固体物理71晶体缺陷基本类型
- 格式:pptx
- 大小:628.19 KB
- 文档页数:14
晶体缺陷晶体缺陷crystal defects实际晶体中原子偏离理想的周期性排列的区域称作晶体缺陷。
晶体缺陷在晶体中所占的总体积很小,也就是说,实际晶体中的绝大部分区域,原子排列于周期性位置上。
因此,晶体缺陷是近完整晶体中的不完整性。
但晶体缺陷对固体的许多结构敏感的物理量(如引起形变的临界切应力、扩散系数等)有极大的影响,晶体缺陷的研究对材料的强度、热处理等问题的研究有很重要的作用。
晶体缺陷分为:①点缺陷,包括空位、自填隙原子、代位原子、异类填隙原子等;②线缺陷,如位错;③面缺陷,如堆垛层错、孪晶界、反相畴界等,面缺陷还可以包括晶体表面、晶界和相界面(见界面)。
点缺陷图1是点缺陷的示意图,表示各种点缺陷的形式。
热平衡状态下点缺陷浓度C 遵从统计物理规律C=exp(-u/kT)这里k是玻耳兹曼常数;T是绝对温度;u是点缺陷形成能。
常用金属铁、铜、铝等的室温平衡空位浓度很小,接近熔点时的空位浓度约为 10-4。
自填隙原子形成能是空位形成能的3~4倍,其平衡浓度极小。
代位原子和异类填隙原子的最大浓度由相图决定。
表面空位和增原子的形成能和表面的取向关系很大,但都比体空位形成能小。
在某些表面,它们的形成能只有体空位形成能的一半。
因此它们的平衡浓度比体空位高得多(见晶体表面)。
界面的曲率半径ρ对平衡空位浓度Cv的影响由下式表示:这里 C0是界面曲率为零(曲率半径ρ为无穷大)的空位浓度,σ是界面能,V是原子体积。
图2a表示曲率半径不同引起的表面空位的浓度差(曲率半径不同对界面附近体空位浓度的影响类似)。
表面增原子浓度受到的影响和表面空位受到的影响相反(上式的括号内加一负号)。
由此引起的表面空位流和增原子流会使波浪状表面变平(图2a);使两个颗粒颈部变粗(图2b)。
这是粉末冶金烧结过程的重要理论依据。
非平衡状态下点缺陷浓度可以大大超过平衡浓度。
从熔点附近淬火后得到的过饱和空位浓度可以比平衡浓度大几个数量级。
形变产生的空位浓度达10-4 ε(ε是应变量)。
晶体缺陷类型晶体缺陷是指晶体中存在的原子或离子排列不规则或异常的现象。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。
一、点缺陷点缺陷是晶体中原子或离子位置的局部不规则,主要包括空位、间隙原子和杂质原子。
1. 空位空位是指晶体中原子或离子在其晶体格点上的位置空缺。
晶体中的空位可以通过热处理、辐射或化学反应形成。
空位的存在会降低晶体的密度和电子迁移率,影响材料的性能。
2. 间隙原子间隙原子是指晶体中原子或离子占据晶体格点之间的空隙位置。
间隙原子的存在会导致晶体的畸变和疏松,影响材料的机械性能和导电性能。
3. 杂质原子杂质原子是指晶体中非本原子或离子替代晶体中的原子或离子。
杂质原子的存在会改变晶体的导电性、光学性质和热稳定性。
常见的杂质原子有掺杂剂、杂质原子和缺陷聚集体。
二、线缺陷线缺陷是晶体中原子或离子排列沿着一条线或曲线出现的不规则现象,主要包括位错和螺旋线缺陷。
1. 位错位错是晶体中原子或离子排列的一种不规则现象,可以看作是晶体中某一面上原子排列与理想晶体的对应面上的原子排列不匹配。
位错的存在会导致晶体的畸变和塑性变形,影响材料的力学性能。
2. 螺旋线缺陷螺旋线缺陷是晶体中原子或离子排列呈螺旋状的一种不规则现象。
螺旋线缺陷的存在会导致晶体的扭曲和磁性变化,影响材料的磁学性能。
三、面缺陷面缺陷是晶体中原子或离子排列在一定平面上不规则的现象,主要包括晶界和堆垛层错。
1. 晶界晶界是晶体中两个晶粒之间的交界面,是晶体中最常见的面缺陷。
晶界的存在会影响晶体的力学性能、导电性能和晶体的稳定性。
2. 堆垛层错堆垛层错是晶体中原子或离子排列在某一平面上的堆垛出现错误的现象。
堆垛层错的存在会导致晶体的畸变和位错密度增加,影响材料的机械性能和热稳定性。
总结:晶体缺陷是晶体中存在的原子或离子排列不规则或异常的现象。
根据缺陷的不同类型,晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷主要包括空位、间隙原子和杂质原子,线缺陷主要包括位错和螺旋线缺陷,面缺陷主要包括晶界和堆垛层错。
一、概述1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。
种类:点缺陷、线缺陷、面缺陷。
1) 由上图可得随着缺陷数目的增加,金属的强度下降。
原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。
2) 随着缺陷数目的增加,金属的强度增加。
原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。
3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。
二、点缺陷3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。
分类:空位、间隙原子、杂质原子、溶质原子。
4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。
5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。
6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。
间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。
7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。
8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。
9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。
过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。
三、线缺陷10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。
主要为各类位错。
11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。
晶体缺陷的分类
1. 点缺陷,就像生活中的小瑕疵一样。
比如说金属晶体里少了个原子,这就是点缺陷呀!它虽然小,可对晶体的性能影响却不小呢!
2. 线缺陷,嘿,这就像一条小裂缝在晶体中蔓延。
想想看,位错不就是这样嘛,对晶体的强度等方面有着重要作用呢!
3. 面缺陷,哇哦,这好比晶体中有个明显的界面呀!像晶界、相界这些,对晶体的一些特性那可是有着关键影响的咧!
4. 空位缺陷,不就像是晶体里本该有的位置空了出来嘛,就像教室里面少了个同学一样明显,会引起一系列的变化哦!
5. 间隙原子缺陷,这多有趣,就像是硬生生挤进了一个不该在那的原子呀,对晶体的结构稳定性会带来挑战呢!
6. 杂质原子缺陷,就仿佛外来者闯入了晶体的世界。
比如说在硅晶体里掺杂其他原子,这影响可大啦!
7. 刃型位错,它就像晶体中一把隐形的刀呀,对晶体的变形等行为有着特殊意义呢!
8. 螺型位错,像不像一条螺旋状的小过道在晶体中呢,在晶体的生长等过程中作用明显得很呢!
9. 混合位错,哈哈,这就是前两种位错的结合体呀,复杂又有趣呢,对晶体来说可真是个特别的存在哟!
我的观点结论就是:晶体缺陷的分类可真是丰富多样又奇妙无比,每一种都有着独特的魅力和重要的作用呀!。
晶体中的缺陷晶体中的缺陷及其对材料性能的影响前⾔晶体的主要特征是其中原⼦(或分⼦)的规则排列,但实际晶体中的原⼦排列会由于各种原因或多或少地偏离严格的周期性,于是就形成了晶体的缺陷,晶体中缺陷的种类很多,它影响着晶体的⼒学、热学、电学、光学等各⽅⾯的性质。
晶体的缺陷表征对晶体理想的周期结构的任何形式的偏离。
晶体缺陷的存在,破坏了完美晶体的有序性,引起晶体内能U和熵S增加。
按缺陷在空间的⼏何构型可将缺陷分为点缺陷、线缺陷、⾯缺陷和体缺陷,它们分别取决于缺陷的延伸范围是零维、⼀维、⼆维还是三维来近似描述。
每⼀类缺陷都会对晶体的性能产⽣很⼤影响,例如点缺陷会影响晶体的电学、光学和机械性能,线缺陷会严重影响晶体的强度、电性能等。
⼀、晶体缺陷的基本类型点缺陷1、点缺陷定义由于晶体中出现填隙原⼦和杂质原⼦等等,它们引起晶格周期性的破坏发⽣在⼀个或⼏个晶格常数的限度范围内,这类缺陷统称为点缺陷。
这些空位和填隙原⼦是由热起伏原因所产⽣的,因此⼜称为热缺陷。
2、空位、填隙原⼦和杂质空位:晶体内部的空格点就是空位。
由于晶体中原⼦热运动,某些原⼦振动剧烈⽽脱离格点跑到表⾯上,在内部留下了空格点,即空位。
填隙原⼦:由于晶体中原⼦的热运动,某些原⼦振动剧烈⽽脱离格点进⼊晶格中的间隙位置,形成了填隙原⼦。
即位于理想晶体中间隙中的原⼦。
杂质原⼦:杂质原⼦是理想晶体中出现的异类原⼦。
3、⼏种点缺陷的类型弗仑克尔缺陷:原⼦(或离⼦)在格点平衡位置附近振动,由于⾮线性的影响,使得当粒⼦能量⼤到某⼀程度时,原⼦就会脱离格点,⽽到达邻近的原⼦空隙中,当它失去多余动能后,就会被束缚在那⾥,这样产⽣⼀个暂时的空位和⼀个暂时的填隙原⼦,当⼜经过⼀段时间后,填隙原⼦会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。
若晶体中的空位与填隙原⼦的数⽬相等,这样的热缺陷称为弗仑克尔缺陷。
肖特基缺陷:空位和填隙原⼦可以成对地产⽣(弗仑克尔缺陷),也可以在晶体内单独产⽣。
晶体缺陷的基本类型和特征
晶体缺陷是晶体中原子或离子位置的错误或不规则排列。
基本类型和特征包括以下几种:
1. 点缺陷:点缺陷是晶体中原子或离子缺失、替代或插入所引起的缺陷。
常见的点缺陷包括:空位缺陷(晶体中存在未被占据的空位)、插入缺陷(晶格中多余的原子或离子)、置换缺陷(晶体中某种原子或离子被其他种类的原子或离子替代)。
2. 线缺陷:线缺陷是沿晶体中某一方向的错误排列或不规则缺陷。
常见的线缺陷包括:位错(晶体中原子排列错误引起的错位线)、螺旋位错(沿着晶格某个方向成螺旋形排列的错位线)。
3. 面缺陷:面缺陷是晶体中平面上原子排列错误或不规则的缺陷。
常见的面缺陷包括:晶界(不同晶体颗粒的交界面)、层错(晶体中平行于某一层的错位面)。
4. 体缺陷:体缺陷是三维空间中晶体结构的错误或不规则排列。
常见的体缺陷包括:空间格点缺陷(晶体晶格中存在未被占据的空间)、体间隙(晶体中原子或离子占据不规则的空间位置)。
每种缺陷类型都有其特定的物理和化学性质,对晶体的电学、光学、磁学等性质都有影响。
因此,研究晶体缺陷对于理解晶体的结构和性质至关重要。