计算机图形学第8讲曲线曲面
- 格式:ppt
- 大小:4.33 MB
- 文档页数:120
第三讲 曲线曲面基本理论1概述(a) 飞机 (b) 船舶 (c) 汽车图 1-1 曲线曲面造型应用曲线曲面造型(Surface Modeling)是计算机辅助几何设计(Computer Aided Geometric Design, CAGD)和计算机图形学的一项重要内容,主要研究在计算机系统中如何用曲线曲面表示、设计、显示和分析物体模型。
它在航空航天、船舶、飞机、汽车等行业得到广泛应用(如图1-1所示)。
由Coons 、Bezier 等大师于二十世纪六十年代奠定其理论基础,经过三十多年的发展,曲线曲面造型现在已形成了以有理B 样条曲线曲面(Rational B-spline Surface)参数化特征设计和隐式代数曲线曲面(Implicit Algebraic Surface)表示为主体的两类方法,且以插值(Interpolation)、逼近(Approximation)手段为几何理论体系。
1.1曲线曲面表示曲线曲面可以用三种形式进行表示,即显式、隐式和参数表示,三种形式表示如下。
显式表示:形如),(y x f z =的表达式。
对于一个平面曲线而言,显式表达式可写为)(x f y =。
在平面曲线方程中,一个x 值与一个y 值对应,所以显式方程不能表示封闭或多值曲线,例如,不能用显式方程表示一个圆。
隐式表示:形如0),,(=z y x f 的表达式。
如一个平面曲线方程,隐式表达式可写为0),(=y x f 。
隐式表示的优点是易于判断函数),(y x f 是否大于、小于或等于零,也就易于判断点是落在所表示曲线上或在曲线的哪一侧。
参数表示:形如)(t f x =,)(t f y =,)(t f z =的表达式,其中t 为参数。
即曲线上任一点的坐标均表示成给定参数的函数。
如平面曲线上任一点P 可表示为)](),([)(t y t x t P =,如图1-2(a)所示;空间曲线上任一三维点P 可表示为)](),(),([)(t z t y t x t P =,如图1-2(b)所示。
(4条消息)曲线曲面基本理论一、曲线曲面基本理论计算机图形学三大块内容:光栅图形显示、几何造型技术、真实感图形显示。
光栅图形学是图形学的基础,有大量的思想和算法。
几何造型技术是一项研究在计算机中,如何表达物体模型形状的技术。
描述物体的三维模型有三种 :线框模型、曲面模型和实体模型线框模型用顶点和棱边来表示物体曲面模型只描述物体的表面和表面的连接关系,不描述物体内部的点的属性实体模型不但有物体的外观而且也有物体内点的描述。
二、曲线曲面基础1 、显示、隐式和参数表示曲线和曲面的表示方程有参数表示和非参数表示之分,非参数表示又分为显式表示和隐式表示。
对于一个平面曲线,显式表示一般形式是:y = f(x)。
在此方程中,一个x值与一个y值对应,所以显式方程不能表示封闭或多值曲线。
如果一个平面曲线方程,表示成 f(x,y)= 0 的形式,称之为隐式表示。
隐式表示的优点是易于判断一个点是否在曲线上。
2、显式或隐式表示存在的问题(1)与坐标轴相关(2)用隐函数表示不直观,作图不方便(3)用显函数表示存在多值性(4)会出现斜率为无穷大的情形3、参数方程为了克服以上问题,曲线曲面方程通常表示成参数的形式,假定用t表示参数,平面曲线上任一点P可表示为:p ( t ) = [ x ( t ), y ( t ) ]空间曲线上任一三维点P可表示为:p ( t ) = [ x ( t ) , y ( t ) , z ( t ) ]它等价于笛卡儿分量表示:p ( t ) = x ( t ) i + y ( t ) j + z ( t ) k这样,给定一个t值,就得到曲线上一点的坐标。
假设曲线段对应的参数区间为[a,b],即a≤t≤b。
为方便期间,可以将区间[ a,b ]规范化成[ 0,1 ],参数变换为:该形式把曲线上表示一个点的位置矢量的各个分量合写在一起当成一个整体,考虑的是曲线上点之间的相对位置关系而不是它们与所取坐标系之间的相对位置关系。