高等数学-函数的几种特性(精)
- 格式:ppt
- 大小:363.00 KB
- 文档页数:8
函数的定义量和量之间的关系如:其中x是自变量,y是因变量。
函数在 处取得的函数值符号只是一种表示,也可以:几种函数分段函数:反函数:显函数与隐函数: F(x,y)=0几种特性奇偶性,偶函数: y轴对称奇函数: 原点对称单调性:周期性:数列按照一定次数排列的一列数: ,其中 叫做通项。
对于数列 如果当n无限增大时,其通项无限接近于一个常数A,则称该数列以A为极限或称数列收敛于A,否则称数列为发散。
极限符号表示:极限极限函数在x0的邻域内有定义,左右极限:函数在左半邻域/右半邻域内有定义极限极限无穷小:以零为极限基本性质:1.有限个无穷小的代数和仍是无穷小2.有限个无穷小的积仍是无穷小3.有界变量与无穷小的积仍是无穷小4.无限个无穷小之和不一定是无穷小。
极限无穷小的商不一定是无穷小。
极限有无穷小的关系: 的充要条件其中 是 时的无穷小。
极限无穷大:并不是一个很大的数,是相对于变换过程来说。
无穷小和无穷大的关系:在自变量的变换的同一过程中,如果为无穷大,那么 为无穷小。
极限无穷小的比较: 都是无穷小如果 , 则称β是比α高阶无穷小 , 则称β是比α低阶无穷小 则称β与α是同阶无穷小函数的连续性设函数 y = f (x)在点x。
的某邻域内有定义,如果当自变量的改变量△x趋近于零时,相应函数的改变量△y也趋近于零,则称y = f (x)在点 x。
处连续。
函数的连续性函数 在点 处连续,需要满足的条件:1. 函数在该点处有定义2. 函数在该点处极限 存在3. 极限值等于函数值函数的连续性函数 在 处的连续性?函数的间断点函数 在点 处不连续,则称其为函数的间断点。
3种情况为间断点:1.函数 在点 处没有定义。
2.极限 不存在3.满足前两点,但是函数的间断点当 时, 的左右极限存在,则称 为 的第一类间断点,否则为第二类间断点。
跳跃间断点: 与 均存在,但不相等。
可去间断点: 存在但不等于函数的间断点函数 的连续型?在点 处没有定义。
- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。
2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。
(即使实际问题故意义的取值范围)。
如时光、长度、分量必须大等于0 。
❖对于数学式子表达的函数,如果给出了取值范围就不必再求。
否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。
1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
第一篇:高等数学一:函数的几种特性有界性、单调性、奇偶性、周期性在函数的几种特性这里还是可能出到考题的1:有界性:〔1〕:概念〔2〕:函数,原函数导函数有界性的判断问题。
函数在定义域有界,导函数和原函数不一定有界,可以用找特殊函数的方法来思考2:单调性〔1〕:判断方法,利用一阶导数判断〔2〕:函数、原函数、导函数单调性的关系〔3〕:单调性和区间相关3:奇偶性〔1〕:定义〔2〕:判断:首先是定义域关于原点对称,要是定义域都不关于原点对称的话,肯定不是奇偶函数〔3〕:判断时不能简单的利用定义式子,还有可能进展数学等式的变化。
这里才是考试的重点〔4〕:组合问题:即奇函数和偶函数组合出来的函数是什么函数等等一系列的问题。
用定义去解决,注册工程师的考试顶多也就考到这种程度了。
〔5〕:函数、原函数、导函数的奇偶性问题:还是利用定义去完成推断。
4:周期性〔1〕:定义〔2〕:最小正周期的概念〔3〕:注意:某周期函数的原函数不一定是周期函数,利用根本积分原理即可解决该问题。
二:函数的极限问题〔一〕:求极限的方法〔1〕:四那么运算方法:加减乘除〔2〕:洛必达法那么〔上下同时趋于零或者趋无穷大〕,即不定式的极限〔3〕:等价无穷小当x→0时,sinx~x,tanx~x,arcsinx~x,arctanx~x,1-cosx~(1/2)*〔x^2〕〔a^x〕-1~x*lna 〔e^x〕-1~xln(1+x)~x,[(1+x)^1/n]-1~〔1/n〕*x,loga(1+x)~x/lna。
注意等价无穷小替换只能用在乘除中,且只能是自变量也趋于零时使用,还有就是等价无穷小也可以有自己的变种。
〔4〕:法那么:有界函数乘以等价无穷小,那么其极限是无穷小。
〔5〕:特殊类型的函数求极限:1:0的0型,或者0的正无穷型:不管形式怎么样,其实质都是利用复合函数求极限的方法。
将函数用自然数进展换底。
2:其他复合函数的极限,一层一层的求3:利用极限存在准那么求极限:夹逼准那么和单调有界函数必有极限定理4:变上限积分函数求极限:这可看做是和积分知识点的结合。