管道组对和焊接施工工艺标准
- 格式:doc
- 大小:127.50 KB
- 文档页数:9
工业管道的焊接标准和施工工艺1.1.1管道组成件必须具有制造厂的合格证明书,否则应补所缺项目的检验。
1.1.2焊接工程中所用的母材和焊接材料应具备出厂质量合格证明书或质量复验报告。
1.1.3焊接工程中应优先选用已列入国家标准或部颁标准的母材和焊接材料。
1.1.4如设计选用未列入标准的母材和焊接材料,应说明该材料的可焊性,并提出满足设计要求的焊接工艺试验资料。
1.2.1焊接设备:包括交流电焊机、直流电焊机、氩弧焊机。
1.2.2机具包括:坡口加工机、切割机、角向磨光机、台式钻诃、等离子弧切割机、焊矩。
1.2.3计量器具包括:柜式水平仪、焊接检验尺,内外径千分尺、内外径卡尺、深度游标尺、高度游标尺、万能角度尺、光学水准仪、光学经纬仪。
1.2.4液压千斤顶、液压式万能材料试验机、热处理设备、微控电子式拉力试验机、便携式数显里氏硬度计、光谱分析仪。
1.2.5探伤设备及其它: X 射线擦伤机、超声波探伤仪、梯粉探伤机、智能化 X 射线探伤机、远红外线干燥机。
1.3.1与管道有关的土建工程、金属结构工程检验合格,满足管道安装要求。
1.3.2与管道连接的机械设备,容器已找正固定,或已确定管口方位及标高。
1.3.3管道组成件已清理完毕,并满足设计规定的特殊清理要求。
1.3.4管道加工及预制完成,并编号。
1.3.5焊接平台按工程要求制作完成。
备料施焊1.4.1 工艺流程:1.4.2 焊工1.压力管道所用焊工必须取得由长沙市技术监督局批准颁发的《锅炉 压力容器焊工合格证》,且只限于焊接《合格证》内规定的项目。
2 .“压力容器焊工合格证”有效期为三年,超过有效期后必须重新办 理,否则视为无效。
3.焊工累计合格项目满足 GB235-82 中表 4.4.1 规定的所有材质的焊 接。
4.焊工操作评定:焊工操作评定考试的技术要求,由技术人员制订, 要求符合有关规范、标准、管理法令及用户的技术条件。
每一焊工都应有 鉴别的编号,且对焊工应不断观察其操作状况与重新评定的需要。
管道焊接施工工艺标准规范标准规范标准规范标准.本文介绍了管道焊接施工工艺标准,适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。
引用了多个标准,包括《特种设备焊接工艺评定》、《工业金属管道工程施工及验收规范》、《电力建设施工及技术验收规范》等。
术语方面介绍了焊接电弧焊的概念。
管道焊接施工工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。
为确保施工质量,引用了多个标准,包括《特种设备焊接工艺评定》、《工业金属管道工程施工及验收规范》、《电力建设施工及技术验收规范》等。
同时,术语方面介绍了焊接电弧焊的概念。
自动焊是一种电弧焊焊接方法,用于管道焊接的常见方法包括热丝熔化极氩弧焊、涂层焊丝氩弧焊、药芯焊丝富氩二氧化碳焊混、(半)自动下向焊、二氧化碳(半)自动焊、埋弧自动焊等六种。
施工准备由现场施工项目经理组织,项目部管理人员参与,按照准备工作计划有序地做好人力、物资、技术等准备工作,并将施工准备工作贯穿于施工全过程,包括阶段施工准备、专业施工准备和工序施工准备。
技术准备包括熟悉技术图纸、进行技术交底,组织技术人员了解焊接工艺和质量的详细要求,并提出焊接方案,编制焊接技术资料,包括焊接工艺评定和焊接工艺规程或焊接作业指导书以及焊接质量控制资料等。
还需要进行焊工培训,包括操作技能和安全操作等。
物资准备包括管材、焊材、预热器材、焊接及热处理设备与器材、探伤设备与器材、耐压试验设施,并需要验收所提供的各类物资的质量合格证。
施工设施准备包括切割设备、焊接设备、预热设备、热处理设备、焊后残余应力消除设备、探伤设备、检验、检测、试验工具与设备等,以及耐压试验设施。
作业条件准备需要根据具体情况进行准备,包括环境条件、安全保障、作业人员的健康状况等。
4.4.1 焊接资质要求焊接工程师证、焊工合格证和无损检测证。
4.4.2 焊材库要求符合焊接材料二级库管理的标准规定,包括通风设施、温湿度测量计、焊条烘焙箱及保温桶、焊材堆放架和焊材管理制度等设施。
大口径管道组对焊接工艺引言大口径管道组对焊接工艺是一种常见的管道连接方式,广泛应用于工业领域。
本文将从焊接工艺的基本原理、操作步骤、质量控制等方面详细介绍大口径管道组对焊接工艺。
一、焊接工艺的基本原理大口径管道组对焊接工艺是通过电弧焊接的方式将两根管道连接在一起。
焊接时,先通过电弧产生高温,使焊接接头达到熔化状态,然后在熔化的接头上加压,使两根管道焊接在一起。
这种焊接方式具有焊接速度快、焊接强度高等优点,广泛应用于石油、化工、电力等行业。
二、操作步骤1. 准备工作:首先,需要对要焊接的管道进行清洗和打磨,确保焊接接头的表面光滑干净。
然后,将焊接接头的位置进行标记,以便后续操作。
2. 焊接设备设置:根据管道的材质和直径,选择合适的焊接电流和电压。
同时,检查焊接设备的工作状态,确保正常运行。
3. 开始焊接:将焊接机的电极对准焊接接头,调节电流和电压使其适应焊接要求。
然后,按下启动按钮,开始焊接过程。
4. 控制焊接参数:在焊接过程中,需要控制焊接速度、焊接角度和焊接电流等参数,以确保焊接质量。
同时,需要注意焊接接头的熔化状态,避免过度熔化或不充分熔化。
5. 完成焊接:当焊接接头完全熔化并形成合适的焊缝时,停止焊接并切断电源。
然后,检查焊缝的质量,确保没有裂纹、气孔等焊接缺陷。
三、质量控制大口径管道组对焊接工艺的质量控制是确保焊接接头质量的关键。
以下是一些常用的质量控制措施:1. 焊材选择:根据焊接材料的特性和焊接要求,选择合适的焊材。
焊材应具有良好的焊接性能和高强度。
2. 焊接工艺参数控制:控制焊接参数,如焊接电流、电压、焊接速度等,以保证焊接接头的质量。
3. 焊接接头准备:在焊接前,对焊接接头进行清洁和打磨,去除油污和氧化物等杂质,以确保焊接接头的质量。
4. 检查焊缝质量:在焊接完成后,对焊缝进行检查,如X射线检测、超声波检测等,以发现并修复焊接缺陷。
5. 焊后处理:对焊接接头进行焊后热处理,消除焊接应力,提高焊接接头的强度和稳定性。
5.6工艺管道焊接工艺要求一、管道焊接施工要求1、管道切口质量应符合下列规定:⑴切口表面应平整、无裂纹、重皮、毛刺、凹凸、缩口、熔渣、氧化物、铁屑等;⑵ 切口端面倾斜偏差不应大于管子外径的1%,且不得超过3 mm;⑶ 有坡口加工要求的,坡口加工形式按焊接方案规定进行。
2、管道预制时应按单线图规定的数量、规格、材质等选配管道组成件,并按单线图标明管道的系统号和按预制顺序标明各组成件的顺序号。
3、管道预制时,自由管段和封闭管段的选择应合理,封闭段必须按现场实测尺寸加工,预制完毕应检查内部洁净度,封闭管口,并按顺序合理堆放。
4、管道对接焊缝位置应符合下列规定:⑴管道位置距离弯管的弯曲起点不得小于管子外径或不小于100mm;⑵管子两个对接焊缝间的距离不大于5mm.⑶支吊架管部位置不得与管子对接焊缝重合,焊缝距离支吊架边缘不得小于50mm;⑷管子接口应避开疏放水、放空及仪表管的开孔位置,距开孔边缘不应小于50mm,且不应小于孔径。
5、管道支架的形式、材质、加工尺寸及精度应严格按照相关图集进行制作,滑动支架的工作面应平滑灵活,无卡涩现象。
&制作合格的支吊架应进行防腐处理,并妥善分类保管。
支架生根结构上的孔应采用机械钻孔。
二、管道安装1、管道安装前应具备下列条件:⑴与管道有关工程经检验合格,满足安装要求;⑵管子、管件、管道附件等已检验合格,具有相关证件;⑶管道组成件及预制件已按设计核对无误,内部已清理干净无杂物。
2、管道安装应按单线图所示,按管道系统号和预制顺序号安装。
安装组合件时,组合件应具备足够刚性,吊装后不应产生永久变形,临时固定应牢固可靠。
3、管道水平段的坡度方向以便于疏放水和排放空气为原则确定。
4、管道连接时,不得用强力对口,加热管子,加偏垫或多层垫等方法来消除接口端面的空隙、偏斜、错口或不同心等缺陷。
5、管子或管件的坡口及内外壁10-15mm范围内的油漆、垢、锈等,在对口前应清除干净,显示出金属光泽。
管道焊接连接工艺规范1. 引言管道焊接连接是工程施工中常见的连接方式之一,其质量和可靠性对于管道系统的正常运行至关重要。
为了保证管道焊接连接质量,本文档旨在规范管道焊接连接的工艺和操作要求。
2. 适用范围本文档适用于各类管道的焊接连接过程,包括但不限于常压管道、高压管道和输油管道等。
3. 焊接材料要求3.1 焊接材料的选择应符合设计要求,同时需满足管道系统使用环境和介质的性质。
3.2 焊条或焊丝的种类、牌号和直径应根据管道材质和焊接工艺确定。
4. 焊接设备要求4.1 焊机、焊割设备以及电源应符合国家标准,并经过定期检查和维护。
4.2 焊接设备的使用和操作应由持证焊工或经验丰富的操作人员进行。
5. 焊接工艺规范5.1 管道焊接连接应符合相关的设计图纸和规范要求。
5.2 焊接现场应保持整洁,确保焊接环境无杂质和易燃物。
5.3 管道焊接前应进行材料和设备的准备,包括刷洗焊接接头和防护工作。
5.4 管道焊接工艺应根据焊接材质、壁厚和焊接位置选择合适的焊接方法,如手工焊、气焊或电弧焊等。
5.5 焊接工艺应符合国家标准和相关规范要求,并经过焊接工序的验收。
6. 焊接质量控制6.1 焊接接头应进行外观检查,确保焊缝的质量和完整性。
6.2 焊接接头应进行无损检测,以确保焊缝的强度和可靠性。
6.3 焊接接头应进行力学性能试验,包括拉伸、弯曲和冲击试验等。
6.4 焊接接头的质量控制应符合国家标准和相关规范的要求。
7. 安全要求7.1 焊接操作人员应熟悉安全操作规程,并佩戴个人防护设备,如焊接面罩、焊手套和防护鞋等。
7.2 焊接现场应设置明显的安全警示标志。
7.3 焊接过程中应注意火源控制和防止火灾的安全措施。
8. 附则8.1 本文档的解释权归施工单位和相关监管部门共同所有。
8.2 如出现与本文档冲突的规定,以国家标准和相关规范为准。
以上内容为管道焊接连接工艺规范的要求和要点,确保按照规范进行管道焊接连接工作,可以提高焊接质量和工程安全性。
管道的组对和焊接施工工艺标准1.适用范围本章适用于工作压力不大于1.0MPa 的民用及一般工业建筑的室内给水(包括热水)、消防、室内外供热管网手工电弧焊、手工钨极氩弧焊和氧—乙炔焊的焊接施工工艺标准。
2.施工准备2.1 原材料、半成品的检验及验收:2.1.1焊接工程所采用的材料必须具有制造厂的质量证明书,其质量不得低于国家现行标准的规定;2.1.2焊条的化学成分、机械强度应与母材相同且匹配,兼顾工作条件和工艺性;2.1.3焊条质量应符合现行国家标准《碳钢焊条》GB5117、《低合金焊条》GB5118的规定,同时焊条应干燥。
2.1.4焊丝应符合现行国家标准《焊接用钢丝》GB1300的规定;2.1.5施工现场的焊接材料贮存场所及烘干、去污设施,应符合国家现行标准《焊条质量管理规程》JB3223的规定,并应建立保管、烘干、清洗、发放制度。
2.1.6氩弧焊所采用的氩气应符合现行国家标准《氩气》GB4842的规定,且纯度不应低于99.96% 。
2.1.7氧乙炔焊所采用的氧气纯度不应低于98.5%,乙炔气的纯度和气瓶中的剩余压力应符合现行国家标准《溶解乙炔》GB6819的规定。
2.2 主要工机具:2.2.1焊机,砂轮锯,切割机,焊条烘干箱,焊条保温桶,焊钳,氩弧焊把,面罩和滤光玻璃,焊缝检验尺,管道坡口机,管道对口器等。
2.3 作业条件:2.3.1 焊接前应对被焊材料进行焊接工艺评定;2.3.2焊工必须持有相应项目的资格证书,现场施焊的钢材种类,焊接方法,焊接位置,有效期等均应与焊工本人的焊工证书相符。
2.3.3需焊的管节应先修口、清根,管端端面的坡口角度、钝边、间隙等应符合要求;钢管对口检查合格后,方可进行点焊;2.3.4在寒冷或恶劣环境下焊接应符合下列规定:2.3.4.1清除管道上的冰、雪、霜等;2.3.4.2当工作环境的风力大于5级、雪于或相对湿度大于90%时,应采取保护措施施焊;2.3.4.3焊接时,应使焊缝可自由伸缩,并应使焊口缓慢降温;2.3.4.4冬季焊接时,当焊件温度低于0℃时,所有钢材应在施焊处100 mm范围内预热到15℃以上。
采暖管道焊接施工工艺
1、管道焊接材料的品种、规格、性能应符合设计要求。
管道对接焊口的组对和坡口形式等应符合规范的规定,对口的平直度为1/100,全长不大于10mm。
管道的固定焊口应远离设备。
管道对接焊缝与支、吊架的距离应大于50mm。
2、管道焊缝表面应清理干净,并进行外观质量的检查。
3、焊条采用E4303 Φ2.5~Φ3.2焊条。
4、焊接采用V型坡口,坡口用机械加工或砂轮机打磨,做到光滑、平整。
对坡口两侧20mm范围内将油污、铁锈和水份去除,且露出金属光泽。
采用多层焊接坡口形式。
5、焊件组对点固焊时,选用的焊接材料及工艺保证与正式焊接要求相同,焊接中注意引弧和收弧质量,收弧处确保弧坑填满,防止弧坑裂纹,多层焊做到层间接头错开。
每条焊缝尽可能做到一次焊完,因故被迫中断时,及时采取防裂措施,确认无裂纹后方可继续施焊。
焊接过程中必须做好自检、互检工作。
6、焊接钢管焊接工艺参数见附件5-3-5。
7、焊缝表面的焊渣必须清理干净,先进行外观质量检查,是否有气孔、裂纹、夹杂等焊接缺陷。
8、管道对接焊缝与支吊架边缘之间的距离不小于50mm,尽量避免在焊缝及其边缘上开孔。
当不可避免时,对开孔直径1.5倍范围内的焊缝进行无损检验,确认焊缝合格后方可开孔。
管道与管道焊接国家标准管道及管道焊接是工业生产中常见的工艺,其质量直接关系到工程的安全和稳定运行。
为了保障管道及管道焊接的质量,我国制定了一系列的国家标准,对于管道及管道焊接的设计、材料、施工、检验等方面进行了规范。
本文将对管道与管道焊接国家标准进行详细介绍,以便工程技术人员和相关从业人员能够更好地理解和应用这些标准。
首先,国家标准对于管道的设计和选材提出了明确的要求。
在设计方面,标准要求应根据工程需要确定管道的材料、尺寸、压力等级和温度等参数,并且应符合相关的国家标准和规范。
在选材方面,标准规定了各种类型管道应选用的材料,以及材料的化学成分、力学性能、加工工艺等方面的要求,以确保管道材料的质量和可靠性。
其次,国家标准对于管道的施工和焊接工艺也进行了详细的规定。
在施工方面,标准要求施工单位应按照设计要求进行施工,并且应符合相关的施工工艺规范。
在焊接工艺方面,标准规定了各种类型焊接工艺的要求,包括焊接方法、焊接材料、预热温度、焊接层次、焊接工艺评定等内容,以确保焊接接头的牢固性和密封性。
此外,国家标准还对管道的检验和验收提出了严格的要求。
在检验方面,标准规定了对于管道材料、管道焊接接头、管道外观和尺寸等方面的检验方法和标准,以确保管道的质量符合设计要求。
在验收方面,标准要求施工单位应对管道的质量进行全面的验收,并且应出具相应的验收报告,以确保管道的质量符合国家标准和合同要求。
总之,国家标准对管道与管道焊接进行了全面的规范,涵盖了设计、选材、施工、焊接工艺、检验和验收等方面。
遵循国家标准,能够保障管道及管道焊接的质量,提高工程的安全性和可靠性,对于工程技术人员和从业人员来说具有重要的指导意义。
希望相关人员能够深入学习和理解国家标准,严格按照标准要求进行工作,共同为工程质量和安全保驾护航。
管道坡口加工组对焊接作业指导书一、前言管道坡口加工、组对、焊接作业是管道工程施工中非常重要的环节,直接关系到管道工程的质量和安全。
本作业指导书旨在对管道坡口加工、组对、焊接作业进行详细的介绍和指导,以确保在施工过程中能够正确进行相关操作,达到预期的效果。
二、管道坡口加工1.坡口加工前准备工作1.1清除管道表面的杂质、砂浆等物质。
1.2使用合适的工具对管道进行处理,如割管、修边等。
1.3确定坡口类型和尺寸,并按照要求进行加工。
2.坡口加工操作步骤2.1根据坡口类型和尺寸要求,在管道上标记出加工位置。
2.2使用合适的工具对管道进行加工,如割口、修边等。
2.3检查坡口加工质量,保证加工面平整,无任何毛刺或凹凸不平。
三、管道组对1.组对前准备工作1.1清洗管道内部,确保无杂质和污物。
1.2检查管道的几何尺寸和形状,确保满足设计要求。
1.3准备好组对所需的工具和设备,如液压千斤顶等。
2.组对操作步骤2.1对组对的管道进行标记,确定组对位置和方向。
2.2使用液压千斤顶等工具,将管道组对到位,确保管道的位置和方向准确。
2.3检查组对后的管道是否满足设计要求,如有需要,进行微调,直到达到要求为止。
四、焊接作业1.焊接前准备工作1.1清洗焊接区域,确保无杂质和污物。
1.2准备好焊接所需的材料和设备,如焊机、焊条等。
1.3检查焊工的资质和焊接设备的安全性。
2.焊接操作步骤2.1根据焊接工艺要求,进行焊缝准备,如坡口处理、坡口开缝等。
2.2进行干燥处理,避免焊缝受潮。
2.3进行预热,确保焊接区域温度适宜。
2.4进行焊接,根据焊工的技术要求进行操作。
2.5进行焊后处理,如打磨、除渣、防腐等。
五、安全注意事项1.确保施工现场的通风良好,避免有害气体积聚。
2.使用适当的个人防护装备,如帽子、口罩、手套等。
3.确保焊接设备的安全性能,避免发生火灾或触电事故。
4.确保操作人员具备相关的技术资质和操作经验。
六、总结管道坡口加工、组对、焊接作业是管道工程施工中不可或缺的环节。
管道对口焊接工艺标准火电工程工艺标准版本№.1 专业焊接标准号权法Q/GHG-104-02.16-2002 工艺标准名称管道对口焊接工艺标准工艺质量目标以施工过程焊接缺陷预防为主,确保受监焊口无损探伤一次合格率达96%以上,实现安装管道无焊口渗漏。
施工工艺过程施工工艺标准图示说明序号工艺步骤1 施工班组填写《焊接施工任务委托单》施工部门技术人员按要求填写表格,提前三天委托焊接部门。
管道焊前模拟练习位置5G2 焊接部门主管下发《焊接施工任务单》焊接技术人员按要求填写表格,由部门主管签发焊接施工班组。
3 专业人员依《焊接施工作业指导书》向施工人员技术交底焊接技术人员在项目开工前依有关标准和焊接工艺评定编写《焊接施工作业指导书》、并在开工前与有关专业管理人员一起向施工人员技术交底。
2G 6G图一序号坡口形式焊件厚度适用范围4 焊接机具及焊材准备和领用根据施工需求合理布置焊接机具,按《焊材管理细则》进行焊材准备和领用5焊前模拟练习对应项目合格焊工按施工技术交底要求,进行各种位置的模拟焊接,结构件模拟练习1G、2G、3G、4G四种位置。
管道模拟练习5G、6G、2G三种位置。
(见图一)并经无损探伤合格后方可上岗工作。
mm1 I形<3容器和一6 焊接对口要求及检查1.对口人员按图纸设计要求加工坡口,如设计无要求时,可按管壁厚度采用机械法(合金管或壁厚大于16mm以上管道)加工为I、V、X、U、U+V、V+V型坡口。
(见表一)2.并对坡口及其附近10-15mm范围内用电动磨光机清理至无油漆、锈、水、垢、氧化铁等,直至露出金属光泽.3.对口管口偏斜度≤0.5-2mm,(详见图二和表二)错口值≤10%且≯1 mm。
4.施工钳工对对口尺寸记录并签字,焊工签字认可。
般钢结构2V形≤16管道,压力容器,六道,承重钢结构3U形≤60中、厚壁汽5.氩弧焊场所必须搭设防风雨寒工棚,且管内无穿堂风。
水管道4双V形16/60中、厚壁汽水管道5V+U形>60中、厚壁汽水管道6 X>16双面焊接接头基本形式及适用范围形 焊接的大型容器和结构 7 T 形≤20管座和构件表一管子外径(mm ) Δƒ (mm ) ≤60 0. 5 >60――1591Δƒ图二7 4Mpa以下一般中低压焊口对口执行对口要求第6条规定。
管道工程施工标准与焊接要求随着工业的快速发展和城市化进程的加速,管道工程在各领域中扮演着重要的角色。
为确保管道系统的安全运行和功能性能,施工标准和焊接要求变得尤为重要。
本文将探讨一些常见的管道工程施工标准和焊接要求,以加深对该领域的理解。
一、施工标准1.设计与选材:在进行管道工程施工之前,必须进行合理的设计和选材。
设计要考虑到管道的用途、负荷、流量等因素,以确保管道系统的稳定运行。
选材时需要根据设计要求选择适当的管材材料,包括金属管、塑料管等。
2.施工准备:在施工前需要进行一系列的准备工作,包括场地平整、勘测测量、施工方案制定等。
同时,还需要进行相应的安全措施,包括设置警示标志、建立施工现场临时堆放区等。
3.安装与布置:根据设计要求,进行管道的安装和布置。
施工人员需要按照相关的标准进行测量、切割、焊接等操作,确保管道的连接紧密、流畅。
4.测试与检验:在管道安装完成后,需要对其进行测试与检验,确保管道的质量和安全性。
常见的测试方式包括压力测试、水密性测试等。
5.防腐与维护:在管道工程完成后,还需要进行防腐和维护工作。
防腐处理可以保护管道免受腐蚀等外界因素的影响,维护工作则可以延长管道的使用寿命。
二、焊接要求1.焊接设备与工艺:在进行管道焊接时,需要选择适当的焊接设备和工艺。
常见的焊接设备包括电弧焊机、氩弧焊机等,而焊接工艺则包括手工电弧焊、气体保护焊等。
2.焊接操作规程:在进行管道焊接时,需要按照相关的操作规程进行操作。
这些规程包括焊缝准备、焊接参数控制、焊接技术要求等。
3.焊缝检查与评定:在焊接完成后,需要对焊缝进行检查和评定。
常见的检查方法包括目测、放射检测、超声波检测等,评定方法则采用焊缝评级标准。
4.焊接人员资质:在进行管道焊接时,需要由具备相关资质的焊接人员进行操作。
这些焊接人员需要接受专业培训,并通过相关的考试合格。
5.焊接质量控制:为确保焊接质量,需要采取一系列的控制措施。
例如,控制焊接参数、保证焊接环境清洁等。
长输管道焊接施工工艺标准1 目的为了规范公司长输管道下向焊接施工工艺,提高焊接效率,确保焊接质量,特制定本工艺标准。
2 适用范围本工艺标准适用于公司承接的大口径长输管道工程的下向焊接施工。
焊接工艺方法包括:①全纤维素焊条下向手工焊;②纤维素焊条下向手工根焊、热焊,再用低氢焊条下向手工焊填充、盖面;③纤维素焊条下向手工根焊,药芯焊丝自保护半自动下向焊填充、盖面。
本工艺标准与下列技术条件同时使用:a)产品图样;b)工程技术标准中有关的焊接技术条件。
3 引用标准GB50369 《油气长输管道工程施工及验收规范》SY/T4071 《管道下向焊接工艺规程》SY/T4103 《钢质管道焊接及验收》SY-0401 《输油输气管道线路施工及验收规范》4 施工准备:4.1 焊工资格焊工应具有相应的资格证书。
焊工能力应符合SY/T4103-1995《钢质管道焊接及验收》中的有关规定。
4.2 机具要求4.2.1 管道焊接设备的性能应满足焊接工艺要求,并具有良好的安全性能,适合于野外工作条件。
4.2.2 手弧焊应配备满足纤维素焊条对电源静特性要求的直流弧焊机,焊机应达到小电流打底焊时不断弧,熄弧时不粘条,焊接过程中电弧稳定等。
目前一般选用满足上述要求的逆变式手弧焊机。
4.2.3 药芯焊丝自保护半自动焊目前主要是选用国外进口设备,一般选用美国林肯(LINCOLN)公司生产的DC-400、DC-600电源及LN-23P送丝机和米勒(MILLER)公司生产的XMT304电源和SP32封闭式送丝机。
用于返修焊的焊机一般选用燃油弧焊机。
4.2.4 焊件组对采用内对口器或外对口器。
4.2.5 焊工所用的焊条保温筒、角向磨光机、砂轮片、钢丝轮、锉刀齐全。
4.3 材料要求4.3.1 管道焊接用焊条和焊丝,必须有产品合格证和同批号的质量证明书。
4.3.2 管道全位置下向焊接用国外焊条的选用,应符合SY/T4071-93 《管道下向焊接工艺规程》附录B的要求。
管道焊接、安装及支架加工、安装标准一、技术准备1.技术准备2.熟悉和审查图纸,参加设计交底,同时取得各项技术资料及有关图集,制定施工技术措施,组织技术交底。
3.了解管道的总体布置,对每个管道的规格、材质、连接形式及垫片的选用、防腐、保温等应做到心中有数。
4.施工依据《工业金属管道工程施工及验收规范》GB20235—97;《现场设备工业管道焊接工程施工及验收规范》GB50236-98;《工业设备及管道绝热工程施工及验收规范》GBJ126—89;《工业金属管道工程质量检验评定标准》GB50184-93;《工业设备及管道绝热工程施工质量检验评定标准》GB50185—93;《钢结构、管道涂装技术规程》YB/T9256—95;《建设工程防腐管材技术标准》Q/BGJ015-2002;施工图纸及有关技术文件上的技术、质量要求。
二、材料的要求1.对材料进行货到检验和验收检查,检验材质证明、生产厂家、规格型号,确认原材料与设计图纸、规程要求无误后方可进行切割、组装焊接.2.固定支架、导向支架、滑动支架的制作和安装应有技术交底,根据技术交底下料,组装焊接。
3.各工序应按施工技术标准进行质量控制,每道工序完成后应进行检查,合格后方可进行下道工序施工。
三、施工机具汽车起重机、载重汽车、直流电焊机、氩弧焊机、砂轮切割机、空气压缩机、坡口机、焊条烘干箱、手握砂轮机、电动试压泵、导链、千斤顶、气焊工具、扳手、水平尺、铅锤、直角尺、手锤。
四、质量要求(一)焊接质量要求1.在施工过程中,焊接质量检验应按下列次序进行:(1)对口质量检验;(2)表面质量检验;(3)无损探伤检验;(4)强度和严密性试验;2.对口质量应检验坡口质量、对口间隙、错边量、纵焊缝位置,检验标准应符合表3-2和3-3的规定。
3.焊缝表面质量检验应符合下列规定:(1)检查前,应将焊缝表面熔渣清理干净;(2)焊缝尺寸应符合设计要求,焊缝表面应完整,高度不应低于母材表面,并与母材圆滑过度;(3)不得有表面裂纹、气孔、夹渣及融合性飞溅物等缺陷;(4)咬边深度应小于0.5mm,且每道焊缝的咬边长度不得大于该焊缝总长度的10%;(5)表面加强面的高度不得大于该管道壁厚度的30%,且小于或等于5mm,焊缝加强面宽度应焊出坡口边缘2—3mm。
管道对口焊接工艺标准火电工程工艺标准版本№.1 专业焊接标准号权法Q/GHG-104-02.16-2002 工艺标准名称管道对口焊接工艺标准工艺质量目标以施工过程焊接缺陷预防为主,确保受监焊口无损探伤一次合格率达96%以上,实现安装管道无焊口渗漏。
施工工艺过程施工工艺标准图示说明序号工艺步骤1 施工班组填写《焊接施工任务委托单》施工部门技术人员按要求填写表格,提前三天委托焊接部门。
管道焊前模拟练习位置5G2 焊接部门主管下发《焊接施工任务单》焊接技术人员按要求填写表格,由部门主管签发焊接施工班组。
3 专业人员依《焊接施工作业指导书》向施工人员技术交底焊接技术人员在项目开工前依有关标准和焊接工艺评定编写《焊接施工作业指导书》、并在开工前与有关专业管理人员一起向施工人员技术交底。
2G 6G图一序号坡口形式焊件厚度适用范围4 焊接机具及焊材准备和领用根据施工需求合理布置焊接机具,按《焊材管理细则》进行焊材准备和领用5焊前模拟练习对应项目合格焊工按施工技术交底要求,进行各种位置的模拟焊接,结构件模拟练习1G、2G、3G、4G四种位置。
管道模拟练习5G、6G、2G三种位置。
(见图一)并经无损探伤合格后方可上岗工作。
mm1 I形<3容器和一6 焊接对口要求及检查1.对口人员按图纸设计要求加工坡口,如设计无要求时,可按管壁厚度采用机械法(合金管或壁厚大于16mm以上管道)加工为I、V、X、U、U+V、V+V型坡口。
(见表一)2.并对坡口及其附近10-15mm范围内用电动磨光机清理至无油漆、锈、水、垢、氧化铁等,直至露出金属光泽.3.对口管口偏斜度≤0.5-2mm,(详见图二和表二)错口值≤10%且≯1 mm。
4.施工钳工对对口尺寸记录并签字,焊工签字认可。
般钢结构2V形≤16管道,压力容器,六道,承重钢结构3U形≤60中、厚壁汽5.氩弧焊场所必须搭设防风雨寒工棚,且管内无穿堂风。
水管道4双V形16/60中、厚壁汽水管道5V+U形>60中、厚壁汽水管道6 X>16双面焊接接头基本形式及适用范围形 焊接的大型容器和结构 7 T 形≤20管座和构件表一管子外径(mm ) Δƒ (mm ) ≤60 0. 5 >60――1591Δƒ图二7 4Mpa以下一般中低压焊口对口执行对口要求第6条规定。
管道焊接、安装及支架加工、安装标准一、技术准备1.技术准备2.熟悉和审查图纸,参加设计交底,同时取得各项技术资料及有关图集,制定施工技术措施,组织技术交底。
3.了解管道的总体布置,对每个管道的规格、材质、连接形式及垫片的选用、防腐、保温等应做到心中有数。
4.施工依据《工业金属管道工程施工及验收规范》GB20235-97;《现场设备工业管道焊接工程施工及验收规范》GB50236-98;《工业设备及管道绝热工程施工及验收规范》GBJ126-89;《工业金属管道工程质量检验评定标准》GB50184-93;《工业设备及管道绝热工程施工质量检验评定标准》GB50185-93;《钢结构、管道涂装技术规程》YB/T9256-95;《建设工程防腐管材技术标准》Q/BGJ015-2002;施工图纸及有关技术文件上的技术、质量要求。
二、材料的要求1.对材料进行货到检验和验收检查,检验材质证明、生产厂家、规格型号,确认原材料与设计图纸、规程要求无误后方可进行切割、组装焊接。
2.固定支架、导向支架、滑动支架的制作和安装应有技术交底,根据技术交底下料,组装焊接。
3.各工序应按施工技术标准进行质量控制,每道工序完成后应进行检查,合格后方可进行下道工序施工。
三、施工机具汽车起重机、载重汽车、直流电焊机、氩弧焊机、砂轮切割机、空气压缩机、坡口机、焊条烘干箱、手握砂轮机、电动试压泵、导链、千斤顶、气焊工具、扳手、水平尺、铅锤、直角尺、手锤。
四、质量要求(一)焊接质量要求1.在施工过程中,焊接质量检验应按下列次序进行:(1)对口质量检验;(2)表面质量检验;(3)无损探伤检验;(4)强度和严密性试验;2.对口质量应检验坡口质量、对口间隙、错边量、纵焊缝位置,检验标准应符合表3-2和3-3的规定。
3.焊缝表面质量检验应符合下列规定:(1)检查前,应将焊缝表面熔渣清理干净;(2)焊缝尺寸应符合设计要求,焊缝表面应完整,高度不应低于母材表面,并与母材圆滑过度;(3)不得有表面裂纹、气孔、夹渣及融合性飞溅物等缺陷;(4)咬边深度应小于0.5mm,且每道焊缝的咬边长度不得大于该焊缝总长度的10%;(5)表面加强面的高度不得大于该管道壁厚度的30%,且小于或等于5mm,焊缝加强面宽度应焊出坡口边缘2-3mm。
管道焊接技术要求与标准
管道焊接是工业生产中常见的一种连接方式,其质量直接关系到工程的安全和
稳定。
为了确保管道焊接的质量,必须严格遵守相关的技术要求与标准。
本文将就管道焊接技术要求与标准进行详细介绍。
首先,管道焊接的技术要求包括焊接材料、焊接设备、焊接工艺等方面。
在选
择焊接材料时,应根据管道材质和使用环境来选择合适的焊接材料,确保其与管道材料具有良好的相容性和焊接性能。
焊接设备的选择应符合管道的规格和要求,保证设备的稳定性和精度。
在焊接工艺方面,应严格按照相关的工艺规程进行操作,包括预热、焊接参数的控制、焊接速度的掌握等,确保焊接质量达到标准要求。
其次,管道焊接的标准主要包括焊接质量标准、检测标准、验收标准等方面。
焊接质量标准是衡量焊接质量优劣的重要依据,包括焊缝的牢固性、密度、外观等方面的要求。
检测标准是对焊接质量进行检测和评定的依据,包括焊缝的无损检测、金相组织分析、力学性能测试等方面。
验收标准是对焊接质量进行最终验收的依据,包括焊接工艺评定、焊接质量合格证书的颁发等方面。
在管道焊接过程中,还需严格遵守相关的安全规定和操作规程,确保焊接过程
安全可靠。
同时,要加强对焊接工艺的管理和控制,建立健全的质量管理体系,提高焊接质量和效率。
总之,管道焊接技术要求与标准是保证管道焊接质量的重要依据,只有严格遵
守相关要求和标准,才能确保管道焊接质量达到规定的要求,从而保障工程的安全和稳定运行。
希望大家能够重视管道焊接技术要求与标准,不断提高焊接技术水平,为工程建设质量和安全保驾护航。
管道的组对和焊接施工工艺标准
1.适用范围
本章适用于工作压力不大于1.0MPa 的民用及一般工业建筑的室内给水(包括热水)、消防、室内外供热管网手工电弧焊、手工钨极氩弧焊和氧—乙炔焊的焊接施工工艺标准。
2.施工准备
2.1 原材料、半成品的检验及验收:
2.1.1焊接工程所采用的材料必须具有制造厂的质量证明书,其质量不得低于国家现行标准的规定;
2.1.2焊条的化学成分、机械强度应与母材相同且匹配,兼顾工作条件和工艺性;
2.1.3焊条质量应符合现行国家标准《碳钢焊条》GB5117、《低合金焊条》GB5118的规定,同时焊条应干燥。
2.1.4焊丝应符合现行国家标准《焊接用钢丝》GB1300的规定;
2.1.5施工现场的焊接材料贮存场所及烘干、去污设施,应符合国家现行标准《焊条质量管理规程》JB3223的规定,并应建立保管、烘干、清洗、发放制度。
2.1.6氩弧焊所采用的氩气应符合现行国家标准《氩气》GB4842的规定,且纯度不应低于99.96% 。
2.1.7氧乙炔焊所采用的氧气纯度不应低于98.5%,乙炔气的纯度和气瓶中的剩余压力应符合现行国家标准《溶解乙炔》GB6819的规定。
2.2 主要工机具:
2.2.1焊机,砂轮锯,切割机,焊条烘干箱,焊条保温桶,焊钳,氩弧焊把,面罩和滤光玻璃,焊缝检验尺,管道坡口机,管道对口器等。
2.3 作业条件:
2.3.1 焊接前应对被焊材料进行焊接工艺评定;
2.3.2焊工必须持有相应项目的资格证书,现场施焊的钢材种类,焊接方法,焊接位置,有效期等均应与焊工本人的焊工证书相符。
2.3.3需焊的管节应先修口、清根,管端端面的坡口角度、钝边、间隙等应符合要求;
钢管对口检查合格后,方可进行点焊;
2.3.4在寒冷或恶劣环境下焊接应符合下列规定:
2.3.4.1清除管道上的冰、雪、霜等;
2.3.4.2当工作环境的风力大于5级、雪于或相对湿度大于90%时,应采取保护措施施焊;
2.3.4.3焊接时,应使焊缝可自由伸缩,并应使焊口缓慢降温;
2.3.4.4冬季焊接时,当焊件温度低于0℃时,所有钢材应在施焊处100 mm范围内预热到15℃以上。
2.4 作业人员
技术员、施工员、材料员、质检员、管工、电焊工、气焊工、电工、起重工。
3.操作工艺
3.1工艺流程
3.2焊接准备:
3.2.1施焊前,应检查坡口,并检查坡口,清除坡口表面和两侧至少10mm范围内的铁锈,水分,油污及灰尘等。
3.3 焊口处理:
3.3.1管道的切割及坡口加工宜采用机械方法。
对于采用氧乙炔焰切割及加工坡口必须除去坡口表面的氧化皮、熔渣及影响接头质量的表面层,并应将凹凸不平处打磨平整。
3.4 管道的组对:
3.4.1 管道组对前,应逐根清理管内杂物,并且对管端校圆,校圆后管口圆度应小于3%D (外径)。
3.4.2 管道组对前管道端不得有超过0.5mm深的机械伤痕.距管端20mm范围内的管内,外壁及坡口表面,应进行清理,达到无泥,无水,无油,呈金属光泽,管道端部应无裂纹,无重皮。
3.4.3管道组对不得强力对口,管道组对中心偏斜量不得大于1mm。
弯管,管头的组装应在直管段就位施工。
3.4.4直管段上两环向焊缝间距必须大于1.5倍的管道外径,环向焊缝距弯头起点的距离不得小于1.3倍管道外径.
3.4.5 管道组对合格后,方可进行定位焊,定位焊应与正式焊接要求相同,焊缝厚度为2-4mm,且不超过管壁厚度的2/3,定位焊不应小于三处,沿圆周均匀分布。
定位焊长度应为10-15mm。
3.5 接口的焊接
3.5.1每条焊缝应连续焊完,各焊道焊接间隔时间不宜过长。
3.5.2一般管道的焊接为对口型式及组对,如设计无要求,电焊应符合表1的规定,
气焊应符合表2 的规定。
表1 手工电弧焊对口型式及组对要求
注:δ≤4毫米管子对接如能保证焊透可不开坡口。
表2 氧-乙炔焊对口型式及相对要求
3.5.3 焊接前要将两管轴线对中,先将网管端部点焊牢,管径在100mm以下可点焊三
个点,管径在150mm以上以点焊四个点为宜。
3.5.4管材壁厚在5mm以上者应对管端焊口部位铲坡口,如用气焊加工管道坡回,必须除去坡口表面的氧化皮,并将影响焊接质量的凹凸不平处打磨平整。
3.5.5严禁在坡口之外的母材表面引弧或试验电流,并应防止电弧擦伤母材。
3.5.6施焊过程中应保持起弧处和收弧处的质量,收弧时应将弧坑填满,多层焊的接头应错开。
3.5.7因故中断焊接后,在施焊前应检查焊层表面,确认无裂纹后,方可按原工艺要求继续施焊。
3.5.8管材与法兰盘焊接,应先将管材插入法兰盘内,先点焊2~3 点再用角尺找正找平后
方向可焊接,法兰盘应两面焊接,其
内侧焊缝不得凸出法兰盘密封面。
3.5.9焊接后,焊缝表面应清理干净,
清除药皮,溶渣和飞溅物,并在距焊
缝50mm处打上永久性焊工代号标
记。
3.6 焊口质量的检查
3.6.1管道焊接完毕后,应作外观检查,并及时作好焊接施工记录。
3.6.2管道焊缝应按规定进行无损检测。
4.质量标准
4.1主控项目
4.1.1管道的对口焊缝处及弯曲部位严禁焊接支管,接口焊缝距起弯点支、吊架边缘必
须大于50mm。
检验方法:观察和尺量检查。
4.1.2管道对口时,纵向焊缝应错开,当管径小于600mm时,错开的间距不得小于100mm,
当管径大于或等于600mm时,错开的间距不得小于300mm。
检验方法:观察和尺量检查。
4. 2一般项目
4.2.1焊接的外观质量应符合下表的规定:
注:t为壁厚(mm)
检验方法:观察或用焊接检测尺检查。
4.3质量记录:
4.3.1 焊接材料的出厂合格证、生产厂家生产许可证和法定检测单位的检测报告。
4.3.2 焊接工艺评定报告。
4.3.3 焊接作业指导书。
4.3.4 合格焊工登记表
4.3.5 焊接记录
4.3.6焊缝射线探伤报告
4.3.7焊缝超声波探伤报告
4.3.8 渗透探伤报告
4.3.9焊接返修记录
5.需注意的质量问题
5.1焊缝出现咬边、未焊透缺陷。
焊接时选择合格的焊机,提高焊工的操作技术水平,在焊接过程中严格按焊接工艺规程进行焊接。
5.2管道错口,焊缝不匀。
焊接管道时应将管口轴线对准,厚壁管道未认真开出坡口。
5.3 焊缝出现气孔、夹渣缺陷。
焊前仔细清除坡口处的油、污、锈、垢,同时在焊接过程中严格执行焊接工艺规程,对焊条要进行合理的烘干。
6.成品保护
6.1 焊缝应在焊完后立即去除渣皮、飞溅物,清理干净焊缝表面。
6.2 焊缝焊完后应在焊缝附近做焊工标记及其他规定的标记。
7.安全健康与环境管理
7.1危害辨识和危险评价
施工过程危害辨识危险评价及控制措施
注:上表仅供参考,现场应根据实际情况进行危害辨识、风险评价并采取相应的控制措施。
7.2环境因素辨识和评价
环境因素辨识、评价及控制措施
注:上表仅供参考,现场应根据实际情况进行环境因素辨识、评价并采取相应的控制措施。