化学发光法、热导法、紫外吸收法、红外吸收法、电化学法、质谱法、分子束质谱法、色谱法等方面。
一、化学发光法化学发光法是一种通过测量化学反应过程中释放的能量来检测物质的方法。
在氮氧化物检测中,化学发光法通常利用一氧化氮和臭氧反应产生激发态的氮气分子,然后测量发光的过程。
该方法的优点是灵敏度高、响应速度快,但缺点是需要使用臭氧作为反应剂,容易受到干扰。
二、热导法热导法是一种基于气体热传导性质差异的检测方法。
在氮氧化物检测中,热导法通常利用加热的金属丝或薄膜作为热敏元件,测量氮氧化物气体通过热敏元件时的热传导变化。
该方法的优点是结构简单、稳定性高,但缺点是灵敏度较低,容易受到其他气体的干扰。
三、紫外吸收法紫外吸收法是一种基于气体对紫外光吸收特性的检测方法。
在氮氧化物检测中,紫外吸收法通常利用特定波长的紫外光通过氮氧化物气体时测量光强的变化,从而得到氮氧化物的浓度。
该方法的优点是灵敏度高、选择性好,但缺点是需要使用高纯度光源和精密的光学系统。
四、红外吸收法红外吸收法是一种基于气体对红外光吸收特性的检测方法。
在氮氧化物检测中,红外吸收法通常利用特定波长的红外光通过氮氧化物气体时测量光强的变化,从而得到氮氧化物的浓度。
该方法的优点是灵敏度高、选择性好,同时具有非色散性,能够同时检测多种气体成分。
但缺点是需要使用高纯度光源和精密的光学系统,同时价格较高。
五、电化学法电化学法是一种基于电化学反应的检测方法。
在氮氧化物检测中,电化学法通常利用特定的电化学反应将氮氧化物转化为具有电活性的产物,然后通过测量电流或电压的变化来得到氮氧化物的浓度。
该方法的优点是结构简单、响应速度快,但缺点是寿命较短,需要定期更换电化学元件。
化学发光法氮氧化物分析仪故障分析及解决方案摘要:在对空气自动监测站仪器的10年维护过程中,遇到很多仪器故障和技术问题,通过对仪器的探索和实践,整理了化学发光法氮氧化物分析仪常见故障分析和解决办法,并着重于实际条件,总结出主要依靠自身来排除故障的方案, 希望对仪器的正常运行提供一些有益的参考。
关键词:氮氧化物分析仪常见故障解决方案Abstract:For automatic air quality monitoring station instrument in the 10 years maintenance process, met many instrument malfunction and technical problems, through to the instrument of exploration and practice, sorting the chemiluminescence jet-engine analyzer common failure analysis method and solution, and focuses on the actual conditions, summarizes mainly rely on their own to ways to remove the faults, hopes to provide some normal operation of instrument beneficial reference.Key Words:Nitrogen oxides analyzer;Common faults;Solutions我国近年来在全国各地建成了许多环境空气自动监测站,由于空气自动监测站具有长期性、连续性、自动化运行的特点,所以在运行中经常出现了一些问题,只有通过高质高效的管理维护才能保证仪器设备稳定运行及监测数据准确有效;化学发光法氮氧化物分析仪是一台能够监测NO、NOx、NO2的多参数分析仪,该仪器主要是由电路系统和气路系统组成,内部部件比较多,仪器相对比较复杂,所以仪器会经常出现一些故障。
氮氧化物检测仪的工作原理NOx探测器的关键部件是气体传感器。
原则上,气体传感器可分为三类:a)具有物理和化学性质的气体传感器,如半导体型(表面控制型、容积控制型、表面电位型)、催化燃烧型、固体热传导型等。
b)物理性质气体传感器:如导热型、光干涉型、红外吸收型等。
C)基于电化学特性的气体传感器,如恒电位电解、加瓦尼电池、膜离子电极、固定电解液等。
NOx探测器能有效监测NOx排放,减少事故发生。
氮氧化物,主要是一氧化氮和二氧化氮,是光化学烟雾和酸雨形成的重要原因。
汽车尾气中的氮氧化物在紫外线照射下与氮、氢化合物反应生成的有毒烟雾称为光化学烟雾。
光化学烟雾有一种特殊的气味,刺激眼睛,破坏植物,降低大气能见度。
此外,空气中的氮氧化物与水反应生成的硝酸和亚硝酸盐也是酸雨的成分。
大气中的氮氧化物主要来自化石燃料和植物的燃烧,以及农田土壤和土壤目前市场上的臭氧气体探测器主要有三种,可从测试精度、现场、范围或测试方法等方面进行综合评价。
臭氧气体探测器有三种类型?1固定臭氧探测器:固定式臭氧探测器:由气体检测报警控制器和固定式臭氧探测器组成。
气体检测报警控制器可设置在工作间内,对各监测点进行监控。
臭氧探测器安装在气体容易泄漏的地方,核心部件是气体传感器。
固定式臭氧检测报警器广泛应用于石油、化工、冶金、电力、煤矿、自来水等环境,在天然气保护中起着重要作用。
2便携式臭氧探测器:便携式臭氧检测仪是为了保护人们的生命安全而设计的。
它体积小,重量轻,易于夹在腰带、衬衫口袋或头盔上,检测暴露在极端环境中的臭氧气体浓度。
如果空气中探测器气体浓度过高,臭氧探测器将在时间发出声、光、振动三种报警信号,有效防止空气中臭氧气体浓度过高引发中毒事故。
3抽气式臭氧探测器内置臭氧泵可快速检测环境中的臭氧浓度。
采用带大屏幕液晶显示屏的泵式臭氧检测仪和带声光报警提示的进口电化学传感器,对极不利工作环境中的有害气体进行检测,并及时向司机通报防范措施。
氮氧化物检测仪可实现对氮氧化物排放的有效监控,从而降低事故发生。
以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因。
汽车尾气中的氮氧化物与氮氢化合物经紫外线照射发生反应形成的有毒烟雾,称为光化学烟雾。
光化学烟雾具有特殊气味,刺激眼睛,伤害植物,并能使大气能见度降低,另外,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。
大气中的氮氧化物主要源于化石燃料的燃烧和植物体的焚烧,以及农田土壤和动物排泄物中含氮化合物的转化。
一、氮氧化物检测仪的检测原理氮氧化物检测仪的关键部件是气体传感器。
气体传感器从原理上可以分为三大类:1、利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。
2、利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。
3、利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。
二、氮氧化物检测仪的基本特性1、防水溅、防尘、防爆、防震,本安电路设计,抗静电,抗电磁干扰;2、防护级别IP65,内置水汽、粉尘过滤器,防止因水汽和粉尘损坏传感器和仪器;3、内置泵吸式测量,响应迅速,采样距离大于10米,特殊气路设计,可直接检测;4、负压或正压-0.5~2公斤的气体,对测量结果无影响;5、报警值可设,报警方式可选低报警、高报警、区间报警、加权平均值报警;6、高精度温湿度测量(选配),同时对传感器进行温度补偿,仪器使用温度范围-40~70度,可检测400度的气体,更高温度的气体检测可订制(选配高温采样降温过滤手柄或高温高湿预处理系统);7、三种显示模式可切换:同时显示四种气体浓度、大字体循环显示单通道气体的浓度、实时曲线,各通道之间自动循环或手动循环可切换,可设置是否显示最大值、最小值、气体名称,可查看历史记录曲线图。
以上是逸云天小编为大家介绍的关于氮氧化物检测仪的检测原理及基本特性的所有内容了,逸云天专注于气体检测行业十四年,产品类型广泛,检测快速、稳定、可靠,能够检测气体种类高达500种,并广泛应用于石油、化工、燃气输配、仓储、市政燃气、消防、环保、冶金、生化医药、能源电力等行业。
氮氧化物检测分析仪检测原理氮氧化物指的是只由氮、氧两种元素组成的化合物,包括多种化合物,如一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二dan(N2O4)和五氧化二氮(N2O5)等。
氮氧化物对人体有不同程度的危害,长期吸入会导致脑部麻痹、手脚wei缩等,大量吸入会引起中枢神经麻痹,还会造成记忆丧失、四肢瘫痪甚至死亡等后果。
氮氧化合物检测仪是一种用于检测氮氧化合物气体泄漏或浓度的仪器仪表工具,它可以根据同环境选择匹配不同的参数,目前市面上有物理方法或电化学方法两种,其电化学原理是利用气体传感器来检测环境中存在的氮氧化合物气体,通过电流信号转化成可读数据并可进行输出或编辑。
像在一些水体污染检测过程中,都不少了氮氧化物分析仪的应用。
因为氮氧化物监测是污染预警、污染物监测和治理效果评定等工作的重要方式,因此,我们通过使用氮氧化物分析仪进行检测,能更有效地保证检测后的效果,真正实现对氮氧化物排放的有效监控,降低事故发生,从而在污染预警、污染物监测和治理效果评定等工作发挥出真正的作用。
氮氧化物检测分析仪检测原理:氮氧化物检测分析仪的关键部件是气体传感器。
气体传感器从原理上可以分为三大类:1、利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。
2、利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。
3、利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。
氮氧化物监测是污染预警、污染物监测和治理效果评定等工作的重要方式,需要氮氧化物监测分析仪提供精确和实时的监测数据。
因此,目前在石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、自来水厂、医药车间、烟草公司、大气环境监测、科研院校、楼宇建设、消防报警、污水处理、工业过程化控制、锅炉房、垃圾处理厂、地下隧道、输油管道、加气站、地下管网检修、室内空气质量检测、食品加工、杀菌消毒、冷冻仓库、农药化肥、杀虫剂生产等领域,均需要应用到氮氧化物监测分析仪。
空气中氮氧化物含量的测定方法空气中氮氧化物含量测定方法本文主要介绍了空气中氮氧化物的来源与危害。
氮的氧化物有一氧化氮、二氧化氮、三氧化二氮、四氧化三氮和五氧化二氮等多种形式。
大气中的氮氧化物主要以一氧化氮(NO和二氧化氮(NO)形式存在。
一氧化氮为无色、无臭、微溶于水的气体,在大气中易被氧化为NO。
NO为棕红色气体,具有强刺激性臭味,是引起支气管炎等呼吸道疾病的有害物质。
大气中的NO和NO可以分别测定,也可以测定二者的总量。
它们主要来源于石化燃料高温燃烧和硝酸、化肥等生产排放的废气,以及汽车排气。
测定方法化学发光法,盐酸萘乙二胺分光光度法,传感器法,库仑原电池法,阐述了这几种方法的原理,并从优缺点,适用的范围等方面进行了分析对比,为测定以及防治氮氧化物提供了依据。
氮氧化物是评价空气质量的控制标准之一。
空气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NQ )。
据有关部门统计,随着工业化生产的迅猛发展,特别是煤炭、石油、天然气的大量开采使用,我国多数城市已呈现出NO深度增加的趋势。
因此,了解氮氧化物的来源及危害机理,建立适合的氮氧化物的分析方法,了解其变化规律,对环保管理及环境整治,保障人类的生存环境具有重大意义。
1. 氮氧化物危害NO对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的主要物质和消耗臭氧的一个重要因子。
氮氧化物对眼睛和上呼吸道粘膜刺激较轻,主要侵入呼吸道深部的细支气管及肺泡。
当NO进入肺泡后,因肺泡的表面湿度增加,反应加快,在肺泡内约可阻留80% —部分变为NX NQ与NO均能与呼吸道粘膜的水分作用生成亚硝酸与硝酸,对肺组织产生强烈的刺激及腐蚀作用,从而增加毛细血管及肺泡壁的通透性,引起肺水肿。
亚硝酸盐进入血液后还可引起血管扩张,血压下降,并可与血红蛋白作用生成高铁血红蛋白,引起组织缺氧。
高浓度的NO亦可使血液中的氧和血红蛋白变为高铁血红蛋白,引起组织缺氧。
42C NO-NO2-NOx分析仪使用手册热电(上海)科技仪器有限公司第一章简介工作原理42C分析仪是一种化学发光法NOx分析仪,原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42C分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下:NO + O3── NO2 + O2 + h仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。
NO2是通过钼转换器完成NO2到NO的转换. 其转换器的加热温度约为325℃。
如图1-1所示, 样品气通过标有SAMPLE的进气口被抽入42C分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测NO X方式)。
在反应室前装有限流毛细管和流量传感器, 以控制和测量样气的流量.干燥空气通过DRY AIR进气口进入42C分析仪。
经过流量传感器后, 干燥空气通过放电式臭氧发生器。
臭氧发生器产生进行化学萤光反应时所需要的高浓度臭氧。
臭氧与样气中的NO进行反应生成激发态的NO2分子, 然后由光电倍增管检测NO2返回基态时发出的萤光。
仪器计算在NO和NO X方式下所检测的NO和NO X浓度,并将计算结果存入存储器, 同时利用两个浓度的差值计算出NO2浓度。
42C仪器不仅可在前面板上显示NO、 NO2和NO X浓度值,同时可将这些值输出到仪器的模拟输出端。
第二章仪器安装安装步骤:1,把采样管连接到仪器后面板的SAMPLE采样口(见Figure 2-1)。
安装前要确认采样管中没有脏的、潮湿的和有干扰的物质。
采样管应使用材料为FEP Teflon、316不锈钢的,外径为1/4”,内径不小于1/8”,长度小于10英尺的管子。
注意:要保证送入仪器的气体的压力和环境气压相同。
氮氧化物分析仪分析原理氮氧化物分析仪原理IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。
IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NO X/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。
分析原理IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
氮氧化物分析仪原理
IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。
IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NO X/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。
分析原理
IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氨含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氨气(NH3)产生反应,所以超高频常温超导谐振探测场只对氨的微弱扰动产生信号反应。
而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氨含量信息,为下一步工作提供了可靠的数据保障。
分析原理
IEM-ME400氮氧/氨气体分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧/氨气体分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME400氮氧/氨分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氮
氧/氨气体传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧/氨气体含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧/氨气体(NO X/02/NH3)产生反应,所以超高频常温超导谐振探测场只对氨的微弱扰动产生信号反应。
而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧/氨气体含量信息,为下一步工作提供了可靠的数据保障。
应用领域
主要应用于烟气脱硝技术工艺以及一切氮氧监测场合。
1. 火力发电厂脱硝控制(SCR,SNCR)
2. 混合烟气脱硝技术,SNCR/SCR烟气脱硝技术相结合
3. 垃圾发电厂
4. 各种焚烧炉(危险物品、垃圾、污泥等)
5. 钢铁厂(焦炉、高炉)
6. 各种锅炉、熔炉、窑炉的燃烧控制
7. 化工企业
8. CEMS排放监测
技术特点
1、采用超高频常温超导谐振原理,同时测量脱硝工程需要的氮氧化物(NO+NO2)、氧气和氨气。
2、适应脱硝工程的专业烟道探头。
喷射引流/回流烟道探头,在脱硝工程高温、高尘和强负压的工况使用下,自动清洁功能保证烟气回路畅通。
3、安装维护简便,配套系统方便。
法兰安装,现场检测,无采样泵,无伴热管线,维护工作量小。
4、单侧安装并且非光学非接触测量,对高温、高粉尘、高水分、高流速、强腐蚀等恶劣环境适应能力强;
5、现场测量,避免复杂和需要大量维护的气体采样预处理系统,降低系统成本和维护工作量,在正常使用维护下使用寿命长达10年;
6、实时测量,响应速度快,仅取决于仪表的数据处理时间(<2s) ;
7、不受背景气体交叉干扰,自动修正粉尘及光学视窗污染干扰;
8、智能化程度高,仪器自控自检,保障系统运行;
9、网络化数据传输功能,实现数据的远程传输和气体分析仪运行状态的远程监控;
10、无样气排放,对环境安全无污染;
11、背光液晶现场显示;
12、多种数字/模拟输入输出模式;
13、可定制旁路型和两侧安装型。