函数的概念及表示方法
- 格式:doc
- 大小:222.50 KB
- 文档页数:4
函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
函数的概念及表示方法
1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .函数的三要素:定义域、对应关系和值域。
其中,
函数定义注意点:一个x 只能对应一个y ,集合A 中的全部元素要找到它的对应元,集合B 可以多出元素,即值域应包含于B ;
2.定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域;
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.
(6)实际问题中的函数的定义域还要保证实际问题有意义.
抽象函数的定义域的求解思路:
注意两点:⎩
⎨⎧价的括号里表示的东西是等的取值范围定义域指的是f x .2.1 3.与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.
4.同一函数的判定:①定义域是否相同②化简,看对应法则是否相同;
5.求值;
6.求函数解析式的方法
①代入法(已知f(x)的函数解析式)
②待定系数法(已知函数的函数类型,如一次函数等)
③配方法
④换元法
⑤解方程组
⑥赋值法
7.分段函数
8.映射
9.函数的表示法:解析式,表格,图像.。
函数的概念及其表示方法一函数的概念1 概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x) ,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2 定义域①概念函数自变量x的取值范围.②求函数的定义域主要应考虑以下几点(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)指数为零底不可以等于零;(6)抽象函数的定义域较为复杂.3 值域①概念函数值y的取值范围②求值域的方法(1)配方法(2)数形结合(3) 换元法(4)函数单调性法(5)分离常数法(6)基本不等式法4 区间实数集R表示为(−∞ ,+∞).二函数的表示方法1表格法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数图像时,第一步就是列表,其实就是用表格法表示一次函数.2 图像法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.3 解析式求函数解析式的方法(1)配凑法(2)待定系数法(3)换元法(4)构造方程组法(5)代入法【题型一】函数概念的理解【典题1】设集合M={x|0≤x≤2} ,N={y|0≤y≤2} , 给出如下四个图形,其中能表示从集合M到集合N的函数关系的是( )【解析】(本题相当把M={x|0≤x≤2}看成定义域,N={y|0≤y≤2}看成值域)图象A不满足条件,因为当1<x≤2时,N中没有y值与之对应.图象B不满足条件,因为当x=2时,N中没有y值与之对应.图象C 不满足条件,因为对于集合M ={x|0<x ≤2}中的每一个x 值,在集合N 中有2个y 值与之对应,不满足函数的定义.只有D 中的图象满足对于集合M ={x|0≤x ≤2}中的每一个x 值,在N ={y|0≤y ≤2}中都有唯一确定的一个y 值与之对应,故选D .【典题2】 给定的下列四个式子中,能确定y 是x 的函数的是( ) ① x 2+y 2=1 ② |x -1|+√y 2−1=0 ③ √x −1+√y −1=1 ④ y =√x −2+√1−x . A .①B .②C .③D .④【解析】①由x 2+y 2=1得y =±√1−x 2,不满足函数的定义, 比如x =0,y =±1,所以①不是函数.②由|x -1|+√y 2−1=0得|x -1|=0,√y 2−1=0, 所以x =1 ,y =±1,所以②不是函数.③由√x −1+√y −1=1得y =(1−√x −1)2+1,满足函数的定义,所以③是函数.④要使函数y =√x −2+√1−x 有意义,则{x −2≥01−x ≥0,解得{x ≥2x ≤1,此时不等式组无解,所以④不是函数.故选:C .【点拨】函数中自变量x 与函数值y 的关系是“一对一或多对一”的关系,不能是“一对多”.【题型二】求函数的定义域 【典题1】 函数y =√−x 2+2x+3x的定义域是 .【解析】要使函数有意义,则{−x 2+2x +3≥0x ≠0,即{−1≤x ≤3x ≠0.即−1≤x <0或0<x ≤3,即函数的定义域为[−1 ,0)⋃(0 ,3].【典题2】 下列各组函数中表示的函数不同的是 ( ) A .f(x)=x ,g(x)=√x 33B .f(x)=√x 2 ,g(x)=|x|C .f (x )=x 2−3x ,g (t )=t 2−3tD .f(x)=x 2−4x−2 ,g(x)=x +2【解析】A ,B ,C 的定义域和对应法则相同,表示同一函数,D中g(x)=x+2的定义域是R,f(x)=x2−4x−2=x+2定义域为{x|x≠2},两个函数的定义域不相同,不是同一函数.故选:D.【点拨】①判断两个函数是否是同一函数,看函数的定义域和解析式是否均相同;②函数反应的是两个变量的关系,至于用什么字母表示都一样,故选项C的f(x)=x2-3x ,g(t)=t2-3t是同一函数.【典题3】已知f(x2−1)定义域为[0 ,3],求f(2x−1)的定义域.【解析】∵0≤x≤3 ∴−1≤x2−1≤8∴−1≤2x−1≤8 ∴0≤x≤9 2故函数f(2x−1)的定义域是[0 ,92].【点拨】抽象函数的定义域理解起来不容易,由于函数的解析式与字母的选择无关,若把题目换成“已知f(x2−1)定义域为[0 ,3],求f(2t−1)的定义域.”好理解多了,①谨记定义域指的是自变量的取值范围,所以由“f(x2−1)定义域为[0 ,3]”得到的是“0≤x≤3”,“求f(2t−1)的定义域”指的就是求t的范围.②把“x2−1”和“2t−1”都看成整体,它们的范围是相等的这样就有“−1≤x2−1≤8 ⇒−1≤2t−1≤8”.【题型三】求函数的值域方法1 配方法【典题1】求函数y=5x 2−4x+1x2在区间x∈[14,1]的值域.【解析】y=5x 2−4x+1x2=1x2−4x+5=(1x−2)2+1∵x∈[14 ,1] ∴1x∈[1 ,4],∴1≤(1x−2)2+1≤5,即y=5x 2−4x+1x2在区间x∈[14,1]的值域[1 ,5].【点拨】配方法针对二次函数型的函数值域.方法2 数形结合【典题2】 求函数f (x )={2x −x 2 ,(0≤x ≤3)x 2+6x ,(−2≤x ≤0)的值域.【解析】(这是分段函数,两段函数均为二次函数,其图像易得,故可用数形结合求值域) f (x )=2 x −x 2=−(x −1)2+1,开口向下,最大值为f (1)=1 , 而f(0)=0 ,f(3)=−3 ,f (x )=x 2+6 x =(x +3)2−9 , 开口向上,而f(−2)=−8 ,f(0)=0, 可得到函数图像如右图,易得函数值域为[−8 ,1]. 【点拨】数形结合最大的好处是直观.方法3 换元法【典题3】 求函数f (x )=2x +√1−x 的值域.【解析】令t =√1−x (t ≥0),(要注意新变量t 的取值范围) 得x =−t 2+1,∴原函数化为y =−2t 2+t +2=−2(t −14)2+178≤178(把函数转化为二次函数值域问题)∴函数f (x )=2 x +√1−x 的值域为(−∞ ,178].【点拨】本题利用换元法把不熟悉函数值域问题转化为熟悉的二次函数值域问题,即求函数f (x )=2x +√1−x 的值域⇔y =−2t 2+t +2 (t ≥0)的值域,其中特别注意t ≥0不能忽略!这正是体现了数学中的“等价转化”思想.【典题4】 函数f(x)=−9−x +(13)x−1+34在[−1 ,+∞)上的值域为 .【解析】f(x)=−9−x +(13)x−1+34=−(13)2x +3×(13)x +34,(本题主要是注意到了9−x 和(13)x−1均可(13)x 或3x 的形式,故想到换元法) 令t =(13)x ,因为x ∈[-1 ,+∞),所以t ∈(0 ,3],原函数的值域等价于函数g(t)=−t 2+3t +34=−(t −32)2+3(0<t ≤3)的值域, 由二次函数的性质可知,f(x)=[34 ,3],即所求函数的值域为[34 ,3]. 【点拨】① 换元法的本质就是“整体思想”,它能把“不太友善的”表示形式转化为“友善的”,前2题均用换元法把复杂形式函数转化为二次函数,故解题过程中特别要注意式子的结构特征.②换元法要注意换元后变量的取值范围,比如典题3的“t≥0”,典题4中的“t∈(0 ,3]".方法4 函数单调性法【典题5】函数f(x)=2x2−2x+3 ,x∈[0 ,3]的值域为.【解析】由复合函数的单调性可知,函数f(x)在[0 ,1]上单减,在[1 ,3]上单增,又f(0)=23=8 ,f(1)=22=4 ,f(3)=26=64,∴函数值域为[4 ,64].【点拨】①利用函数单调性是求函数值域最常见的方法,高二还会学到导数,它是一把利器.②复合函数的单调性是"同增异减".方法5 分离常数法【典题6】求函数f(x)=2x 2−1x2+1的值域.【解析】函数f(x)=2x 2−1x2+1=2(x2+1)−3x2+1=2(x2+1)x2+1−3x2+1=2−3x2+1,(在分子2x2−1中“凑出”分母x2+1,最终达到“分式中的分子是个常数3”的目的)∵x2+1≥1 ,∴0<1x2+1≤1⇒−3≤−3x2+1<0⇒−1≤2−3x2+1<2,故函数f(x)=x 2−1x2+1的值域是[-1 ,2).【点拨】形如f(x)=a∙g(x)+bc∙g(x)+d 均可用分离常数法求函数值域,比如求函数y=3x+14x−2,y=3∙2x+42x−1的值域.方法6 基本不等式法(对勾函数法)【典题7】求函数f(x)=x 2+4x+1x2+1(x≥0)的值域.【解析】∵f(x)=x 2+4x+1x2+1=x2+1x2+1+4xx2+1=1+4xx2+1,(也有点分离常数法的感觉)∴①当x=0时,f(x)=1;(x=0这个不能漏)②当x>0时,0<4xx2+1=4x+1x≤4√x⋅1x=2,当且仅当x=1时“=”成立;此时1<f(x)≤3,(利用对勾函数y=x+1x(x>0)的图像求解也可以)∴函数f(x)=x 2+4x+1x 2+1(x ≥0)的值域为[1,3].【点拨】利用基本不等式法(对勾函数法)能处理二次分式函数y =dx 2+ex+fax 2+bx+c 的值域. 巩固练习1(★) 函数y =f(x −1)与函数y =f(x +1) ( ) A .是同一个函数 B .定义域相同 C .图象重合 D .值域相同【答案】 D【解析】由于函数y =f(x -1)中x -1的范围与函数y =f(x +1)中x +1的范围相同,且两个函数具有相同的对应关系f ,故函数y =f(x -1)与函数y =f(x +1)具有相同的值域, 故选:D .2(★) 函数f(x)=√−x 2+4x +12+1x−4的定义域为 . 【答案】[−2,4)∪(4,6]【解析】解{−x 2+4x +12≥0x −4≠0得,-2≤x ≤6,且x ≠4; ∴f(x)的定义域为:[-2,4)∪(4,6].3(★★) 已知函数f(x +1)定义域为[1 ,4],则函数f(x -1)的定义域为 . 【答案】[3 ,6]【解析】∵f(x +1)的定义域为[1,4];∴1≤x ≤4;∴2≤x +1≤5; ∴f(x)的定义域为[2,5];∴f(x -1)满足:2≤x -1≤5;∴3≤x ≤6; ∴f(x -1)的定义域为[3,6].4(★★) 函数y =2−√−x 2+4x 的值域是为 . 【答案】 [0,2]【解析】∵0≤-x 2+4x ≤4,∴0≤√−x 2+4x ≤2, ∴0≤2−√−x 2+4x ≤2,故函数y =2−√−x 2+4x 的值域是[0,2].5(★★) 函数y =√x −1+√x +1,(x ≥1)的值域为 . 【答案】[√2,+∞]【解析】函数y =√x −1+√x +1显然在 x ≥ 1上是增函数,所以函数值域为[√2,+∞]. 6(★★) 函数f(x)=x−1x+3(x ≥1)的值域为 . 【答案】 [0,1)【解析】f(x)=x+3−4x+3=x+3x+3−4x+3=1−4x+3, 则当x ≥1时,f(x)为增函数, 则f(1)≤f(x)<1,即0≤f(x)<1, 即函数的值域为[0,1).7(★★) 函数y =4x +2x+1+3的值域为 . 【答案】(3 ,+∞) 【解析】令t =2x (t >0),∴函数y =4x +2x+1+3(x ∈R)化为f(t)=t 2+2t +3=(t +1)2+2(t >0), ∴f(t)>3,即函数y =4x +2x+1+3的值域为(3,+∞). 8(★★★) 求函数y =2x 2−x+12x−1(x >12)的值域.【答案】[12+√2 ,+∞) 【解析】 y =2x 2−x+12x−1=x(2 x−1)+12 x−1=x +12 x−1=x −12+12 x−1+12∵ x >12, ∴ x −12>0 ∴ x −12+12x−12≥2 √( x −12)×12x−12=√2当且仅当 x −12=12x−12时,即x =1+√22时等号成立,∴ y ≥√2+12 ,所以原函数的值域为 [12+√2,+∞) .【题型四】分段函数【典题1】设函数f(x)={x 2+2 (x ≤2)2x (x >2),若f(x 0)=8,则x 0= .【解析】由题意,得①当x 0≤2时,有x 02+2=8,解之得x 0=±√6, 而√6>2不符合,所以x 0=−√6;②当x 0>2时,有2x 0=8,解之得x 0=4. 综上所述,得x 0=4或−√6.【典题2】已知函数f(x)={x 2−6x +6 ,x ≥03x +4 ,x <0,若互不相等的实数x 1 ,x 2 ,x 3满足f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的取值范围为 .【解析】(乍眼一看,不太理解题意,设f (x 1)=t ,本题就函数y =t 与y =f(x)交点横坐标的问题,自然想到数形结合)函数f(x)={x 2−6x +6 ,x ≥03x +4 ,x <0的图象,如图,不妨设x 1<x 2<x 3,则x 2 ,x 3关于直线x =3对称,故x 2+x 3=6, 且x 1满足−73<x 1<0;则x 1+x 2+x 3的取值范围是−73+6<x 1+x 2+x 3<0+6; 即x 1+x 2+x 3∈(113 ,6).【点拨】分段函数本质上是“分类讨论”,特别要注意“每段函数”的定义域. 处理分段函数的性质问题(值域、交点等)常常用数形结合的方法.【题型五】求函数解析式 方法1 配凑法【典题1】已知f(x +1x )=x 2+1x 2(x >0) , 求f(x)的解析式. 【解析】 ∵x >0 ∴x +1x ≥2∵ f (x +1x )=(x +1x )2−2 , ∴ f(x)=x 2−2 (x ≥2) (注意函数的定义域)【点拨】本题主要是观察到x +1x 与x 2+1x 2之间存在“完成平方”的关系.方法2 待定系数法【典题2】已知函数f(x)是二次函数,若f(0)=0 ,且f(x +1)=f(x)+x +1,求f(x)的解析式. 【解析】依题意可设f (x )=ax 2+bx +c(a ≠0),若f(0)=0,且f(x +1)=f(x)+x +1,∴c =0且a (x +1)2+b (x +1)+c =ax 2+bx +c +x +1 即c =0且(2a +b )x +a +b +c =(b +1)x +c +1, ∴{c =02a +b =b +1a +b +c =c +1,解得a =12,b =12,c =0. ∴f(x)=x 2+x2;【点拨】当函数的类型已知,利用待定系数法可求函数解析式.方法3 换元法【典题3】已知f(√x +1)=x +2√x , 求f(x +1). 【解析】令t =√x +1,则t ≥1 , x =(t −1)2,∵ f(√x +1)=x +2√x∴ f(t)=(t −1)2+2(t −1)=t 2−1,∴ f (x )=x 2−1 (x ≥1) ∴ f (x +1)=(x +1)2−1=x 2+2x (x ≥0). 【点拨】② 用换元法时注意新变量的取值范围.② 用配凑法f(√x +1)=x +2√x =(√x +1)2−1⇒f (x )=x 2−1 (x ≥1),但要求观察力足够好.方法4 构造方程组法【典题4】设f(x)满足f(x)−2 f(1x )=x , 求f(x)的解析式. 【解析】∵ f(x)−2 f(1x )=x ①显然x ≠ 0,将x 换成1x,得:f(1x)−2 f(x)=1x②解①②联立的方程组,得:f(x)=−x 3−23x .方法5 代入法【典题5】与函数y =x 2−3x +2的图象关于点(0,1)对称的函数是 . 【解析】设P(x ,y)为所求函数图象上的任意一点,它关于点(0,1)对称的点是Q(−x ,2−y).由题意知点Q(−x ,2−y)在函数y =x 2−3x +2的图象上,则2−y =x 2+3x +2,化简得y =−x 2−3x .【点拨】① 由下图可对本题有个更清晰的理解.② 求与一已知函数关于点对称或轴对称的函数解析式均可以用“代入法”.若把本题的函数y =x 2−3x +2换成y =2x 或者把“关于点(0,1)对称”换成“关于y =−1对称”,其解题过程大同小异.巩固练习1(★) 已知函数y ={x 2+1(x ≤0)2x(x >0),若f(a)=10,则a 的值是 . 【答案】 -3或5【解析】由题意,当x ≤0时,f (x )=x 2+1=5,得x =±2,又x ≤0,所以x =−2;当x >0时,f (x )=−2x =5,得x =−52,舍去.2 (★★) 已知函数f(x)={(2a −1)x +7a −2(x <1)a x (x ≥1)在(−∞ ,+∞)上单调递减,则实数a 的取值范围为 .【答案】 [38 ,12) 【解析】若函数f(x)={(2a −1)x +7a −2(x <1)a x (x ≥1)在(-∞,+∞)上单调递减 则{2a −1<00<a <1(2a −1)+7a −2≥a解得:38≤a <12 故答案为:[38,12)3(★★) 已知一次函数f(x)满足条件f(x +1)+f(x)=2x ,则函数f(x)的解析式为 .【答案】 f(x)=x −12【解析】设f(x)=kx+b,k≠0,∵f(x+1)+f(x)=2x,∴k(x+1)+b+kx+b=2x,即2kx+k+2b=2x,∴{2k=2k+2b=0,解可得k=1,b=−1 2,∴f(x)=x−12.4(★★)已知f(√x)=x2−2x,则函数f(x)的解析式为.【答案】f(x)=x4-2x2(x≥0)【解析】f(√x)=x2−2x=(√x)4−2(√x)2,∴f(x)=x4-2x2(x≥0).5(★★★) 已知f(0)=1,对于任意实数x ,y,等式f(x−y)=f(x)−y(2x−y+1),求f(x)的解析式. 【答案】f(x)=x2+x+1【解析】对于任意实数x、y,等式f(x−y)=f(x)−y(2x−y+1)恒成立,不妨令x=0,则有f(−y)=f(0)−y(−y+1)=1+y(y−1)=y2−y+1再令−y=x,得函数解析式为f(x)=x2+x+1 .。
教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。
什么是函数函数有几种表示方法
函数是数学中一种非常重要的概念,它描述了输入和输出
之间的映射关系。
在数学中,函数被用来描述不同数值之间的关系,也被广泛应用在计算机科学、物理学、经济学等各个领域。
一个函数通常表示为f(x),其中x是输入,f(x)是输出。
函数有多种表示方法,包括解析式、图像、表格和公式等。
下面将逐一介绍这些表示方法:
解析式表示
解析式是最常见的函数表示方法。
通过解析式,我们可以
直接得到函数的表达式,从而方便计算。
例如,一个线性函数可以表示为f(x) = ax + b,其中a和b是常数。
图像表示
函数的图像表示了函数的输入和输出之间的关系。
图像通
常用坐标系表示,其中横轴表示输入,纵轴表示输出。
通过函数的图像,我们可以直观地看出函数的性质,如增减性、奇偶性等。
表格表示
函数的表格表示了函数输入和输出的对应关系。
通过表格,我们可以直观地看出不同输入对应的输出是什么,从而更好地理解函数的性质。
公式表示
函数还可以通过数学公式表示。
数学公式是用数学符号和
运算符描述函数的关系,是一种抽象和形式化的表示方法。
通过以上几种表示方法,我们可以更加全面地了解函数的
概念和性质。
函数是数学中一个非常重要的概念,也是解决各
种问题的基本工具之一。
不同的表示方法可以帮助我们更好地理解和运用函数。
函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。
注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。
4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。
举例:如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。
5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。
拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法3.函数值域的求法1.对函数概念的理解.(1)(教材习题改编)如图:以x为自变量的函数的图象为②④.(√)(2)函数y=1与y=x0是同一函数.(×)2.函数的定义域、值域的求法(3)(2013·江西卷改编)函数y=x ln(1-x)的定义域为(0,1).(×)(4)(2014·杭州月考改编)函数f(x)=11+x2的值域为(0,1].(√)3.分段函数求值(5)(2013·济南模拟改编)设函数f(x)=⎩⎪⎨⎪⎧x2+1,x≤1,2x,x>1,则f(f(3))=139.(√)(6)函数f(x)=⎩⎪⎨⎪⎧x2-x+34,x≥0,2x+1,x<0若f(a)=12,则实数a的值为12或-2.(√)4.函数解析式的求法(7)已知f(x)=2x2+x-1,则f(x+1)=2x2+5x+2.(√)(8)已知f(x-1)=x,则f(x)=(x+1)2.(×)考点一 求函数的定义域与值域【例1】 (1)函数f (x )=1-2x +1x +3的定义域为( ). A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1] (2)函数y =x -3x +1的值域为________.【训练1】 (1)函数y =ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________.(2)函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.考点二 分段函数及其应用【例2】 (1)定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0f (x -1)-f (x -2),x >0,则f (3)的值为( ).A .-1B .-2C .1D .2(2)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.【训练2】已知函数f (x )=⎩⎪⎨⎪⎧2cos πx 3,x ≤2 000,2x -2 008,x >2 000,则f [f (2 013)]=( ).A. 3 B .- 3 C .1 D .-1考点三 求函数的解析式【例3】 (1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式. (3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.【训练3】 (1)若f (x +1)=2x 2+1,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.【训练4】已知函数f (x )=⎩⎨⎧lg x ,x >0,x +3,x ≤0,则f (a )+f (1)=0,则实数a 的值等于( ).A .-3B .-1或3C .1D .-3或1基础巩固题组一、选择题1.下列各组函数表示相同函数的是( ). A .f (x )=x 2,g (x )=(x )2 B .f (x )=1,g (x )=x 2C .f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,g (t )=|t | D .f (x )=x +1,g (x )=x 2-1x -12.函数f (x )=ln xx -1+x21的定义域为( ).A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( ).4.已知函数f (x )=⎩⎨⎧2x,x <1,f (x -1),x ≥1,则f (log 27)=( ).A.716 B.78 C.74 D.725.函数f (x )=cx 2x +3(x ≠-32)满足f (f (x ))=x ,则常数c 等于( ). A .3 B .-3 C .3或-3 D .5或-3二、填空题6.函数f (x )=ln x -2x +1的定义域是________.7.已知函数f (x )=⎩⎨⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.8.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x2,则f (x )的解析式为________. 三、解答题9.设二次函数f (x )满足f (2+x )=f (2-x ),且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.能力提升题组一、选择题 1.设f (x )=lg2+x 2-x,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为( ).A .(-4,0)∪(0,4)B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4) 2.已知函数y =f (x )的图象关于直线x =-1对称,且当x ∈(0,+∞)时,有f (x )=1x ,则当x ∈(-∞,-2)时,f (x )的解析式为( ).A .f (x )=-1xB .f (x )=-1x -2C .f (x )=1x +2D .f (x )=-1x +2二、填空题3.设函数f (x )=⎩⎨⎧2-x,x ∈(-∞,1],log 81x ,x ∈(1,+∞),则满足f (x )=14的x 值为________.三、解答题4.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.【例1】 (1)A (2){y |y ≠1}【训练1】 (1)(0,1] (2)(-∞,2)【例2】1)B (2)-34 【训练2】 D【例3】解 (1) f (x )=lg2x -1(x >1).(2) f (x )=x 2-x +3.(3)f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 【训练3】1)2x 2-4x +3 (2)-x (x +1)2 【训练4】D基础巩固题组CBBCB 6.{x |x >2,或x <-1} 7.2 8.f (x )=2x1+x 2(x ≠-1)9.解 ∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称.于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-16a,∴a =1.∴f (x )=x 2-4x +3.能力提升题组1. B 2. D 3. 3 4.解 ∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即函数f (x )在[1,b ]上单调递增. ∴f (x )min =f (1)=a -12=1,① f (x )max =f (b )=12b 2-b +a =b ,② 又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3,∴a ,b 的值分别为32,3.函数的单调性与最值知 识 梳 理1.函数的单调性 (1)单调函数的定义(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x)的单调区间. 2.函数的最值1.函数单调性定义的理解(1)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.(√) (2)函数f (x )=2x +1在(-∞,+∞)上是增函数.(√)(3)(教材改编)函数f(x)=1x在其定义域上是减函数.(×)(4)已知f(x)=x,g(x)=-2x,则y=f(x)-g(x)在定义域上是增函数.(√)2.函数的单调区间与最值(5)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(6)(教材改编)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(7)(2013·汕头模拟)函数y=lg|x|的单调递减区间为(0,+∞).(×)(8)函数f(x)=log2(3x+1)的最小值为0.(×)考点一确定函数的单调性或单调区间【例1】(1)判断函数f(x)=x+kx(k>0)在(0,+∞)上的单调性.(2)求函数y=log13(x2-4x+3)的单调区间.【训练1】试讨论函数f(x)=axx2-1,x∈(-1,1)的单调性(其中a≠0).考点二利用单调性求参数【例2】已知函数f(x)=ax-1x+1.(1)若a=-2,试证f(x)在(-∞,-2)上单调递减.(2)函数f(x)在(-∞,-1)上单调递减,求实数a的取值范围.【训练2】(1)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是().A.{-3} B.(-∞,3) C.(-∞,-3] D.[-3,+∞)(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是().A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]考点三利用函数的单调性求最值【例3】已知f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;【训练3】对任意两个实数x1,x2,定义max(x1,x2)=⎩⎨⎧x1,x1≥x2,x2,x1<x2,若f(x)=x2-2,g(x)=-x,则max(f(x),g(x))的最小值为________.易错辨析1——分段函数单调性的判定【典例】f (x )=⎩⎪⎨⎪⎧a x ,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1,是R 上的单调递增函数,则实数a 的取值范围是( ).A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)【训练4】已知f (x )=⎩⎨⎧(3a -1)x +4a ,x <1,log a x ,x ≥1,是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1) B.⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,1基础巩固题组一、选择题1.下列函数中,在区间(0,+∞)上为增函数的是( ). A .y =ln(x +2) B .y =-x +1 C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ). A.⎝ ⎛⎭⎪⎫0,34 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫0,34 D.⎣⎢⎡⎦⎥⎤0,343.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ).A .c <b <aB .b <a <cC .b <c <aD .a <b <c5.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( ). A .4 B .5 C .6 D .7二、填空题6.函数y =-(x -3)|x |的递增区间为________.7.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.8.设函数f (x )=⎩⎨⎧-x +a ,x <1,2x ,x ≥1的最小值为2,则实数a 的取值范围是________.三、解答题 9.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.10.已知函数f (x )=1a -1x (a >0,x >0).(1)判断函数f (x )在(0,+∞)上的单调性; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.能力提升题组一、选择题1.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( ). A .有最小值 B .有最大值 C .是减函数 D .是增函数2.已知函数f (x )=|e x+ae x |(a ∈R ,e 是自然对数的底数),在区间[0,1]上单调递增,则a 的取值范围是( ).A .[0,1] B .[-1,0] C .[-1,1] D .(-∞,-e 2]∪[e 2,+∞)二、填空题3.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,则实数a 的取值范围是________.三、解答题4.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围.【例1】 解 (1)法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+k x 1-⎝ ⎛⎭⎪⎫x 2+k x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫k x 1-k x 2=(x 1-x 2)+k (x 2-x 1)x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-k x 1x 2.当k ≥x 1>x 2>0时,x 1-x 2>0,1-k x 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +kx (k >0)在(0,k ]上为减函数; 当x 1>x 2≥k 时,x 1-x 2>0,1-kx 1x 2>0,有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +kx (k >0)在[k ,+∞)上为增函数;综上可知,函数f (x )=x +kx (k >0)在(0,k ]上为减函数;在[k ,+∞)上为增函数. 法二 f ′(x )=1-k x 2,令f ′(x )>0,则1-kx 2>0, 解得x >k 或x <-k (舍).令f ′(x )<0,则1-kx 2<0, 解得-k <x <k .∵x >0,∴0<x <k .∴f (x )在(0,k )上为减函数;在(k ,+∞)上为增函数, 也称为f (x )在(0,k ]上为减函数;在[k ,+∞)上为增函数.(2)令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x +3>0.则x <1或x >3.∴函数y =log 13(x 2-4x +3)的定义域为(-∞,1)∪(3,+∞).又u =x 2-4x +3的图象的对称轴为x =2,且开口向上,∴u =x 2-4x +3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y =log 13u 在(0,+∞)上是减函数,∴y =log 13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1). 【训练1】解 法一 (定义法)任取-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴|x 1|<1,|x 2|<1,x 2-x 1>0,x 21-1<0,x 22-1<0,|x 1x 2|<1,即-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1)>0,因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)为减函数; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)为增函数. 法二 (导数法)f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2当a >0时,f ′(x )<0;当a <0时,f ′(x )>0.∴当a >0时,f (x )在(-1,1)上为减函数;当a <0时,f (x )在(-1,1)上为增函数. 【例2】(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=-2x 1-1x 1+1--2x 2-1x 2+1=-(x 1-x 2)(x 1+1)(x 2+1).∵(x 1+1)(x 2+1)>0,x 1-x 2<0,∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),∴f (x )在(-∞,-2)上单调递减.(2)解 法一 f (x )=ax -1x +1=a -a +1x +1,设x 1<x 2<-1,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a -a +1x 1+1-⎝ ⎛⎭⎪⎫a -a +1x 2+1 =a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 1+1)(x 2+1),又函数f (x )在(-∞,-1)上是减函数,所以f (x 1)-f (x 2)>0. 由于x 1<x 2<-1,∴x 1-x 2<0,x 1+1<0,x 2+1<0,∴a +1<0,即a <-1. 故a 的取值范围是(-∞,-1). 法二 由f (x )=ax -1x +1,得f ′(x )=a +1(x +1)2,又因为f (x )=ax -1x +1在(-∞,-1)上是减函数,所以f ′(x )=a +1(x +1)2≤0在x ∈(-∞,-1)上恒成立,解得a ≤-1, 而a =-1时,f (x )=-1,在(-∞,-1)上不具有单调性,故实数a 的取值范围是(-∞,-1). 【训练2】 (1)C (2)D【例3】解 (1)当a =12时,f (x )=x +12x +2,联想到g (x )=x +1x 的单调性,猜想到求f (x )的最值可先证明f (x )的单调性.任取1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)(2x 1x 2-1)2x 1x 2,∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0.又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上,f (x )=x 2+2x +ax >0恒成立,则⎩⎨⎧x 2+2x +a >0,x ≥1⇔⎩⎨⎧a >-(x 2+2x ),x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.只需求函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上递减,∴当x =1时,φ(x )最大值为φ(1)=-3. ∴a >-3,故实数a 的取值范围是(-3,+∞).【训练3】-1 【典例】B 【训练4】C基础巩固题组A D CBC 6. ⎣⎢⎡⎦⎥⎤0,32 7. 4 8. [3,+∞)9.解 设-1<x 1<x 2<1,f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =ax 2-x 1(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.10.解 (1)任取x 1>x 2>0,则x 1-x 2>0,x 1x 2>0,∵f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1a -1x 1-⎝ ⎛⎭⎪⎫1a -1x 2=1x 2-1x 1=x 1-x 2x 1x 2>0,∴f (x 1)>f (x 2),因此,函数f (x )是(0,+∞)上的单调递增函数. (2)∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,即1a -2=12,1a -12=2.解得a =25. 能力提升题组1. D 2. C 3.(0,4]4.解 (1)∵f (-1)=0,∴a -b +1=0,∴b =a +1,∴f (x )=ax 2+(a +1)x +1. ∵对任意实数x 均有f (x )≥0恒成立,∴⎩⎨⎧ a >0,Δ=(a +1)2-4a ≤0,∴⎩⎨⎧a >0,(a -1)2≤0.∴a =1,从而b =2,∴f (x )=x 2+2x +1,∴F (x )=⎩⎨⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1.∵g (x )在[-2,2]上是单调函数,∴k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故k 的取值范围是(-∞,-2]∪[6,+∞).。
函数的概念及表示一、函数的定义初中定义:在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与对应. 那么就说y 是x 的函数,其中x 叫做自变量。
高中定义:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function),记作y = f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值。
初中所学函数: 正比例函数、反比例函数、一次函数、二次函数1.一次函数:b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函:xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数:c bx ax x f ++=2)()0(≠a :定义域R值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|24.指数函数),1,0(R x a a a y x ∈≠>=且:定义域R,值域为+R ;5.对数函数x y a log =)0,1,0(>≠>x a a 且:定义域+R ,值域为R ;二、区间的概念:设,a b 是两个实数,而且a b <,规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ; (3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,表示为[,)a b ,(,]a b .这里的实数a 与b 都叫做相应区间的端点。
函数的概念及表示方法一、 知识梳理1、函数:设A 、B 是两个非空的数集,如果按照某种对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作A x x f y ∈=,)(2、对于函数A x x f y ∈=,)(,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域。
3、函数的三要素:定义域、值域和对应关系。
4、表示函数常用的三种方法是解析法、图像法和列表法5、在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系,这样的函数通常叫做分段函数6、分段函数的定义域是各段定义域的并集,其值域是各段值域的并集二、 典例精析例1、 下列式子是否能确定y 是x 的函数?(1)222=+y x (2)111=-+-y x (3)x x y -+-=12例2、 下列各题中的两个函数相等吗?请说明理由。
(1)()2)()(x x g x x f ==, (2)3)(39)(2+=--=x x g x x x f ,例3、已知集合{}{}54321,,,,==B A ,则从A 到B 的函数)(x f 有 个例3、 求下列函数的定义域(1)21)(-=x x f (2)241)(+-∙-=x x x f (3)()x x x y -+=01 (4)213)(+++=x x x f例4、(1)若函数)(x f 的定义域为[]41,,求)2(+x f 的定义域(2)已知)1(+x f 的定义域为[]30,,求)(x f 的定义域例4、 已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 取值范围变式:已知函数862++-=k kx kx y 的定义域是R ,求实数k 的取值范围例5、 求下列函数的值域:(1){}5432112,,,,,∈+=x x y (2)1+=x y (3)1+=x x y (4)2211xx y +-= (5)245x x y -+= (6)12--=x x y (7)152222++++=x x x x y例6、 函数⎪⎩⎪⎨⎧≥<<--≤+=222112)(2x x x x x x x f ,,, 中,若3)(=x f ,则x 的值为例7、 作出下列函数的图像:(1)112-+=x x y (2)122+-=x x y变式:讨论关于x 的方程)(342R a a x x ∈=+=的实数解的个数例8、 求下列函数的解析式(1) 已知)(x f 是二次函数,且1)()1(2)0(-=-+=x x f x f f ,,求)(x f(2) 已知x x x f 2)1(+=+,求)(x f(3) 已知函数x x x x x f 11)1(22++=+,求)(x f (4) 已知3)(2)(3+=-+x x f x f ,求)(x f三、 过关精炼1、下列说法中,不正确的是( )A 、函数的值域中每一个数在定义域中都有数与之对应B 、函数的定义域和值域一定是不含0的集合C 、定义域和对应法则完全相同的函数表示同一个函数D 、若函数的定义域中只有一个元素,则值域也只含有一个元素2、函数x x y 22-=的定义域为{}3210,,,,那么其值域为( ) A 、{}301-,,B 、{}3210,,,C 、{}31≤≤-y yD 、{}30≤≤y y 3、与x y =为同一个函数的是( )A 、()2x y =B 、2x y =C 、()⎩⎨⎧<->=)0(0x x x x y D 、x y = 4、若)()2(32)(x f x g x x f =++=,,则)(x g 等于( )A 、12+xB 、12-xC 、32-xD 、72+x5、一个面积为2100cm 等腰梯形,上底长为xcm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A 、)0(50>=x x yB 、)0(100>=x x yC 、)0(50>=x x yD 、)0(100>=x x y6、已知a a f x x f ,则,16)(13)(=+==7、函数⎪⎩⎪⎨⎧≥<≤<≤=)2(3)21(2)10(2)(2x x x x x f 的值域8、求下列函数的值域(1)x x y 422+--= (2)3222-+=x x y(3){})3210(16322,,,∈-++-=x x x x x y。
ab abab a b课题 函数的概念及其表示一、函数的概念1 函数:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域。
(1)对函数符号()f x 的理解知道()y f x =与()f x 的含义是一样的,它们都表示y 是x 的函数,其中x 是自变量,()f x 是函数值,连接的纽带是法则f.f 是单值对应; (2)注意定义中的集合 A ,B 都是非空的数集,而不能是其他集合; 2、构成函数的三要素:定义域、对应关系和值域。
二、区间的概念设a 、b 是两个实数,且a b <,规定定义名称 符号数轴表示{|}x a x b ≤≤ 闭区间 [,]a b {}x a x b << 开区间 (,)a b {}x a x b <≤ 左闭右开区间 [,)a b {}x a x b <≤左开右闭区间(,]a b{|}[,)x x a a =+∞≥;{}(,)x x a a >=+∞;{}(,]x x a a =-∞≤;{}(,)x x a a <=-∞;(,)R =-∞+∞。
三、相等函数:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等的条件是当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
四、函数的表示法1解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
【考点精讲】1. 函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x =a 时y =b ,那么b 叫做自变量的值为a 时的函数值。
2.对函数概念的理解应注意以下几点:①变化过程中; ②两个变量;③一个变量随另一个变量的变化而变化; ④对于自变量x 的每一个确定的值,函数y 都有唯一的值与它对应(但有可能有多个不同的自变量数值对应一个函数值)。
3. 函数的表示方法:函数是从数量角度反映变化规律的数学模型。
解析式法、图象法和列表法是函数的三种常用表示方法。
①解析式法:用来表示函数关系的数学式子叫做函数解析式。
用解析式来表示函数关系的方法叫做解析式法。
②列表法:用表格来表示函数关系的方法叫做列表法。
③图象法:用图象来表示函数关系的方法叫做图象法。
【典例精析】例题1 下列关于x ,y 的关系式:① 5x -2y =1;② y =3|x|;③ x·y 2=2,其中表示y 是x 的函数的是( )A. ②B. ②③C. ①②D. ①②③思路导航:在x·y 2=2中,即22y x,当x =1时,y y x 对应着两个y 值,和函数的概念不相符,所以它不是函数。
答案:C点评:y 是x 的函数用函数关系式表示时,应用含有x 的式子表示y 。
因此,本题应首先对式子进行变形,用含有x 的式子表示y 。
例题2 下列曲线中不能表示y 是x 的函数的是( )思路导航:从图象可以看出每个图象中y 都随着x 的变化而变化,并且都存在两个变量,所以当x 是一个确定的值时,y 有唯一确定的值与之对应,就是函数,当不是唯一确定的值与之对应时,就不是函数。
答案:C点评:解决本类题的技巧是:过x 轴上的一点,作x 轴的垂线,这条直线与图象的交点为一个时,就是函数关系,当出现多个交点时,就不是函数关系。
函数的概念与表示
(一)函数的概念:在一个变化的过程中有两个变量x和y,如果给定了一个x值,
相应的就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
说明:1.符号y=f(x)的意义:x是自变量,f表示对应法则,y是x的函数;遂于定义域
内的每一个x的值,在对应法则f的作用下,都有唯一确定的y的值和它对应,和x值对应的y的值用f(x)表示
2.f(x)与f(a)的区别:f(x)表示自变量x的函数,f(a)表示当x=a是对应的函数值。
(二)函数的三要素:1)定义域 2)值域 3)对应法则
其中值域被定义域与对应法则唯一确定,因此我们常说函数有两要素,即定义域和对应法则,对应法则是函数的核心,定义域是函数的灵魂。
(三)两个函数相等的条件:1)定义域想同 2)对应法则相同;即对应定义域内的每一个x,他们都有相同的函数值。
(四)区间的概念
设a,b属于R,且a<b
(五)函数的表示方法。
函数的概念及表示方法
一、选择题(每小题5分,共60分)
1、 数)(x y ϕ=的图象与直线a x =的交点个数为( )
A 、必有1个
B 、1个或2个
C 、至多1个
D 、可能2个以上 2、 下列四组中的函数
)(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f
C 、
x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( )
(1)x x y -+-=
12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数
A 、 (2)(4)
B 、(1)(3)
C 、(1)(2)
D 、(3)(4)
4、下列关于分段函数的叙述正确的是( )
(1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集
(2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数
(3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I
A 、 (1)
B 、(2)、(3)
C 、(1)、(2)
D 、(1)、(3)
5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B
,那么B A I =( ) A 、 Φ B 、
{}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立
的是( )
A 、0)0(=f
B 、)1(3)3(f f =
C 、)1(2
1)21(f f = D 、0)()(<-x f x f 7、将x
y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( )
A 、左,2,上,1
B 、左,2,下,1
C 、右,2,上,1
D 、右,2,上,1
8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )
A 、)13,13(-+b a
B 、)31,31(-+b a
C 、)31,31(--b a
D 、)3
1,31(++b a 9、若函数11)(22+-=x x x f ,则=)2
1()2(f f ( ) A 、1 B 、1- C 、
53 D 、53- 10、若函数32)(2+-=x x x f 的定义域为
[]m ,1-,值域为[]6,2则m 的取值范围是( ) A 、[]1,0 B、[]3,1 C、[)1,0 D、[)3,1
11、已知函数221)(x x x f +=,那么++)2()1(f f )3()2
1(f f +)4()31(f f ++ =+)4
1(f ( ) A 、1 B 、23 C 、25 D 、2
7 12、某学校要召开学生代表大会,规定各班每10人推出一名代表,当各班人数除以10的 余数大于6时再增选一名代表,那么各班可推出代表人数y 与该班人数x 之间的函数 关系用取整函数[]x y
=([]x 表示不大于x 的最大整数),可以表示为( ) A 、⎥⎦
⎤⎢⎣⎡=10x y B 、⎥⎦⎤⎢⎣⎡+=103x y C 、⎥⎦⎤⎢⎣⎡+=104x y D 、⎥⎦⎤⎢⎣⎡+=105x y 二、填空题(每小题5分,共20分) 13、若2)1(2-=+x x f 则=-)1(x f 。
14、设⎩⎨⎧>≤+=2
,22,2)(2x x x x x f ,则=-)4(f ,若8)(0=x f ,则=0x 。
15、⎩⎨⎧>-≤=0
,0,)(x x x x x f ,1)(+=x x g ,则[]=)(x f g 。
16、若)(x f y
=的定义域为[]1,0,则⎪⎭⎫ ⎝⎛<<++-=210)()()(m m x f m x f x g 的定义域为 。
三、解答题
17、(10分)已知映射B A f →:中,A=B={}R y R x y x ∈∈,),(, ),(),(:2y x y x y x f -+→
求:(1)A 中元素)2,3(-的象,(2)B 中元素)2,2(-的原象。
18、(12分)已知,2)11()(2x x x f x f =+-+
求)(x f
19、(12分)定义函数
[]x x f =)(,这个函数称为高斯函数,其中[]x 表示不超过x 的最大整数。
(1) 求)5.2(f 与)5.2(-f 的值,
(2) 画出函数
)(x f 在[]3,3-∈x 上的图像, (3) 求出
[]3,3-上方程[]x x =的所有解。
20、(12分)已知)(x f 是R 上的函数,且2)1(=f ,并对任意实数x 、y 有,)1()()(+-=-x y x f y x f ,求)(x f 的解析式。
21、(12分)若函数132)(++-=x x x f 的定义域是A , )1()2)(1()(<---=a x a a x x g 的定义域为B,当A B ⊆时,求实数a 的取值范围。
22、(12分)求下列函数的值域:
(1)321
2+=x y (2)[
)5,1,642∈+-=x x x y (3)12--=x x y (4) )3,04(3
25-≠<<-+-=x x x x y。