浅谈初中数学证明题解题技巧与步骤

  • 格式:doc
  • 大小:44.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈初中数学证明题解题技巧与步骤

北师大版初中数学教材中《证明》占三章节,教材这样安排的目地是想:通过对《证明》的学习,让学生通过对图形的性质及相互关系进行大量的探索,在探索的同时,使学生经历推理的过程,进行了简单的推理训练,从而具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。但生活很丰满,现实很骨干,许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!那如何求解证明题呢?如何让学生不再畏惧证明题呢?通过对教材中《证明》的教学,根据学生的认知水平,本人认为可以从以下六个方面来解决:

[例题]

证明:等腰三角形两底角的平分线相等

1.弄清题意

此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平

分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了!

2.根据题意,画出图形。

图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。

3.根据题意与图形,用数学的语言与符号写出已知和求证。

众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。

已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。

求证:BD=CE

4.分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

分析:此题要想证明 BD=CE ,就要引导学生观察图形(图形(1)),弄清题意。发现BD、CE分别存在于两对三角形中:△ABD与△ACE,△BEC与△CDB,只要能证明其中任何一对三角形全等,即可利用全等三角形性质得到对应边相等。(此思维属于逆向思维)

5.根据证明的思路,用数学的语言与符号写出证明的过程

证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。

这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!

证明:

∵AB=AC(已知)

∴∠ABC=∠ACB(等边对等角)

∵BD、CE分别是△ABC的角平分线(已知)

∴∠1=∠ABC, ∠2=∠ACB(角平分线的定义)

∴∠1=∠2(等量代换)

在△BEC与△CDB中,

∵∠ACB=∠ABC, BC=CB, ∠1=∠2

∴△BEC≌△CDB(ASA)

∴BD=CE(全等三角形的对应边相等)

6.检查证明的过程,看看是否合理、正确

任何正确的步骤,都有相应的合理性和与之相应证的公理、定理、推论,证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。最后,同学们在平时练习中要敢于尝试,多分析,多总结。

如何让学生在书写证明题时做到工整大方、有理有据呢?你一定觉得很简单,谁都可以做到。实际上要达到这样要求,对学生有一定难度。为什么呢?一方面是因为新课程注重的是自主探究、合作学习、对话交流,所以数学课堂中较少有时间手把手来纠正学生的书写步骤。另一方面,现在学科设置比较多,因为作业多等原因不容易养成良好的书写规范,所以造成到真正书写步骤的时候特别是考试的时候又回到了老路上来,字迹潦草不能辨认,理由先写一大推然后直接下结论,或者条件与结论的得出根本没有一丝一毫的联系。目前对学生来说,正确的练成说明题解答的规范非常重要。如何有效地辅导学生养成书写规范的习惯呢?愿把我的一点实践与思考与大家分享。

首先教师辅导要有目标,做到心中有数。我的目标就是在养成良好书写规范的习惯,并在学习书写规范中领略到事情前因后果的辩证关

系,体会数学解题中的严谨性,并在考试中不因为步骤而失分。要做到以上的目标,那就要先做好学生的思想工作,因为态度决定一切,书写步骤的前提是要充分认识到步骤的重要性,热爱教学中,经常给学生说说道理,叫学生认识不管是什么事,只要把事情的前因后果给理清楚了,书写步骤就已经成功了以小步了,书写严谨的步骤就是要自己的理论基础。指导中我对学生的整体要求是首先书写自己一定要干净利索,整洁大方,这是基本书写所有文字的前提,这一点也是很重要的。的书写版面,可以不拘一格,最终目标是工整大方。对于写不好的同学的作业就要求其说明理由给我,为什么他是这样做的,这样做的理由是什么,让他意识到在论证的过程中每一个小小结论的得出都是需要正确的理由来说明的,这理由或者是题目已知告诉我们的,或者要根据已知条件来得到推理论证的,整个的过程还是要学生意识到一个命题的两部分题设与结论,且我们研究的是真命题,也就是根据已知的条件要得到相应的正确的结论,而不再是随性的书写。

对于一道证明题,先让学生在草稿纸上把题目给出的已知条件全部按照顺序写好,不要急着去书写步骤,这样容易造成涂改的坏习惯,因为一般学生没有熟练到一定的程度,都不能一步到位的将书写步骤写得非常的完美,所以应该要学生先练习在草稿纸上的工作,将写好的已知条件列好之后,再仔细分析下,我们由已知条件是不是又可以得出比较显而易见的结论,得出的这些结论可能就可以在证明的过程中得到很好的利用。对于一目了然的证明题,我们可以从已知条件所得出的结论中