第7章应力状态和强度理论(答案)
- 格式:doc
- 大小:565.51 KB
- 文档页数:6
17.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。
设E=200GPa,0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。
第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
第七章应力状态分析强度理论7.1 应力状态概述一、工程实例1. 压缩破坏2. 弯曲拉伸破坏3. 弯曲剪切破坏4. 铸铁扭转破坏5. 低碳钢扭转破坏二、应力状态的概念1. 点的应力状态过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。
2. 一点应力状态的描述以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。
3. 求一点应力状态(1)单元体三对面的应力已知,单元体平衡(2)单元体任意部分平衡(3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。
三、应力状态的分类1. 单元体:微小正六面体2. 主平面和主应力:主平面:无切应力的平面主应力:作用在主平面上的正应力。
3. 三种应力状态单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零四、应力状态分析的方法 1.解析法2. 图解法7.2应力状态分析的解析法一、解析法图示单元体,已知应力分量x σ、y σ、xyτ和yx τ。
xxx(一)任意截面上的正应力和切应力:利用截面法,考虑楔体bef 部分的平衡。
设ef 面的面积为dA , ∑=0F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy∑=0F tsin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy根据切应力互等定理: y x xy ττ=三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2αα-=,∂=cos sin 22sin αα解得:ατασσσσσα2sin 2cos 22x x xy yy--++=(7-1)ατασστα2cos 2sin 2x xy y+-= (7-2)(二)主应力即主平面位置将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
7.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。
设E=200GPa,0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。
7-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。
由于实用的原因,图中的角限于范围内。
作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。
为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。
若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。
返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。
解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。
试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。
试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。
试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。
解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。
试问所画的圆将变成何种图形?并计算其尺寸。
已知钢板的弹性常数E=206GPa,=0.28。
已知应力状态如图所示(单位:MPa ),试求:
⑴指定斜截面上的应力; ⑵主应力;
⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0
30α=-
(1)cos 2sin 2211.622
x y
x y
x MPa ασσσσσατα+-=
+
-=
sin 2cos 293.32
x y
x MPa ασστατα-=+=
(2)2
2max 261.82
2x y
x y x MPa σσσσστ+-⎛⎫=
+= ⎪⎝⎭
2
2
min 38.222x y
x y x MPa σσσσστ+-⎛⎫=+= ⎪⎝⎭
MPa 8.2611=σ MPa 2.382=σ 03=σ
(3)13
max 130.92
MPa σστ-==
扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成
30=α方向上的正应变。
设E=200GPa, 0.3υ=。
解:表面上任一点处切应力为:
max 59P
T
MPa W τ=
= 表面上任一点处单元体应力状态如图
30sin 251MPa στα=-=-
120sin 251MPa στα=-=
()
00430301201
3.310E
εσυσ-=
-=⨯ 100100
200
60T
α
A 2
σ1
στ
τ
用电阻应变仪测得空心钢轴表面某点与母线成
45方向上的正应变
4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递
的功率。
解:表面任一点处应力为
max 9550P
P
P T n W W τ==
max 9550
P W n
P τ∴=
纯剪切应力状态下,0
45斜截面上三个主应力为:1στ= 20σ= 3στ=-
由广义胡克定律 ()11311E E
υ
εσυστ+=
-= 又()21E G υ=+V 2G τε∴= 代入max 9550
P W n
P τ=
,得109.4P KW =
图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成
60方向上的正应变460101.4-⨯=
ε,E=200GPa ,0.3υ=,试求荷载P 。
解:0P
A
σ= 204D P πσ=⋅
斜截面上 02
060cos
4
σσσα==
2001503cos 4
σσσα==
由广义胡克定律
()
0006015060134E E
υεσυσσ-=
-= 将060043E εσυ
=
-代入2
04
D P πσ=⋅
解得P=
45A
80120
60
A P
在一槽形刚体的槽内放置一边长为mm 10的正立方钢块,钢块与槽壁间无孔隙,当钢块表面受kN 6的压力(均匀分布在上表面)时,试求钢块内任意点的主应力。
已知
33.0=μ。
解:坐标系如图所示
易知: 0x ε= 0y σ= z P A
σ=- 由广义胡克定律
()1
x x y z E εσυσσ⎡⎤=
-+⎣
⎦
()1y y x z E εσυσσ⎡⎤=-+⎣
⎦ ()1
z z x y E
εσυσσ⎡⎤=-+⎣⎦ 解得 19.8x MPa σ=- 0y σ= 60z MPa σ=- 可知刚块内任一点的主应力为
10σ= 219.8MPa σ=- 360MPa σ=-
试对铸铁零件进行强度校核。
已知:MPa t 30][=σ,30.0=μ,
危险点的主应力为:
MPa 29][1=σ,MPa 20][2=σ,MPa 20][3-=σ.
解:由题意,对铸铁构件应采用第一或第二强度理论 第一强度理论:[]129t MPa σσ=
第二强度理论:()[]12329t MPa σμ
σσσ-+= 故零件安全。
P
10
1010Y
X
Z
圆杆如图所示,已知mm d 10=,Pd T 10
1
=,试求许用荷载P 。
若材料为:
⑴ 钢材,MPa 160][=σ; ⑵ 铸铁,MPa t 30][=σ。
解:此为拉扭组合变形,危险点全部在截面周线上,应力状态如图
2
4P P
A d
σπ=
= 21610p T P W d τπ==
(1) 钢材 由第三强度理论[]2234r σστσ=+≤,得P= (2) 铸铁 由第一强度理论[]2211
422
r t σ
σστσ=
+
+≤,得P= 某种圆柱形锅炉,平均直径为mm 1250,设计时所采用的工作内压为23个大气压,在工作温度下的屈服极限MPa s
5.182=σ,若安
全系数为8.1,试根据第三强度理论设计锅炉的壁厚。
解:设该锅炉为薄壁圆筒结构,壁厚为δ,由题意容器承受的内压为
230.1 2.3P MPa =⨯= (一个大气压=)
由薄壁圆筒的特点,可认为圆筒横截面上无切应力,而正应力沿壁厚和圆周都均匀分布,于是得圆筒横截面上的正应力为
T
P
δ
δσ4π4π2pD D D p A F =⨯=='τ
圆筒径向截面(纵截面)上的正应力,单位长度圆筒中以纵截面取的分离体如图所示
()''
221P N F F PD σ
δ==⨯⨯⨯=
得 ''
2PD
σδ
=
圆筒内壁上沿半径方向的正应力为 '''
P σ=-
故 12PD σδ=
24PD σδ= 3P σ=- 由薄壁圆筒的特点,4PD
δ
远大于P ,可认为30σ=。
由第三强度理论[]3132s r PD
n
σσσσσδ=-=≤=, 解得14.2mm δ≥
在矩形截面钢拉伸试样的轴向拉力KN F 20=时,测得试样中段B 点处与其轴线成030方向的线应变为4301025.30
-⨯=ε。
已
知材料的弹性模量
a GP E 210=,试求泊松比。
解:0100F
MPa A
σ=
= 0
2030cos 75MPa σσα== 0
20120cos 25MPa σσα==
由广义胡克定律
0030301201E
εσυσ⎡⎤=
-⎣⎦ 解得0.27υ=
mm D 120=,mm d 80=的空心圆轴,两端承受一对扭转力偶矩e M ,如图
所示。
在轴的中部表面A 点处,测得与其母线成045方向的线应变为
445106.20
-⨯=ε。
已知材料的弹性常数a GP E 200=,3.0=ν。
试求扭转力
偶矩e M 。
D
解:A 点处切应力e P P
M T
W W τ=
= 应力状态及主应力单元体如图
1στ=,20σ=,3στ=-
()0
1134511E E
υ
εεσυστ+==
-=
代入相关数据,解得
10.9e
M KN m =•。