高二数学数列测试题及答案.doc
- 格式:doc
- 大小:323.51 KB
- 文档页数:6
高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。
b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
高中数学《数列》专题练习1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a .2.等差等比数列3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m ma a的项数m 使得m S 取最大值.(2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m S 取最小值。
也可以直接表示n S ,利用二次函数配方求最值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
一、选择题1.已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( )A .21-B .23-C .21D .232.在等比数列{}n a 中,若,243119753=a a a a a 则=1129a a ( )A .9B .1C .2D .3 3.已知等差数列{}n a 的前n 项和为,21,551S a a S n =+且,209=a 则=11S ( ) A .260 B .220 C .130 D .1104.各项均不为零的等差数列{}n a 中,若),2,(*112≥∈=--+-n N n a a a n n n 则S 2 009等于( )A .0B .2C .2 009D .4 0185.在△ABC 中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是( )A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形6.记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )A .4或5B .5或6C .6或7D .7或87.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为( )A.)(2*N n a n n ∈=B. ⎩⎨⎧≥==)2(2)1(3n n a n n C. )(2*1N n a n n ∈=+ D. 以上都不正确8.等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( )A .38B .20C .10D .9 9.设数列{}n a 的前n 项和2n S n =,则8a 的值为( ) A .15 B .16 C .49 D .6410.n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A .3B .4C .5D .611.等比数列{}n a 的前n 项和为n S ,且41a ,22a ,3a 成等差数列,若,11=a 则4S =( ) A .7 B .8 C .15 D .1612.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =( ) A .12-n B .1)23(-n C .1)32(-n D .121-n二、填空题:13.已知等比数列{}n a 为递增数列.若,01>a 且,5)(212++=+n n n a a a 则数列{}n a 的公比=q .14.设等比数列{}n a 的公比,2=q 前n 项和为,n S 则24a S = .15.数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 16.等比数列{}n a 的首项为a 1=1,前n 项和为,n S 若S 10S 5=3132,则公比q 等于________. 三、解答题17.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 18.已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式. (II )设31323log log log n n b a a a =+++,求数列1{}nb 的前n 项和.19.已知{}n a 为等比数列,256,151==a a ;n S 为等差数列}{n b 的前n 项和,,21=b 8525S S =. (1) 求{}n a 和}{n b 的通项公式; (2) 设n T n n b a b a b a ++=2211,求n T .20.设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 21.2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n . (1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a n b ,求数列{}n c 的前n 项和n S .22.设数列{}n a 满足10a =且1111.11n na a +-=-- (Ⅰ)求{}n a 的通项公式; (Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:。
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。
数列单元测试011一、选择题1.在正整数100至500之间能被11整除的个数为( ) A .34 B .35 C .36 D .37 2.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( ) A .-1 B .1 C .0 D .23.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) A .24 B .27 C .30 D .33 4.设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (( ) A .95 B .97 C .105 D .1925.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( ) A .5 B .6 C .7 D .8 6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( ) A .第10项 B .第11项 C .第10项或11项 D .第12项 7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S ) A .180 B .-180 C .90 D .-90 8.现有相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少, 那么剩余钢管的根数为( ) A .9 B .10 C .19 D .299.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为3d 的等差数列 D .非等差数列10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( ) A .14 B .15 C .16 D .17 二、填空题11.在数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则72是这个数列的第_________项. 12.在等差数列{a n }中,已知S 100=10,S 10=100,则S 110=_________.13.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______. 14.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a =_________. 三、解答题15.已知数列{a n }的前n 项和S n =2n 2-5n ,求该数列的通项公式为a n16.在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.17.数列通项公式为a n =n 2-5n +4,问(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.18.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比 前1分钟多走1 m ,乙每分钟走5 m . (1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分 钟走5 m ,那么开始运动几分钟后第二次相遇?19.已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列; (2)求a n 表达式;(3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.答案:1.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36.4,n ∈N *,∴n ≤36.【答案】C 2.【解析】由已知:a n +1=a n 2-1=(a n +1)(a n -1), ∴a 2=0,a 3=-1,a 4=0,a 5=-1.【答案】A 3.【解析】a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33.【答案】D4.【解析】f (n +1)-f (n )=2n ⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⨯=-⨯=-⨯=-1921)19()20( 221)2()3(121)1()2(f f f f f f相加得f (f (1)=21(1+2+…+19)⇒f (95+f (1)=97.【答案】B 5.【解析】a n =a 1+(n -1)d ,即-6+(n -1)d =0⇒n =d6+1∵d ∈N *,当d =1时,n 取最大值n =7.【答案】C 6.【解析】由a n =-n 2+10n +11=-(n +1)(n -11),得a 11=0,而a 10>0,a 12<0,S 10=S 11. 【答案】C 7.【解析】由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 80.【答案】A8.【解析】1+2+3+…+n <即2)1(-n n < 显然n =剩余钢管最少,此时用去22019⨯=190根.【答案】B9.【解析】(a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.【答案】B10.【解析】S 9=2)(991a a +=18⇒a 1+a 9=4⇒2(a 1+4d )=4. ∴a 1+4d =2,又a n =a n -4+4d .∴S n =2)(1n a a n +=16n =240.∴n =15.【答案】B11.【解析】由已知得11+n a =n a 1+21,∴{n a 1}是以11a =1为首项,公差d =21的等差数列. ∴n a 1=1+(n -1)21,∴a n =12+n =72,∴n =6.【答案】6 12.【解析】S 100-S 10=a 11+a 12+…+a 100=45(a 11+a 100)=45(a 1+a 110)=-90⇒a 1+a 110=-2.S 110=21(a 1+a 110)×110=-110.【答案】-110 13.【解析】-21=2)39)(2(+-+n ,∴n =5.【答案】514.【解】1111b a =2)(212)(212)(2)(211211211211b b a a b b a a ++=++=322112132122121=+⨯⨯=T S .【答案】3221 15. 16.【解】∵S 9=S 17,a 1=25,∴9×25+2)19(9-⨯d =17×25+2)117(17-d 解得d =-2,∴S n =25n +2)1(-n n (-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列.a n =25+(n -1)(-2)≥0,即n ≤13.5. ∴数列前13项和最大. 17.【解】(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项. (2)∵a n =n 2-5n +4=(n -25)2-49,∴对称轴为n =25=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2. 18.【解】(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-去)∴第1次相遇在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去) 第2次相遇在开始运动后15分钟. 19.【解】(1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2) S n ≠0,∴n S 1-11-n S =2,又11S =11a =2,∴{nS 1}是以2为首项,公差为2的等差数列. (2)由(1)n S 1=2+(n -1)2=2n ,∴S n =n21当n ≥2时,a n =S n -S n -1=-)1(21-n n ,n =1时,a 1=S 1=21,∴a n =⎪⎪⎩⎪⎪⎨⎧≥=)2( 1)-(21-)1( 21n n n n(3)由(2)知b n =2(1-n )a n =n 1,∴b 22+b 32+…+b n 2=221+231+…+21n <211⨯+321⨯+…+n n )1(1-=(1-21)+(21-31)+…+(11-n -n1)=1-n 1<1.。
高二数学数列试题答案及解析1.定义一种运算&,对于,满足以下性质:(1)2&2=1,(2)(&2=(&2)+3,则2008&2的数值为【答案】-3008【解析】(&2=(&2)+3,即(&2)=(&2-3,则 2&2,4&2,6&2,(&2)构成等差数列,(&2)=2&2+(1004-1)*(-3)=-30082.已知等差数列{an }的前n 项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n 项和【答案】(1);(2)【解析】(1)设等差数列的首项,公差分别是,代入公式;(2)将和代入通项公式,整理,第二步是裂项相消,整理.试题解析:(1)因为S3=0,S5=-5。
(6分)(2)所以数列的前n项和…+=…+=。
(6分)【考点】1.等差数列的前n项和;2.等差数列的通项公式;3.裂项相消法求和.3.已知数列是首项为的等比数列,是的前项和,且,则数列的前项和为A.或B.或C.D.【答案】A【解析】显然,则,解得,则成等比数列,其公比为,则其前5项和为或.【考点】等比数列的求和公式.4.已知数列的前项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,,点在直线上,若存在,使不等式成立,求实数的最大值.【答案】(1);(2)4.【解析】(1)利用进行求解;(2)先利用点在直线上求得的通项,再利用求得,再利用错位相减法进行求和.试题解析:(Ⅰ)(1)(2)(2)-(1)得,即,成等比数列,公比为..(Ⅱ)由题意得:,成等差数列,公差为.首项,,,当时,,当时,成立,.,令,只需.(3)(4)(3)-(4)得:.为递增数列,且 ,,实数的最大值为.【考点】1.的应用;(2)错位相减法.5.已知正项数列的前项和为,对任意,有.(1)求数列的通项公式;(2)令,设的前项和为,求证:【答案】(1)(2)证明见解析.【解析】第一问根据题中所给的条件,令取时,对应的式子写出,之后两式相减,可得相邻两项的差为常数,从而得到数列为等差数列,令,可得数列的首项,从而求得数列的通项公式,第二问对式子进行分母有理化,化简可得,再求和,中间项就消没了,从而证得结果.试题解析:(1)由可得,,两式相减得,整理得,根据数列是正项数列,所以有,且有,所以数列是以为首项,以为公比的等比数列,所以有;(2)【考点】求数列的通项公式,数列求和问题.6.等差数列中,,则前7项的和()A.B.28C.63D.36【答案】C【解析】由等差中项可得, .故C正确.【考点】1等差数列的性质;2等差数列的前项和.7.(本小题满分12分)已知是一个等差数列,且。
高二数学数列试题答案及解析1.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)由题意有,即,解得或故或.(Ⅱ)由,知,,故,于是,①.②①-②可得,故.【考点】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.2.已知数列的前项和构成数列,若,则数列的通项公式________.【答案】【解析】当时,,当时,,综上所述,,故答案为.【考点】数列通项与前项和之间的关系以及公式的应用.【方法点睛】本题主要考查数列通项与前项和之间的关系以及公式的应用,属于难题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.3.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块.【答案】4n+2【解析】第个图案有块,第个图案有块,第个图案有块,所以第个图案有块【考点】观察数列的通项4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为升.【答案】【解析】由题意可知,解得,所以.【考点】等差数列通项公式.5.在等差数列{an }中,S15>0,S16<0,则使an>0成立的n的最大值为 ().A.6B.7C.8D.9【答案】C【解析】依题意得S15==15a8>0,即a8>0;S16==8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使an>0成立的n的最大值是8,选C.6.已知数列是等比数列,,是和的等差中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】(1)求等比数列通项公式,一般方法为待定系数法,即列出两个独立条件,解方程组即可,本题可利用等比数列通项公式广义定义求解,即,而是和的等差中项,都转化为:(2)先代入求解,再根据错位相减法求和,注意项的符号变化,项数的确定.试题解析:(1)设数列的公比为,因为,所以,.因为是和的等差中项,所以.即,化简得.因为公比,所以.所以().(2)因为,所以.所以.则,①. ②①-②得,,所以.【考点】等比数列通项公式,错位相减法求和7.等差数列,的前n项和分别为和,若则=________.【答案】.【解析】根据等差数列的性质,由.【考点】等差数列的性质.8.数列的一个通项公式是()A.B.C.D.【答案】B【解析】设此数列为,其符号为其绝对值为,可得通项公式.选B【考点】数列的通项公式9.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为A.8B.9C.10D.11【答案】B【解析】该数列为等差数列,且,即,解得.【考点】等差数列,数学文化.10.等差数列{an}共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n的值是()A.3B.5C.7D.9【答案】A【解析】利用等差数列的求和公式和性质得出,代入已知的值即可.解:设数列公差为d,首项为a1,奇数项共n+1项,其和为S奇===(n+1)an+1=4,①偶数项共n项,其和为S偶===nan+1=3,②得,,解得n=3故选A【考点】等差数列的前n项和.11.数列的一个通项公式是()A.B.C.D.【答案】B【解析】观察数列的前6项知,该数列是以1为首项2为公比的等比数列,所以.故选B.【考点】观察法求数列的通项公式.12.数列是等差数列,若,且它的前项和有最大值,那么当取得最小正值时,值等于( )A.11B.17C.19D.21【答案】C【解析】由于前项和有最大值,所以,根据,有,,,所以,,结合选项可知,选C.【考点】等差数列的基本性质.13.设等差数列的公差为d,若数列为递减数列,则()A.B.C.D.【答案】C【解析】因为是等差数列,则,又由于为递减数列,所以,故选C.【考点】1.等差数列的概念;2.递减数列.14.设数列{an },{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为()A.0B.37C.100D.-37【答案】C【解析】数列{an }和{bn}都是等差数列,所以是等差数列,首项,所以数列是常数列,所以第37项的值为100【考点】等差数列15.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.16.设等差数列{an }的前n项和为Sn,若S3=9,S6=36.则a7+a8+a9等于()A.63B.45C.36D.27【答案】B【解析】设公差为d,则解得a1=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.17.已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和5B.5和6C.6和7D.7和8【答案】C【解析】,所以使前项和取最小值的正整数的值为6和7【考点】数列性质18.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.19.已知数列的通项公式为,记数列的前项和为,若对任意的恒成立,则实数的取值范围_________.【答案】【解析】由题意可得,,即求的最大值,所以当n=3时,,所以,填。
2025学年高二上数学《等差数列》测试卷(本卷共19道题;总分:150分;考试时间:120分钟)姓名:成绩:一.选择题(共8小题)1.已知数列2,5,22,11,⋯,则38是它的()A.第9项B.第10项C.第13项D.第12项2.设数列{a n}的通项公式为a n=n2﹣(k﹣5)n+1,若数列{a n}是单调递增数列,则实数k的取值范围为()A.(4,+∞)B.(﹣∞,4)C.(8,+∞)D.(﹣∞,8)3.已知数列{a n}是等差数列,a2,a14是方程x2﹣14x+16=0的两个实数根,则a8的值为()A.7B.±7C.4D.±44.设等差数列{a n}满足a5+a8+a11=﹣3a21,且a1>0,S n为其前n项和,则数列{S n}的最大项为()A.S21B.S15C.S14D.S95.数列{a n}中,a1=2,a n+1=a n+2,若a k+a k+1+⋯+a k+9=270,则k=()A.7B.8C.9D.106.已知等差数列{a n}的前n项和为S n,则“S2﹣2a2<0”是“nS n+1>(n+1)S n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.记S n为等差数列{a n}的前n项和,若S6=24,S9=21S3,则S12=()A.144B.120C.108D.968.已知等差数列{a n}中,a1=9,a4=3,设T n=|a1|+|a2|+…+|a n|,则T21=()A.245B.263C.281D.290二.多选题(共3小题)(多选)9.已知等差数列{a n}和{b n}的前n项和分别为S n和T n,且=2r1r1,n∈N+,则下列结论正确的有()A.数列{}是递增数列B.75=6120C.使为整数的正整数n的个数为0D.1⋅2⋅⋯⋅1⋅2⋅⋯⋅的最小值为32(多选)10.设等差数列{a n}的前n项和为S n,a15>0,且a14+a17<0,则()第1页(共14页)。
高二数学数列试题答案及解析1.已知为等比数列,,,则()A.B.C.D.【答案】D【解析】因为为等比数列,所以,或.设公比为,当时,,当时,综上可得.故D正确.【考点】1等比数列的通项公式;2等比数列的性质.2.(本小题满分12分)已知等比数列{an }满足:a1=2,a2•a4=a6.(1)求数列{an}的通项公式;(2)记数列bn =,求该数列{bn}的前n项和Sn.【答案】(1);(2).【解析】(1)将已知条件用首相和公比表示,即可求得公比,根据等比数列的通项公式可求得.(2)由可得,并将其化简变形,用裂项相消法求数列的和.试题解析:解:(1)设等比数列的公比为,由得,,解得,则,(2)由(1)得,,,∴,则【考点】1等比数列的通项公式;2裂项相消法求数列的和.3.已知数列满足:,则的通项公式为( )A.B.C.D.【答案】B【解析】,数列是首相为,公比为3的等比数列..故B正确.【考点】1构造法求通项公式;2等比数列的通项公式.4.(本小题满分12分)已知等比数列{an }满足:a1=2,a2•a4=a6.(1)求数列{an}的通项公式;(2)记数列bn =,求该数列{bn}的前n项和Sn.【答案】(1);(2).【解析】(1)将已知条件用首相和公比表示,即可求得公比,根据等比数列的通项公式可求得.(2)由可得,并将其化简变形,用裂项相消法求数列的和.试题解析:解:(1)设等比数列的公比为,由得,,解得,则,(2)由(1)得,,,∴,则【考点】1等比数列的通项公式;2裂项相消法求数列的和.5.等差数列中,则的值是()A.24B.22C.20D.【答案】A【解析】根据等差中项知,,所以,即.又,.故选A.【考点】等差中项的应用.【方法点睛】对于该类问题常常有两种方法:一、设数列的首项和公差进行基本量运算,从而求解,往往比较繁琐.方法二、常利用数列的性质运算,使运算简单、准确、快捷.但需要掌握数列常见的性质同时注意观察题中的条件.例如:本题用到了等差中项,快速求出,同时,从而求解.6.数列满足,,则此数列的第5项是()A.15B.255C.20D.8【答案】B【解析】∵,∴,∴,∴数列是以1为首项、以4为公比的等比数列,∴,∴,∴.【考点】等比数列的证明、等比数列的通项公式.【方法点睛】在高中数学教材中,有很多已知等差等比数列的首项、公比或公差(或者通过计算可以求出数列的首项、公比或公差),来求数列的通项公式,但实际上有些数列并不是等差等比数列,而这些题目往往可以用构造法,根据递推公式构造出一个新的数列,从而间接地求出数列的通项公式,对于不同的递推公式,我们可以采用不同的方法构造不同类型的新数列.一、利用倒数关系构造数列,如构造成的形式;二、构造形如的数列;三、构造形如的数列;四、构造形如的数列.7.已知数列的前n项和满足:,且,那么()A.1B.9C.10D.55【答案】A【解析】∵,∴令,即,即,∴数列是以1为首项、1为公差的等差数列,∴,∴.【考点】等差数列的证明、等差数列的通项公式.【思路点睛】利用已知条件恒成立,所以令,得到,利用等差数列的定义,分析出数列为等差数列,利用等差数列的通项公式先得出,再利用求出数列的通项公式的值.8.已知数列{an }的前n项和Sn=a n-1(a是不为零的常数),则数列{an}()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既非等差数列,也非等比数列【答案】C【解析】当时,,,∴数列是等差数列.当时,,∴数列是等比数列.综上所述,数列或是等差数列或是等比数列【考点】等差数列等比数列的判定9.已知数列{an }满足a1=1,an-2an-1-2n-1=0(n∈N*,n≥2).(1)求证:数列{}是等差数列;(2)若数列{an }的前n项和为Sn,求Sn.【答案】(1)详见解析;(2)Sn=(n-1)·2n+1【解析】(1)由已知条件推导出,由此证明{}是以为首项,为公差的等差数列.(2)由(1)知,从而得到,由此利用错位相减法能求出数列{an}的前n项和Sn试题解析:(1)∵an -2an-1-2n-1=0,∴-=,∴{}是以为首项,为公差的等差数列.(2)由(1),得=+(n-1)×,∴an =n·2n-1,∴Sn=1·20+2·21+3·22+…+n·2n-1①则2Sn =1·21+2·22+3·23+…+n·2n②①-②,得-Sn=1+21+22+…+2n-1-n·2n=-n·2n=2n-1-n·2n,∴Sn=(n-1)·2n+1.【考点】1.数列的求和;2.数列递推式10.(本题满分13分)设数列和满足:,(1)求数列和的通项公式;(2)当时,不等式恒成立,试求常数的取值范围.【答案】(1);(2).【解析】(1)由已知可得,又因为,所以为首项为,公比为的等比数列,从而可得的通项公式;由可得当时,两式相减得,,当时也满足,.记,又因为,所以,再将其左右两边同时乘以得,然后利用错位相减得,,可化简得即,,.试题解析:(1),为首项为,公比为的等比数列,又①令令②①-②得,,当时,满足此式。
高二数学数列试题答案及解析1.已知等比数列的前项为,,,则= .【答案】31【解析】【考点】等比数列通项公式求和公式2.在数列中,已知等于的个位数,则的值是()A.8B.6C.4D.2【答案】A【解析】根据已知条件可知,,,,,,,,,因此次数列从第三项起,以循环,则为还余下,所以的值为.【考点】简单逻辑连接词.3.观察下列各式:,,则的末两位数字为()A.01B.43C.07D.49【答案】B【解析】根据题意得,,发现的末两位数字是49,的末两位数字是43,的末两位数字是01,,的末两位数字为43,故选B。
【考点】归纳推理4.数列{an }满足a1=2,an+1=an2+6an+6(n∈N×)(Ⅰ)设Cn =log5(an+3),求证{Cn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设,数列{bn }的前n项的和为Tn,求证:.【答案】(Ⅰ)证明如下;(Ⅱ);(Ⅲ)证明如下;【解析】(I)由已知可得,,利用构造法,令,则可得,从而可证数列为等比数列;(II)由(I)可先求数列,代入可求;(III)把(II)中的结果代入整理可得,,则代入相消可证;试题解析:(Ⅰ)由得,于是,即,因此是以2为公比的等比数列;(Ⅱ)又,于是,即,因此,即;(Ⅲ)因为,于是,又,即;【考点】•数列的求和 等比关系的确定 数列递推式5.(本小题满分12分)已知首项都是1的两个数列,,满足.(1)令,求数列的通项公式;(2)若,求数列的前n项和【答案】(1);(2)【解析】(1)将已知条件变形可得,由等差数列的定义可知数列即数列是等差数列.由等差数列的通项公式可求得.(2)由已知可求得,分析的通项公式可知应用错位相减法求数列前项和.试题解析:(1)因为,,所以,即,所以数列是以首相,公差的等差数列,故.(2)由知,于是数列前项和两式相减可得所以【考点】1等差数列的定义,通项公式;2错位相减法求数列的和.6.已知数列满足条件,则.【答案】【解析】,可知数列是以为首相,以1为公差的等差数列...【考点】1构造法求数列的通项公式;2等差数列的定义;3等差数列的通项公式.7.设是等差数列的前n项和,若()A.B.C.D.【答案】A【解析】设等差数列的首项为,由等差数列的性质得:,,∴.【考点】等差数列的性质.8.等差数列中,,则中的最大值是()A.B.或C.D.【答案】A【解析】因为是等差数列,,又,所以中的最大值是.【考点】等差数列的前项的和9.已知数列满足,,若,则().A.B.C.D.【答案】A【解析】,故选A【考点】递推公式求数列各项10.已知数列满足,则.【答案】【解析】时,当时由得,两式相减得,经验证符合上式,因此通项公式为【考点】数列的通项公式求法11.(本小题满分为10分)设等差数列的公差为,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)将已知条件转化为等差数列的首项和公差表示,通过解方程组得到基本量,从而得到通项公式;(Ⅱ)将数列,的通项公式代入得到,根据特点采用错位相减法求和试题解析:(Ⅰ)由题意有,即,解得或,故或(Ⅱ)由知,故,于是,①∴②∴由①-②可得故【考点】1.等差等比数列通项公式;2.错位相减法求和【方法点睛】在等差等比数列中由各项满足的条件求通项公式时,一般将已知条件转化为基本量,首项和公差公比表示,通过解方程组得到基本量的值,从而确定通项公式,解决非等差等比数列求和问题,主要有两种思路:其一,转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成,其二,不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和12.已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.(1)求数列、的通项公式;(2)如果,设数列的前项和为,求证:.【答案】(1),;(2)详见解析.【解析】(1)由成等比数列可得成等比数列,将其转化为关于公差的方程即可求得公差,由等差数列的通项公式可求得.由公式即可求得与间关系式.由等比数列的定义可知为等比数列,从而可得.(2)由题意可知应用错位相减法求和.比较大小应用作差法即即可.试题解析:解:(1)设数列的公差为,依条件有,即,解得(舍)或,所以.由,得,当时,,解得,当时,,所以,所以数列是首项为,公比为的等比数列,故.(2)由(1)知,,所以①②得.又.所以,所以.【考点】1等差数列的通项公式;2等比数列的定义,通项公式;3错位相减法求和.13.在等比数列{bn }中,S4=4,S8=20,那么S12= .【答案】84【解析】由等比数列性质可知成等比数列,所以代入已知数据得【考点】等比数列性质14.已知数列满足,.令.(1)求证:数列为等差数列;(2)求证:.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)现将代入可得,再展开,两边同除以即可证数列为等差数列;(2)先由(1)可得数列的通项公式,进而可得的通项公式,再利用裂项法可得,进而可证明.试题解析:(Ⅰ),(Ⅱ)由(Ⅰ)知,由于于是【考点】1、等差数列的定义;2、等差数列的通项公式;3、数列的“裂项”求和;4、不等式的证明.15.已知数列是首项为的等比数列,其前项和为,且,则数列的前5项和为A.或B.或C.D.【答案】D【解析】由可知公比,数列是等比数列,公比为,首项为1,所以【考点】等比数列及求和16.(2015秋•宁德校级期中)已知公差不为零的等差数列{an },若a1=1,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)设bn =2n,求数列{an+bn}的前n项和Sn.【答案】(1)an =1+2(n﹣1)=2n﹣1;(2)Sn=n2+2n+1﹣2.【解析】(1)通过a2=1+d、a5=1+4d,利用a1,a2,a5成等比数列计算可知公差d=2,进而可得结论;(2)分别利用等差数列、等比数列的求和公式计算,相加即可.解:(1)依题意可知,a2=1+d,a5=1+4d,∵a1,a2,a5成等比数列,∴(1+d)2=1+4d,即d2=2d,解得:d=2或d=0(舍),∴an=1+2(n﹣1)=2n﹣1;(2)由(1)可知等差数列{an }的前n项和Pn==n2,∵bn=2n,∴数列{bn }的前n项和Qn==2n+1﹣2,∴Sn=n2+2n+1﹣2.【考点】数列的求和;等差数列的通项公式.17.函数图象上存在不同三点到原点的距离构成等比数列,则以下不可能成为公比的数是A.B.C.D.【答案】B【解析】根据平面几何切割线定理,从圆外一点做圆的切线和割线,则切线长是割线与它的圆外部分的比例中项,原点做半圆的切线长为设割线与半圆的另外两个交点到原点的距离分别是,则,设,所以,所以,根据图像分析,或是分别得到或,只有不在范围内,故选B.【考点】1.等比数列的性质;2.切割线定理.18.已知等差数列的公差为,且,若,则()A.8B.4C.6D.12【答案】A【解析】根据等差数列的性质可知,即,又,所以.【考点】等差数列的性质.19.在数列中,,则等于()A.B.C.D.【答案】D【解析】试题分析,,,,,,,故选D.【考点】数列通项及归纳推理.【思路点晴】本题主要考查数列通项的基本含意,属于难题,解题时一定要注意的三个特点:(1)正负间隔出现;(2)分母成公差为等差数列;(3)每增加“”,就增加两项.解决本题是利用特点(3)可知在的基础上多出了两项得出结论的.20.已知各项不为0的等差数列,满足,数列是等比数列且,则()A.16B.8C.4D.2【答案】A【解析】【考点】等比数列等差数列性质21.(2015秋•滑县期末)设等差数列{an }的前n项和为Sn,若a1=﹣3,ak+1=,Sk=﹣12,则正整数k=()A.10B.11C.12D.13【答案】D【解析】根据数列的概念直接求解.解:∵等差数列{an }的前n项和为Sn,a1=﹣3,,∴解得k=13.故选:D.【考点】等差数列的性质.22.(2007•山东)设数列{an }满足a1+3a2+32a3+…+3n﹣1an=,n∈N*.(1)求数列{an}的通项;(2)设,求数列{bn }的前n项和Sn.【答案】(1).(2).【解析】(1)由a1+3a2+32a3+…+3n﹣1an=⇒当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=,两式作差求出数列{an}的通项.(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.解:(1)∵a1+3a2+32a3+…+3n﹣1an=,①∴当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=.②①﹣②,得3n﹣1an=,所以(n≥2),在①中,令n=1,得也满足上式.∴.(2)∵,∴bn=n•3n.∴Sn =3+2×32+3×33+…+n•3n.③∴3Sn =32+2×33+3×34+…+n•3n+1.④④﹣③,得2Sn=n•3n+1﹣(3+32+33+…+3n),即2Sn=n•3n+1﹣.∴.【考点】数列的求和;数列递推式.23.已知数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)记,若对于一切的正整数,总有成立,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由利用能求出an=3n;(Ⅱ)先求出再求出中的最大值为,由此能求出实数m的取值范围试题解析:(Ⅰ)当时,,∴,又时,满足上式,所以.(Ⅱ),当时,,当时,,∴时,,时,,时,,∴中的最大值为.要使对于一切的正整数恒成立,只需,∴.【考点】1.数列的求和;2.数列递推式24.已知为等比数列,是它的前项和.若,且与的等差中项为,则等于( )A.B.C.D.【答案】C【解析】由,得,即;与的等差中项为,可得,得;所以,,得.故选C.【考点】等比数列的通项公式和前n项和公式;等差中项.25.已知等差数列中,等于()A.15B.30C.31D.64【答案】A【解析】根据等差数列的性质,得,所以.故选A.【考点】等差数列的性质.26.已知满足,,(1)求证:是等比数列;(2)求这个数列的通项公式.【答案】(1)见解析;(2).【解析】(1)由已知,变形为;且,所以;即数列是首项为4,公比为2的等比数列;(2)由(1)知:,所以.试题解析:(1)证明:由已知,变形为;且,所以;即数列是首项为4,公比为2的等比数列;(2)由(1)知:数列是首项为4,公比为2的等比数列,所以,所以.【考点】等比数列的定义;数列的通项公式.27.若数列满足,若数列的最小项为1,则的值为 .【答案】【解析】由题意得,数列,令,则,由,解得,此时函数单调递增;由,解得,此时函数单调递减,所以对于来说,最小值是或中的最小值,又,所以为的最小值,即,解得.【考点】利用导数研究函数的单调性及其极值(最值).【方法点晴】本题主要考查了利用导数研究函数的单调性、极值与最值问题,着重考查了转化与化归的思想方法和推理与运算能力,属于中档试题,本题的解答中,根据给定的数列,转化为函数,利用导数研究函数的单调性,确定函数的单调性,得出数列的最小值,列出方程即可求解实数的值.28.已知等差数列中,.(1)求数列的通项公式及前项和的表达式;(2)记数列的前项和为,求的值.【答案】(1)(2)【解析】(1)由已知条件利用等差数列的通项公式求出首项与公差,由此能求出数列的通项公式及前n项和的表达式;(2)由(1)得,由此利用裂项求和法能求出的值试题解析:(1)∵等差数列中,,∴,解得,∴..(2)由(1)得,∴∴.【考点】数列的求和;等差数列的性质29.等差数列中,,则的值是()A.15B.30C.31D.64【答案】A【解析】由题意,根据等差数列的性质得,所以,故选A.【考点】等差数列的性质.30.已知数列的前项和,.(1)求的通项公式;(2)若,,求数列的前项和.【答案】(1),;(2),.【解析】(1)利用当时,和时,,即可求解的通项公式;(2)由(1)得,利用乘公比错位相减法,即可求解数列的和.试题解析:(1)由,得当时,;当时,,.所以,.(2)由(1)知,,.所以,,.故,.【考点】等差数列的通项公式;数列的求和.31.已知等差数列的公差为前n项的和为Sn,若则d = ,= ,Sn= .【答案】; ;.【解析】由题意,可知,可知,所以,.【考点】等差数列的通项公式和前项和.32.等差数列{an }中,,{bn}为等比数列,且b7=a7,则b6b8的值为()A.4B.2C.16D.8【答案】A【解析】由于是等差数列,所以,所以,或,又是等比数列,所以,.故选A.【考点】等差数列与等比数列的性质.33.已知数列各项均为正数,为其前项和,且对任意的,都有.(1)求数列的通项公式;(2)若对任意的恒成立,求实数的最大值.【答案】(1);(2)实数的最大值为.【解析】(1)利用的关系求出通项公式;(2)通过恒成立转化为求的最小值.试题解析:解:(1)当时,,又各项均为正数;数列是等差数列,;(2),若对于任意的恒成立,则法(一):令,因,所以数的最大值为【考点】1.利用的关系求出通项公式;2.恒成立问题的转化.34.对于等差数列有如下命题:“若是等差数列,,是互不相等的正整数,则有”.类比此命题,给出等比数列相应的一个正确命题是:“若是等比数列,,是互不相等的正整数,则有”.【答案】【解析】由类比推理的格式可知,等差数列是差,则等比数列是比,等差数列的差是,则等比数列的商是,故应填答案.【考点】类比推理及运用.【易错点晴】本题是一道合情推理中的类比推理题,类比的内容是等差数列与等比数列的之间的类比.所谓类比推理是指运用两个或两类对象之间在某些方面的相似或相同,推演出它们在其它方面也相似或相同的推理方法.本题的解答就是借助等差和等比数列之间的这种相似进行类比推理的.解答时将差与比进行类比,将零与进行类比,从而使得问题巧妙获解.当然这需要对类比的内涵具有较为深刻的理解和把握.35.已知数列是等比数列,是1和3的等差中项,则=A.B.C.D.【答案】D【解析】由是1和3的等差中项,得,则;由数列是等比数列,得.故选D.【考点】等差数列和等比数列的性质.36.已知等比数列中,各项都是正数,且成等差数列,则()A.B.C.D.【解析】因为等比数列中,各项都是正数,且成等差数列,所以,得,因此,故选A.【考点】1、等比数列的通项公式;2、等比、等差数列的性质.37.在等差数列中,.(1)数列的前多少项和最大?(2)求数列的前项和;【答案】(1)数列的前项和最大;(2).【解析】(1)根据题设条件,列出方程组,求得,利用等差数列的通项公式,求得通项公式,令,得出当时,,当时,,即可得到结论;(2)当,时,求得,当,时,数列的前项和为,即可得出结论.试题解析:(1)由,得,∴,令,得,∴当,时,,当,时,,∴数列的前17项和最大;(2)当,时,;当,时,,∴当,时,数列的前项和为;当,时,数列的前项和为,故.【考点】等差数列的通项公式;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式的应用、数列的求和,其中解答中着重考查了分类讨论的数学思想、函数与方程思想的应用,以及学生的推理与运算能力和分析问题、解答问题的能力,试题有一点的难度,属于中档试题,本题的解答中,求出数列的通项公式,根据通项公式判断出数列的正项与负项,合理分类讨论是解答的关键.38.设数列是集合中所有的数从小到大排列成的数列,即,,,,,,…,将数列中各项按照上小下大,左小右大的原则排成如下等腰直角三角形数表:410 1228 30 36…的值为()A.B.C.D.【解析】试题分析:因为且,所以在第行,第个数,因此根据数表的数据的规律可知,应填.【考点】归纳猜想等合情推理及运用.【易错点晴】本题以等腰直角三角形数列为背景,考查的是归纳猜想的合情推理等知识的综合运用的综合问题.求解时充分借助题设条件中的有效信息,利用题设观察出每一行的数的特征和规律为,然后再确定数列中的项是第行,第个数,最后再运用数列中各项的规律,写出数.39.等差数列的前n项和为,若,则等于()A.12B.18C.24D.42【答案】C【解析】等差数列的前n项和为,则也成等差数列,即,,有,选C.【考点】等差数列的性质40.在数列中,,,则的值为()A.49B.50C.51D.52【答案】D【解析】由,得,故数列为首项为,公差为的等差数列,所以.故选 D.【考点】数列递推式.41.若是等差数列,下列数列中仍为等差数列的有()①;②;③(,为常数);④.A.1个B.2个C.3个D.4个【答案】C【解析】根据等差数列的定义,对于①当时,不是等差数列;②是常数,故是等差数列;③是常数,故是等差数列;④是常数,故是等差数列.故选:C.【考点】等差关系的确定.【方法点睛】本题主要考查了等差数列的定义和性质以及等差数列的判定,注重强调对基础的考查,属于容易题;一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于一个常数,那么这个数列就是等差数列,通过定义逐个验证;或者由等差数列通项公式的性质:若数列为等差数列,也可得到结果.42.在等差数列中,已知,则=A.10B.18C.20D.28【答案】C【解析】由题意得,设等差数列的公差为,则,则,故选C.【考点】等差数列的通项公式.43.已知数列的前项和为,,等差数列中,,且,又成等比数列.(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】(1)由题意可知,利用恒等式构造出两者作差得出,从而可求出数列的通项公式,数列的通项公式可通过联立方程组求解;(2)可利用错位相减法对前项和进行处理进而求解.试题解析:(1)∵,∴,∴,∴,而,∴.∴数列是以为首项,为公比的等比数列,∴,∴,在等差数列中,∵,∴,又因为成等比数列,设等差数列的公差为,∴,解得或.∵,∴舍去,取,∴,∴.(2)由(1)知,,①,②①-②得,∴.【考点】1.等差数列的综合;2.等比数列的综合;3.错位相减法的运用.【方法点睛】本题主要考查的是等差数列的综合,等比数列的综合,错位相减法求数列前项和,考查学生分析解决问题的能力,属于中档题,对于数列中给出的递推关系式求数列的通项公式,我们要熟练掌握常见的九种递推关系式求数列的通项公式的方法,只有求出了通项公式后面才能求数列前项和,另一方面凡是遇到等差数列和等比数列相乘做为一个数列,求这个数列的前项和,只有一个方法,错位相减的方法求解,因此正确求出数列的通项公式是解此类题目的关键.44.已知数列满足,前项和是,则满足不等式的最小正整数为______【答案】7【解析】根据题意,,化简可得;则是首项为,公比为的等比数列,进而可得,即;依题意,即,且n∈N*,分析可得n>7;即满足不等式的最小正整数n是7【考点】数列的应用;数列的求和45.设等差数列的前项和,且满足,对任意正整数,都有,则的值为()A.B.C.D.【答案】D【解析】由等差数列的求和公式及性质,可得,所以,同理可得,所以,所以,对任意正整数,都有,则,故选D.【考点】等差数列的求和公式.46.已知函数满足且.(1)当时,求的表达式;(2)设,,求证:…;(3)设,,为的前项和,当最大时,求的值.【答案】(1);(2)证明见解析;(3)或时取得最大值.【解析】(1)令,则,得到,即,即可利用等比数列的通项公式,求的表达式;(2)由(1)可知,利用乘公比错位相减法求解数列的和,即可证明结论;(3)由(1)可得,得到数列是一个首项是,公差为的等差数列,判定出时,当时,当时,即可得出的值.试题解析:(1)令,则,∴,即,∴(3分)(2)证明:设,则(5分)∴∴即(8分)(3)由(1)可得,∴数列是一个首项是4,公差为的等差数列,∴当时,当时,当时(10分)故或时取得最大值18. (12分)【考点】数列的综合问题.【方法点晴】本题主要考查了数列的综合应用问题,其中解答中涉及到抽象函数的性质的应用,等比数列的通项公式、数列的乘公比错位相减法求和和数列的性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,其中合理赋值、准确计算是解答本题的关键.47.在等比数列中,,则()A.5B.6C.7D.8【答案】C【解析】由等比数列的通项公式,令,解得,故选C.【考点】等比数列的通项公式.48.设数列前项和为,如果那么_____________.【答案】【解析】由,即,所以当时,,两式相减,可得,即,所以,又因为,所以.【考点】数列通项公式的应用.【方法点晴】本题主要考查了数列通项公式的应用,其中解答中涉及数列的递推关系式的应用、数列的累积法等知识点的综合考查,着重考查学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,本题的解答中,利用数列的递推关系式,得到,进而得到是解答的关键.49.在等差数列中,,,则的前项和()A.B.C.D.【答案】D【解析】由,即,解得,所以的前项和,故选D.【考点】等差数列的前项和.50.给出下列命题:①是的内角,且,则;②是等比数列,则也为等比数列;③在数列中,如果前项和,则此数列是一个公差为的等差数列;④是所在平面上一定点,动点P满足:,,则直线一定通过的内心;则上述命题中正确的有(填上所有正确命题的序号).【答案】①④【解析】①中,根据三角形的性质可得,再由正弦定理可得,所以是正确的;②中,当等比数列的公比为时,此时,此时数列不是等比数列,所以是错误的;③中,由,则此数列从第二项开始是一个公差为的等差数列,所以是错误的;④中,是所在平面上一定点,动点满足:,,则直线为角的平分线,所以一定通过的内心,所以是正确的,故选①④.【考点】命题的真假判定.【方法点晴】本题主要考查了命题的真假判定,其中解答中涉及到平面向量的运算、三角形的正弦定理、等比数列的定义、以及等差数列的判定及前项和公式,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,其中熟记数列的概念和向量的基本运算是解答的关键.51.在数列中,已知对任意,则()A.B.C.D.【答案】B【解析】由于,所以,两式相减得,所以是以为首项,公比为的等比数列,其前项和为.【考点】等比数列.52.设为等差数列的前项和,若,则().A.13B.14C.15D.16【答案】C【解析】设等差数列的首项是、公差是,因为,所以,解得,则=-1+8×2=15【考点】等差数列的性质;等差数列的前n项和53.《张邱建算经》是我国古代数学著作,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月,日织九匹三丈,问日益几何?”该题大意是:一女子擅长织布,一天比一天织的快,而且每天增加的量都一样,已知第一天织了五尺,一个月后,共织布390尺,问该女子每天增加尺.(一月按30天计)【答案】【解析】由题意得,女子织布两构成一个等差等数列,设等差数列的公差为,则一个月的织布总量为,即,解得.【考点】等差数列的求和的应用.【方法点晴】本题主要考查了数列的实际应用问题,其中解答中等差数列数列的通项公式、等差数列的求和公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力、以及转化与化归思想的应用,本题的解答中把实际问题转化为女子织布两构成一个等差等数列,再根据等差数列的求和公式,求出公差是解答的关键,属于基础题.54.设等比数列的前项和为,,且,,成等差数列,数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)设数列的公比为,由,,称等差数列,求解,即可求解数列的通项公式;(2)由(1)可知,利用乘公比错位相减法,求解数列的和.试题解析:(1)设数列的公比为,∵,,称等差数列,∴,∴,∵,∴,∴,∴.(2)设数列的前项和为,则,又,∴,,两式相减得w,∴.【考点】等比数列的通项公式;数列求和.【方法点晴】本题主要考查了等比数列的通项公式及数列求和,其中解答中涉及到等比数列的通项公式、等比数列的性质、数列的乘公比错位相减法求和、等知识点的综合考查,着重中考查了学生分析问题和解答问题的能力,以及学生转化与化归思想的应用,本题的解答中利用乘公比错位相减法求得数列的和,准确计算是解答的关键,试题有一定的难度,属于中档试题.55.已知数列中,,,其前项和满足.(1)求证:数列为等差数列,并求的通项公式;(2)设为数列的前项和,求;(3)若对一切恒成立,求实数的最小值.【答案】(1);(2);(3)【解析】(1)利用等差数列的定义证明数列,并求数列的通项公式.(2)利用裂项法求数列的和.(3)将不等式条件转化为,进而求实数的最小值.试题解析:解:⑴由已知,,且,∴数列是以为首项,公差为1的等差数列,∴…………3分⑵,………………6分⑶∵,∴,∴,又,∴的最小值为.【考点】1.数列的求和;2.等差数列的性质.56.已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)借助题设条件运用等差数列等比数列的有关知识求解;(2)借助题设运用等差数列等比数列的求和公式探求.试题解析:(1)等比数列的公比,所以,,设等差数列的公差为,因为,,所以,即,所以……………………………………………………………………5分(2)由(1)知,,,因此,从而数列的前项和.…………………10分【考点】等差数列等比数列的通项及前项和公式等有关知识的综合运用.57.已知(为常数,且),设是首项为4,公差为2的等差数列.(Ⅰ)求证:数列是等比数列;(Ⅱ)若,记数列的前n项和为,当时,求;【答案】(Ⅰ)详见解析(Ⅱ)【解析】(1)根据等差数列的通项公式可求得f(x)的解析式,进而求得,进而根据推断出数列是以为首项,为公比的等比数列;(2)把(1)中的代入求得,把m代入,进而利用错位相减法求得.试题解析:(Ⅰ)由题意即∴∴∵且,∴为非零常数,∴数列是以为首项,为公比的等比数列(Ⅱ)由题意,当∴①①式乘以2,得②②-①并整理,得。
高二数学数列试题答案及解析1.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.2.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为.【答案】【解析】一个骰子连续抛掷三次它落地时向上的点数情况共有种, 若落地时向上的点数依次成等差数列时情况有: 可能为连续的三个数组成的递增数列,还可能不连续的三个数组成的递增数列, .同理可得以上两种情况的递减数列,另外还有可能是三个数相同的常数列,所以共有种情况,所以所求概率为.【考点】1排列组合;2概率.3.在等比数列中,对于任意都有,则.【答案】【解析】令,得;由等比数列的性质,得.【考点】1.赋值法;2.等比数列的性质.4.已知数列满足,则= ()A.B.C.D.【答案】【解析】∵,∴,∴,所以数列的奇数项与偶数项分别成等比数列,公比为2,又,故,所以.【考点】递推公式,等比数列,分组求和,等比数列的前项和5.已知为等比数列,,,则()A.B.C.D.【答案】D【解析】因为为等比数列,所以,或.设公比为,当时,,当时,综上可得.故D正确.【考点】1等比数列的通项公式;2等比数列的性质.6.已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;,且,求证:(2)若正项数列满足(n∈N*),数列的前项和为Tn.【答案】(1)证明详见解析;(2)证明详见解析.【解析】本题主要考查数列的通项及前n项和等基础知识,考查学生的运算求解能力,注意解题方法的积累,属于中档题.第一问,通过对两边同时取倒数、变形可知数列是以1为首项、为公比的等比数列,进而计算可得结论;第二问,通过(n∈N*)变形可知,进而累乘得:,进而,通过裂项、放缩可知,并项相加即得结论.试题解析:(1)依题意,,,,由此归纳得出:;证明如下:∵,∴,∴,∴数列是以1为首项、为公比的等比数列,∴,∴;(2)∵(n∈N*),∴,∴,累乘得:,∴,即,∴,∵,∴.【考点】数列的求和;归纳推理.7.设数列的前项和为,已知(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,数列的前项和为.求【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由可得,,而,则(Ⅱ)由及可得利用错位相减即可求出结果,即可求出结果.试题解析:(Ⅰ)由可得,而,则(Ⅱ)由及可得..【考点】1.数列的递推公式;2.错位相减法求和.【方法点睛】本题主要考查了利用数列递推公式求出数列的通项公式,在解决此类问题时,一般利用来求数列的通项公式;在数列求和时如果通项公式可换成,其中数列分别是等差数列和等比数列,一般采用错位相减法进行求和.8.(本小题满分12分)已知正项数列的首项为,前项和为满足.(1)求证:为等差数列,并求数列的通项公式;(2)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,由代入已知式分解因式可得,由此可证数列是等差数列,并求出数列的通项公式,再由即可求出数列数列的通项公式;(2)由,即用裂项相消法求出,又可得,解之即可.试题解析:(1)当时,,即,数列是首项为,公差为的等差数列,故,故,当时也成立,(6分)(2), (8分)(10分)又,,解得或,即所求实数的取值范围为(12分)【考点】1.与关系;2.等差数列的定义与性质;3.裂项相消法求和;4.数列与不等式.【名师】本题主要考查数列中与关系、等差数列的定义与性质、裂项相消法求和以及数列与不等式的综合应用等知识.解题时首先利用与关系进行转化,得到数列前后项之间的关系,从而讲明数列是等差数列,进一步求出数列的退项公式;由于数列是等差数列,所以在求数列的前项和为时,可用裂项相消法求解.9.(本小题满分12分)等差数列的前n项和记为,已知,求n.【答案】【解析】本题主要考查等差数列的通项公式及前n项和公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.利用等差数列的通项公式将和展开,列出方程组,解出和d的值,即得到等差数列的通项公式,由,利用等差数列的前n项和得,解方程求得项数n的值.试题解析:由,得方程组,解得,所以.,得,解得或(舍去).【考点】等差数列的通项公式及前n项和公式.10.数列1,,,,,,,,,……的前100项之和为()A.10B.C.11D.【答案】A【解析】观察数列特点可知分母为1的有一项,分母为3的有三项,分母为5的有五项,以此类推分母为的有项,所以,即分母为19的分数写完后刚好100项,因此前100项求和时将分母相同的分组求和可得到和为10【考点】数列求和11.在等比数列{an }中,如果a1+a2=40,a3+a4=60,那么a5+a6=()A.80B.90C.95D.100【答案】B【解析】等比数列中【考点】等比数列性质12.(本题满分13分)设数列和满足:,(1)求数列和的通项公式;(2)当时,不等式恒成立,试求常数的取值范围.【答案】(1);(2).【解析】(1)由已知可得,又因为,所以为首项为,公比为的等比数列,从而可得的通项公式;由可得当时,两式相减得,,当时也满足,.记,又因为,所以,再将其左右两边同时乘以得,然后利用错位相减得,,可化简得即,,.试题解析:(1),为首项为,公比为的等比数列,又①令令②①-②得,,当时,满足此式。
7、 在数列 { a n } 中, a 12 , a n 1a nln(11 ) ,则a n n( )1、等差数列—3, 1, 5, 的第15 项的值是()3、已知 a1 , b1 , 则 a, b 的等差中项为()33224、已知等差数列 { a n } 的前 n 项和为 S n ,若 a 4 18 a 5 , 则 S 8 等于() 8、等差数列 {a n }中, a 10 , S n 为第 n 项,且 S 3S 16 ,则 S n 取最大值时, n 的值()9 设 S 为等差数列 { a } 的前项和,若 S 33, S 6 24 ,则 a 9 ( )nn6、设 a 1 , a 2 , a 3 , a 4 成等比数列,其公比为2,则 2a 1 a 2 的值为( )2a 3 a 42、设 S n 为等比数列 a n 的前项和,已知 3S 3 a 4 2, 3S 2 a 3 2 ,则公比 q10.某种细菌在培养过程中,每20 分钟分裂一次 (一个分裂为两个 ),经过3 小时,这种细菌由 1 个可繁殖成 ()A . 511 个B . 512 个C . 1023 个D . 1024 个11、等比数列 a n 中, a 2 a 3 6, a 2a 3 8,则 q ( )12、已知 a n 是等比数列, a n > 0,且 a 4a 6+2a 5a 7+a 6a 8=36,则 a 5+a 7 等于 ()13 已知 a nn79,( n N ),则在数列{ a n }的前 50 项中最小项和最大项分别是 ( C )n8014、某人于 2000 年 7 月 1 日去银行存款 a 元,存的是一年定期储蓄,计划2001年 7月 1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄, 此后每年的 7 月 1 日他都按照同样的方法在银行取款和存款.设银行一年定期储蓄的年利率r 不变,则到 2005 年 7 月 1日他将所有的存款和本息全部取出时,取出的钱共为()A . a(1+ r)4 元B . a(1+ r)5 元C . a(1+ r) 6 元D . a[ (1+ r)6- (1+ r)]元r15、两个等差数列a 1 a 2 ... a n 7n 2 a 5=___65a n ,b n ,b 2... b nn , 则________.b 1 3b 51216 数列 a n 的前 n 项的和 S n =3n 2+ n + 1,则此数列的通项公式an----------------------------.17、数列a n 中, a111,则 a4 5/3 1, a na n 118 设 S n是等差数列a n的前 n 项和,且 S5 S6 S7 S8 ,则下列结论一定正确的有。
高二数学数列试题答案及解析1.下列解析式中不是数列,的通项公式的是()A.B.C.D.【答案】A【解析】根据正负号变化规律,【考点】本题主要考查数列的概念及数列的简单表示法。
点评:集合与数列是两个不同的概念,数列中的数具有有序性,数列可以看做是一个定义域为正整数集(或其有限子集)的函数。
2.已知,,则的第五项为 .【答案】5【解析】因为,,所以,=5.【考点】本题主要考查数列的概念、数列的简单表示法及对数性质。
点评:先求得通项公式,再确定所求项。
具有一定综合性,注意对数性质的应用。
3.已知数列中,,,通项是项数的一次函数,①求的通项公式,并求;②若是由组成,试归纳的一个通项公式.【答案】(1);(2)【解析】设,则,解得,∴,∴,又∵,,,,即为5,9,13,17,…,∴.【考点】本题主要考查数列的概念、数列的简单表示法及待定系数法。
点评:先利用待定系数法求得式中的k,b,再利用通项公式确定所求项,并归纳出新数列的通项公式。
4.数列{an }中,a1,a2-a1,a3-a2,…,an-an-1…是首项为1、公比为的等比数列,则a n等于。
【答案】(1-).【解析】an =a1+(a2-a1)+(a3-a2)+…+(an-an-1)=(1-)。
【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。
点评:简单题,套用公式。
5.等比数列的前项和Sn= .【答案】【解析】公比为,当,即时,当,即时,,则.【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。
点评:等比数列的基本问题。
从公比是否为1出发,分析讨论a的多种可能情况是关键。
易忽视,即时的情况。
6.已知等比数列的首项为8,是其前n项和,某同学经计算得,,,后来该同学发现其中一个数算错了,则算错的那个数是__________,该数列的公比是________.【答案】;。
【解析】设等比数列的公比为,若计算正确,则有,但此时,与题设不符,故算错的就是,此时, 由可得,且也正确.【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。
高二数学数列试题答案及解析1.数列的一个通项公式是A.B.C.D.【答案】D【解析】数列中正负项(先负后正)间隔出现,必有,分母3,5,7,9,……故2n+1,分子3,8,15,24,……恰为,所以数列的一个通项公式是,故选D。
【考点】数列的通项公式。
点评:简单题,利用数列的前几项写出数列的一个通项公式,有时结果不唯一。
2.已知等差数列{an }的前n项的和记为Sn.如果a4=-12,a8=-4.(1)求数列{an}的通项公式;(2)求Sn的最小值及其相应的n的值;(3)从数列{an }中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和.【答案】解:(1)由题意,an=2n-20.(2)由数列{an}的通项公式可知,当n≤9时,an <0,当n=10时,an=0,当n≥11时,an>0.所以当n=9或n=10时,由Sn=-18n+n(n-1)=n2-19n得Sn 取得最小值为S9=S10=-90.(3)记数列{bn }的前n项和为Tn,由题意可知bn==2×2n-1-20=2n-20.所以Tn =b1+b2+b3+…+bn=(21-20)+(22-20)+(23-20)+…+(2n-20)=(21+22+23+…+2n)-20n=-20n=2n+1-20n-2【解析】略3.(本小题满分13分)已知等比数列中,.若,数列前项的和为.(1)若,求的值;(2)求不等式的解集.【答案】(1)(2)【解析】(1)首先将转化为用来表示,解方程组解得的值,得到通项,代入后求得,由通项公式可知是等差数列,求得首项,公差代入前n项和公式可得的值(2)将的首项公差代入,建立关于的不等式,求不等式可得的范围,最后取正整数即可试题解析:(1)得是以为首项,2为公差的等差数列.(2)所求不等式的解集为【考点】等差等比数列通项公式求和公式4.(本小题满分12分)数列的前n项和为,且(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的 n项和。
高二数学数列练习题及答案一、选择题1. 已知数列的通项公式为an = 2n + 1,其中n为正整数,则该数列的首项是:a) 1b) 2c) 3d) 42. 数列{an}的前4项依次是3,6,9,12,其通项公式为:a) an = 3nb) an = 3n + 1c) an = 3n - 1d) an = 2n + 13. 数列{an}的公差为2,首项为3,若a4 = 9,则数列的通项公式为:a) an = n + 2b) an = 2n + 1c) an = 3nd) an = 2n + 3二、填空题1. 数列{an}的首项为5,公差为3,若a7 = 23,则数列的通项公式为______。
2. 如果数列{an}满足an + 1 = an + 3,且a2 = 7,那么数列的首项为______。
3. 数列{an}满足公差为-2,首项为6,若a5 = -4,则数列的通项公式为______。
三、解答题1. 求等差数列{an}的前n项和公式。
解析:设数列{an}的首项为a1,公差为d。
根据等差数列的性质,第n项an可以表示为an = a1 + (n - 1)d。
前n项和Sn可以表示为Sn = (a1 + an) * n / 2。
因此,等差数列的前n项和公式为Sn = (a1 + a1 + (n - 1)d) * n / 2。
2. 已知数列{an}的通项公式为an = 2^n,则数列的公差为多少?解析:设数列{an}的首项为a1,通项公比为r。
根据等比数列的性质,第n项an可以表示为an = a1 * r^(n - 1)。
因此,已知通项公式为an = 2^n,可得到a1 * r^(n - 1) = 2^n。
考虑到a1 = 2^0 = 1,将其代入上式,得到r^(n - 1) = 2^(n - 1)。
可得到r = 2,因此数列的公差为2。
四、答案选择题:1. c) 32. a) an = 3n3. b) an = 2n + 1填空题:1. an = 172. a1 = 43. an = 12 - 2n解答题:1. 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。
2014 年高二年级数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 { a n } 中,若 a 2+ a 8= 16, a 4= 6,则公差 d 的值是 ( )A .1B . 2C .- 1D .-22.在等比数列 { a } 中,已知 a = 2, a = 8,则 a 9等于 ()n315A .±4B . 4C .- 4D .163.数列 { a n } 中,对所有的正整数n 都有 a 1·a 2·a 3 a n =n 2 ,则 a 3+ a 5= ()6125 25 31 A. 16B. 9C.19D.154.已知- 9, a , a ,- 1四个实数成等差数列,- 9, b , b , b ,- 1 五个实数成等比12123数列,则 b 2(a 2- a 1)= ()9A .8B .- 8C .±8D.85.等差数列 { a } 的前 n 项和为 S ,若 a+a +a=30,则 S 的值是 ( )nn2 71213A .130B .65C .70D .756.设等差数列 { a n } 的前 n 项和为 S n .若 a 1=- 11, a 4+ a 6=- 6,则当S n 取最小值时,n等于()A .6B . 7C .8D .97.已知 { a } 为等差数列,其公差为-2,且 a 是 a 与 a 的等比中项, S 为 { a } 的前 n 项n739nn和, n ∈ N + ,则 S 10 的值为 ()A .- 110B .- 90C . 90D . 1108.等比数列 { a n } 是递减数列,前 n 项的积为 T n ,若 T 13= 4T 9,则 a 8a 15= ()A .±2B .±4C . 2D .49.首项为- 24 的等差数列,从第 10项开始为正数,则公差 d 的取值范围是 ( )A .d> 8B . d<38 83C. ≤d<3D. <d ≤33310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是( )A . q1 B 、 a 1 0, q 1 C 、 a 1 0,0 q 1 或 a 1 0, q 1 D 、 q 111. 已知等差数列a n 共有 2n 1 项,所有奇数项之和为130,所有偶数项之和为120,则 n 等于()A. 9 B. 10 C. 11 D. 122 f (n) n(n∈ N +),且 f(1)= 2,则 f(20)为 ( ) 12.设函数 f(x)满足 f(n+ 1)=2A. 95 B.97 C. 105 D. 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上)13.已知等差数列 { a } 满足: a =2,a = 6.若将 a , a ,a 都加上同一个数,所得的三个n 1 3 14 5数依次成等比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n∈ N ),则 a =n 1 1 + 10a n 1 a n 315.在数列 { a n} 中, a1= 1, a2= 2,且满足a n a n 1 3(n 1)(n 2) ,则数列{ a n}的通项公式为 a n.已知数列满足: 1 n+ 1 a n, (n∈N* ) ,若n+ 1=-λ1+1,16 a =1,a =n b (n ) a na + 2b1=-λ,且数列 { b n} 是单调递增数列,则实数λ的取值范围为三、解答题 (本大题共70 分.解答应写出必要的文字说明、证明过程或演算步骤) 17.( 10 分)在数列 { a n} 中, a1= 8, a4= 2,且满足 a n+2- 2a n+1+ a n= 0(n∈ N+).(1)求数列 { a n} 的通项公式;(2)求数列 { a n} 的前 20 项和为 S20.18. (12 分 )已知数列{ a n}前n项和n 227n , (1) 求{| a n|}的前 11 项和T11;S n(2)求 {| a n |} 的前22项和 T22;19.(12分)已知数列{ a n}各项均为正数,前n项和为S n,且满足22S n=a n + n-4(n∈ N+).(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a n 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n( 1)求a n的通项公式;( 2)等差数列b n 的各项为正,其前 n 项和为 T ,且 T3 15 ,又a1b1, a2b2, a3b3n成等比数列,求T n.21.(12 分 )已知数列 { a n } ,{ b n } 满足 a 1=2, 2a n = 1+ a n a n + 1,b n = a n -1(b n ≠ 0).1(1)求证数列 { } 是等差数列;(2)令 c n1 ,求数列 { c n } 的通项公式.a n 122.( 12 分)在等差数列 { a n } 中,已知公差 d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式; (2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .22014 年高二年级数列试题答案1---12 : BBABAAD CDCDB3n 1 为奇数 )2 (n1 , a nλ<213---16 :-3n 2,为偶数11)42 (n17.解 :(1)∵数列 { a n } 满足 a n + 2- 2a n + 1+a n =0,∴数列 { a n } 为等差数列,设公差为 d.∴a 4= 1+ , =2-8=- 2.∴ a n = 1+-=-- 1) = -a 3d d 3a (n 1)d 8 2(n 10 2n.n 20 (2) S = n(9 n) 得 S = -22018.解: S nn 227na n 2n 28∴当 n 14 时, a n 0n 14 时 a n(1) T 11 | a 1 | | a 2 || a 11 |( a 1a 11 )S 11176(2) T 22(| a 1 | | a 2 || a 13 |) (a 14 || a 22 |)(a 1 a 2a 13 )a14a15a22S13S22S13S222S 13 25419.(1)证明 :当 n=1 时,有 2a 1= +1-4,即 -2a 1-3=0,解得 a 1=3(a 1=-1 舍去 ).[ 来源 :学当 n ≥2时,有 2S n-1 又 n 两式相减得 n+1, = +n-5, 2S = +n-4, 2a = -即 -2a n , 也即 n 2 , 因此 n n-1 或 n n-1 若 n n-1+1= (a -1) = a -1=a a -1=-a . a -1=-a , 则 a n +a n-1=1.而 a 1=3,所以 a 2 =-2,这与数列 {a n } 的各项均为正数相矛盾 ,所以 a n n-1 即 n n-1因此数列 n 为等差数列. -1=a , a -a =1, {a }(2)解:由(1)知 a 1=3,d=1,所以数列 {a n } 的通项公式 a n =3+(n-1) 1=n+2,× 即 a n =n+2.得 S nn 25n221.(1) 证明:∵ b n =a n - 1,∴ a n = b n + 1.又∵ 2a n = 1+ a n a n +1,∴ 2(b n + 1)= 1+(b n + 1)(b n +1+ 1).化简得: b nb n - b n +11 - 1= 1(n ∈ N + ).n +1n n +1n= 1.即- b=b b.∵ b ≠0,∴n n 1nn 1n 1b nb b b b b又 1=1 = 1 =1,∴ { 1 是以 1 为首项, 1 为公差的等差数列.b 1a 1-1 -1 }21 =1+(n -1) ×1=n.∴b n = 1∴ n =1+1=n +1 ∴ a n1 n(2)∴ b nn.ann . c n12n 122.。