第七章 振动测试
- 格式:ppt
- 大小:2.92 MB
- 文档页数:35
实验一 简谐振动幅值测量一、实验目的1.了解振动信号位移、速度、加速度之间的关系。
2.学会用各种传感器测量简谐振动的位移、速度、加速度幅值。
二、实验装置框图简谐振动的位移、速度、加速度幅值测量试验的实验装置与仪器框图见图1-1。
图1-1 实验装置框图三、实验原理在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信号的幅值。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。
设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :x = Bsin (ωt -ψ) (1)v =dtdy =ωBcos (ωt -ψ) (2) )sin(222ψ--==wt B w dtyd a (3)式中:B 一一位移振幅 ω—振动角频率 ψ—初相位X=B (4) V=ωB=2πfB (5)A=ω2B=(2πf)2B (6)振动信号的幅值可根据式(6)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。
也可利用动态分析仪中的微分、积分功能来测量。
四、实验方法1、安装激振器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。
2、连接仪器和传感器把加速度传感器安装在简支梁的中部,输出信号接到电荷放大器的输入端,并将电荷放大器的输出接到数采分析仪的1通道。
3、仪器参数设置打开数采仪器的电源开关,开机进入DAS2003数采分析软件的主界面,设置采样率(2kHz)、量程范围,输入加速度传感器的灵敏度。
打开一个窗口,分别显示三个通道的信号。
4、采集并显示数据调节扫频信号源的输出频率,使梁产生振动。
分别调整电荷放大器为加速度、速度、位移状态,同时在窗口中读取当前振动的最大值(位移、速度、加速度)。
5、计算数据与实验数据比较按公式计算位移、速度或加速度值,并与实验数据比较。
编钟的振动特性测试一、实验目的和要求:1、了解振动测量方法的综合应用;2、利用振动测量方法测试编钟的振动特性。
二、实验对象、实验仪器与测试系统图:1、实验对象:编钟;2、实验测量系统方框图:3、实验仪器:DH5922测试分析系统、加速度传感器、声传感器、电荷适调器、力锤、木槌等。
三、实验内容:时间历程曲线测量、幅频曲线测量、编钟模态测试。
四:实验步骤:按实验测试系统方框图所示连接仪器。
1、时间历程曲线和幅频曲线的测量1)在编钟上选择两处测点,分别记为1号点和2号点,并将两测点处分别用502胶黏贴一块小铁片;2)将加速度传感器通过磁座固定在铁皮上,加速度传感器通过数据线连接到电荷适调器,电荷适调器接到DH5922测试分析系统的相应通道,本实验中,测点编号与通道号相同,即通道1连接1号测点,通道2连接2号测点;3)将声传感器通过数据线连接到DH5922测试分析系统的3号通道;4)DH5922测试分析系统与电脑连接并接通电源;5)打开DH5922测试分析系统开关,待指示灯指示正常后,打开电脑桌面“动态信号集成系统”数据采集软件,选择“基本分析”,进入操作界面;6)创建一个新项目,并设置运行参数、系统参数、通道参数和图形属性等;7)保持实验现场环境安静,通道平衡,清除零点。
用木槌敲击编钟,采样2分钟,采样过程中可在任意窗口随时查看各通道的时间历程曲线和其他的实时谱信号;8)两分钟后停止采样;9)窗口信号选择为各通道的时间历程曲线,即可看到整个采样时间的时间历程曲线;10)窗口信号选择为各通道的FFT平均谱曲线,即可看到整个采样时间的幅频曲线。
2、模态测试1)分析编钟的结构,确定布点(12个点);2)采用多点激振、单点拾振的方法,选择布点中的其中一点作为拾振点,粘贴铁片,固定好加速度传感器;3)选择合适的力锤锤帽;4)打开“动态信号集成系统”数据采集软件,菜单栏中选择“分析—频响分析”;5)设置好通道参数、采样频率等基本数据;6)逐点敲击布点测试时间历程,每点敲击5次取平均,敲击过程中注意不要发生连击,敲击完一点后保存文件,重新建立新的文件敲击下一点;7)打开“模态分析软件”,选择“测力法计算”;8)建立结构文件,手动建立编钟模型;9)新建数据文件,将测得的数据添加进去,选择测量类型为“单点拾振”;10)参数识别,观察幅频图、相频图、实频图、虚频图;11)数据关联;12)模态显示;五、实验结果分析与讨论:1、编钟的一阶频率:491.21Hz有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)编钟的二阶频率: 617.19Hz2、编钟的一阶模态:编钟的二阶模态:3、声传感器和加速度传感器测得的频率有何关系?为什么编钟能敲出两个声音?声传感器和加速度传感器测得的频率是相同的,因为,根据物理声学原理,声音的频率跟声源振动的频率相同。
第1篇一、实验目的1. 了解振动测试的基本原理和方法;2. 掌握振动测试仪器的使用方法;3. 学会分析振动测试结果,了解振动特性;4. 为振动测试在工程中的应用提供理论依据。
二、实验原理振动测试是研究物体在振动下的特性和行为的一种实验方法。
通过振动测试,可以了解物体的振动频率、振幅、相位等参数。
本实验采用加速度计和振动分析仪进行振动测试。
三、实验仪器1. 加速度计:用于测量振动加速度;2. 振动分析仪:用于分析振动信号,获取振动频率、振幅、相位等参数;3. 振动测试支架:用于固定加速度计和振动分析仪;4. 信号发生器:用于产生振动信号;5. 激励装置:用于驱动振动测试支架。
四、实验步骤1. 准备实验器材,将加速度计和振动分析仪固定在振动测试支架上;2. 将加速度计安装在激励装置上,调整加速度计的测量方向;3. 连接信号发生器和激励装置,设置振动信号的频率和幅值;4. 启动激励装置,开始振动测试;5. 利用振动分析仪实时采集加速度信号,并进行分析;6. 记录振动测试结果,包括振动频率、振幅、相位等参数;7. 分析振动测试结果,了解振动特性;8. 对比不同振动条件下的测试结果,研究振动对物体的影响。
五、实验结果与分析1. 振动频率:通过振动分析仪实时采集到的加速度信号,可以计算出振动频率。
在本实验中,振动频率约为100Hz。
2. 振幅:振动分析仪实时采集到的加速度信号,可以计算出振动幅值。
在本实验中,振动幅值约为0.5g。
3. 相位:振动分析仪实时采集到的加速度信号,可以计算出振动相位。
在本实验中,振动相位约为-90°。
4. 振动特性分析:通过对振动测试结果的分析,可以发现以下特点:(1)振动频率与激励信号的频率一致;(2)振动幅值随激励信号的幅值增大而增大;(3)振动相位与激励信号的相位差约为-90°。
六、实验结论1. 本实验验证了振动测试的基本原理和方法,掌握了振动测试仪器的使用方法;2. 通过振动测试,可以了解物体的振动特性,为振动测试在工程中的应用提供理论依据;3. 振动测试结果与激励信号的频率、幅值、相位等参数密切相关。
第8章 振动测试振动测试重要性: 许多情况下,机械振动会造成危害。
它影响精密仪器 设备的功能;降低加工零件的精度和表面质量;加剧构件 的疲劳破坏和磨损,导致构件损坏造成事故。
但也利用振 动来作有益的事情,如钟表、清洗、超声振动切削等。
振 动问题在生产实践中一直占有相当重要的地位。
因此必须 对机械振动进行观测、分析、研究,而测试始终是一个重 要的、必不可少的手段。
本章学习要求: 1. 了解振动测试的基本原理,常用 的测振传感器和放大电路的应用; 2.了解振动试验的基本方法 .8.1振动的基础知识机械在运动时,由于旋转件的不平衡、负载的不均匀、结 构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴 随着各种振动。
机械振动在大多数情况下是有害的,振动往往会降低机器 性能,破坏其正常工作,缩短使用寿命,甚至导致事故。
机械振 动还伴随着同频率的噪声,恶化环境,危害健康。
另一方面,振 动也被利用来完成有益的工作,如运输、夯实、清洗、粉碎、脱 水等。
这时必须正确选择振动参数,充分发挥振动机械的性能。
在现代企业管理制度中,除了对各种机械设备提出低振动 和低噪声要求外,还需随时对机器的运行状况进行监测、分析、 诊断,对工作环境进行控制。
为了提高机械结构的抗振性能,有 必要进行机械结构的振动分析和振动设计。
这些都离不开振动测 试。
振动测试包括两种方式: 一是测量机械或结构在工作状态下的振动,如振 动位移、速度、加速度、频率和相位等,了解被 测对象的振动状态,评定等级和寻找振源,对设 备进行监测、分析、诊断和预测。
二是对机械设备或结构施加某种激励,测量其受 迫振动,以便求得被测对象的振动力学参量或动 态性能,如固有频率、阻尼、刚度、频率响应和 模态等。
1 振动测试的基本参数 振动测试的基本参数 1振动的幅值、频率和相位是振动的三个基本参 数,称为振动三要素。
幅值: 幅值是振动强度的标志,它可以用峰值、 有效值、平均值等不同的方法表示。
振动测量的主要内容振动测量是一种广泛应用于各个领域的技术,用于检测和分析物体的振动行为。
它在工程、科学、医学等领域中都有着重要的应用,可以帮助人们了解物体的动态特性和结构健康状况。
以下是关于振动测量的主要内容的详细介绍。
一、振动的基本概念1. 振动的定义:振动是物体围绕平衡位置来回运动的现象,包括周期、频率、幅值和相位等基本概念。
2. 振动的分类:振动可以分为自由振动和受迫振动,自由振动是物体在没有外力作用下的振动,受迫振动是外力作用下的振动。
3. 振动的参数:描述振动行为的参数包括振幅、频率、周期、相位等,这些参数对于振动测量非常重要。
二、振动传感器1. 加速度传感器:加速度传感器是最常用的振动传感器之一,它可以测量物体在某一方向上的加速度,并通过积分得到速度和位移信息。
2. 速度传感器:速度传感器用于测量物体的振动速度,它可以直接测量速度而无需进行积分运算。
3. 位移传感器:位移传感器可以直接测量物体的振动位移,常用的位移传感器包括电感式传感器、光电传感器等。
4. 压电传感器:压电传感器利用压电效应将振动转化为电信号,常用于高频振动测量。
三、振动测量方法1. 时域分析:时域分析是最基本的振动分析方法,通过记录振动信号的时间历程,可以获取振动信号的幅值、频率、周期等信息。
2. 频域分析:频域分析是将振动信号从时域转换到频域的方法,常用的频域分析方法包括傅里叶变换、功率谱密度分析等,可以得到振动信号的频率成分和能量分布情况。
3. 阶次分析:阶次分析是将振动信号从时间域转换到转速域的方法,可以分析旋转机械系统中的振动特性,如齿轮啮合频率、轴承故障频率等。
4. 模态分析:模态分析用于研究结构振动的固有特性,可以确定结构的固有频率、振型等信息,常用的方法有模态测试和有限元模态分析等。
四、振动测量应用1. 结构健康监测:振动测量可以用于结构健康监测,通过对建筑物、桥梁、飞机等结构的振动进行监测和分析,可以及早发现结构的损伤和故障。
振动测试----------------------------------------------------------------------------------------------------------------------用试验方法测量机械的振动量(如位移、速度和加速度等)和系统特征参数(如固有频率、阻尼、振型等),以及振动环境的模拟等,都属于振动测试。
研究机械振动时通常采用理论分析和测试两种手段。
通过测试可验证理论分析计算的正确性,提供所需的修正依据。
20世纪80年代以来,振动测试仪器有了显著的进步,如传递函数分析仪、实时频率分析仪和快速傅里叶分析仪的相继应用,并与电子计算机相结合,为振动测试和测试结果的分析处理提供了方便的条件,从而也进一步推动了振动理论的研究和发展。
系统的振动特性也可以应用激光全息照相法拍下实物或模型在振动时的全息照片,根据全息照片中的干涉条纹图案来分析。
机械振动的研究可归结为机械系统的激励、响应和振动特性三个方面的问题。
在已知其中两个方面的情况下可求第三方面的问题。
与之相对应,振动测试的基本内容包括:①已知激励和系统的振动特性情况下求响应,即振动量的测量;②已知激励和响应的情况下求系统的振动特性,即系统特征参数的测定,也称参数识别;③已知系统的振动特性和响应的情况下求激励,即环境预测,这种测试称为振动环境模拟试验。
振动量的测量测量机械系统某些选定点上的振幅(位移、速度和加速度)、频率、相位、振动的时间历程和频谱等。
这种测量通常在机械系统的工作状态下进行,以了解其实际振动状况。
对某些精密和大型机械设备的振动监控和诊断所作的测量也属这种性质。
振动量测量按振动信号和转换方式可分为电测法、光测法和机械测振法,其中以电测法应用最为广泛。
图1为一个较完整的振动量电测系统。
测振传感器(拾振器)将机械振动量转换为与它成比例的电量。
常用的测振传感器有发电型(如压电式、电动式和磁电式等)和电参数变化型(如电感式、电容式、电阻式和涡流式等)两类。