高等代数第二讲 带余除法与整除性
- 格式:ppt
- 大小:1.21 MB
- 文档页数:18
第一章整数的可除性整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的q,使得成立,则称a能被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数q使得a = bq成立,则称a不被b整除,记为显然每个非零整数a称这四个数为a的平凡约数,a下面的结论成立:∣a⇔±b∣±a;(ⅱ) c ∣b,b∣a⇒c∣a;(ⅲ) b∣a i,i = 1, 2, …, n⇒b∣a1q1+a2q2+…+a n q n,此处q i(i = 1, 2, , n)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒|b|≤|a|;b∣a且|a|<|b|⇒a = 0。
) 设a 与b 是两个整数,b > 0,则存在q 和r ,使得a = bq + r ,0 ≤ r <b (2) 成立且q 。
中的q 叫做a 被b 除所得的不完全商,r 叫做a 被例1 若1n >,且111n n -+ 求n222x y z +=的整数解能否全是奇数?为什300”位于哪个字母的下面A B C D E F G1 2 3 45 6 78 9 10 1112 13 1415 16 17 ……. 解:观察可以发现两行7个数组成一组故300=7×42+6与6同在字母D 的下面例4 a 除以b 商为c ,余数为r ,则am 除以bm 商为 , 余数为 。
m N +∈某整数除以3余2,除以4余1,该整数除以12,余 ?三、整除的特征从正整数121n n N a a a a a a -=的末位a 起向左每k 个数码分为一节,最后剩下若有不足k 个数码的也为一节,记为()1()(),,,k k t k A A A并记()1()()()k k k t k S N A A A =+++----数节和1()1()2()()()(1)t kk k k t k S N A A A A -'=-++-----数节代数和 1、设d 是10k 的约数,则()k d N d A ⇔推论:能被2或5整除的数的特征是:这个数的末一位数能被2或5整除。
带余除法教学带余除法,也称长除法,是数学中经常使用的计算方法。
它可以将两个整数相除,并得出除法的商和余数。
在学习代数、高等数学、离散数学等领域时,都需要掌握带余除法。
本文将详细介绍带余除法的教学方法和技巧,帮助读者更好地理解和掌握这一重要的计算方法。
1. 带余除法的定义在整数除法中,给定被除数和除数,商和余数则可以表示为:被除数 = 除数 ×商 + 余数其中,余数是被除数除以除数所得到的余数,商是整除得到的商。
当余数为0时,被除数可以被除数整除。
2. 带余除法的原理对于任意两个整数a和b(其中b≠0),它们的带余除法可以表示为:a = bq + r其中,q是a÷b的商,r是a÷b的余数。
我们可以通过整数除法的性质来证明这个原理。
首先,b可以表示为:b = b×1 + 0根据带余除法的定义,我们可以得到:a = b×q + r其中,r是与a除b所得到的余数,b×q是被a除以b所得到的商。
通过余数的定义,我们可以得到:0 ≤ r < |b|也就是说,r的值应该在0和|b|-1之间。
3. 带余除法的步骤带余除法通常分为以下步骤:(1)在竖式中写下被除数和除数。
(2)计算第一位商,将它写在竖式上。
(3)将除数与第一位商相乘,得出一个中间结果。
(4)从被除数中减去中间结果,得出余数。
(5)将下一位被除数与余数写在一起,得出新的被除数。
(6)将新的被除数除以除数,得出第二位商,将其写在上面。
(7)重复步骤3到6,直到被除数的位数都被处理完毕。
(8)最后,商就是所有商的积,余数就是最后一次除法的余数。
4. 带余除法的注意事项在使用带余除法时,需要注意以下几个方面:(1)当余数为0时,被除数可以被除数整除。
(2)当除数为1时,商和被除数相等。
(3)当除数等于被除数时,商为1,余数为0。
(4)当被除数为0时,商和余数都为0。
(5)当除数和被除数的正负号相同时,商为正数;否则,商为负数。
第2讲 整除、带余除法1、定义:对于整数a 和不为零的整数b ,总存在整数,m n 使得(0)a bm n n b =+≤<,其中m 称为商,n 称为余数,特别地,当0n =时,即a bm =,便称a 被b 整除(也称a 是b 的倍数或b 是a 的约数),记为|.b a2、性质(1)若|,|a b b c ,则|a c ;(2)若|b a ,则|b ka ,其中k 是任意整数;(3)若|,|a b a c ,则|();a b c ±(4)若|a bc 且(),1a c =,则|a b .特别地,若质数|,p bc 则必有|p b 或|p c ;(5)若|,|b a c a 且(),1b c =,则|;bc a(6)若|,|,b a c a 则[],|b c a .其中(),b c 表示,b c 两数的最大公约数,[],b c 表示,b c 两数的最小公倍数,若(),b c =1,则称,b c 两个数互质.3.具有整除性的数的特征.(1)被2整除的数:个位数字是偶数;(2)被3整除的数:数字和被3整除;(3)被4(25)整除的数:末两位数字组成的两位数能被4(或25)整除;(4)被5整除的数:个位数字是0或5;(5)被7(或11或13)整除的数:奇数位的数字和与偶数位的数字和的差(偶数位的数字和与奇数位的数字和的差)能被7(或11或13)整除;(6)被8(或125)整除的数:末三位数字组成的三位数能被8(或125)整除;(7)被9整除的数:数字和被9整除.典例分析例题 1 如果五位数1234a 是3的倍数,那么a 是_______________.能力冲浪数.n n+除所得的商数q及余数r都是正值,则r的最大值与最例题 2 n为正整数,302被()1小值的和是()A. 148B.247C.93D.1222-1. 整数A除以3余2,除以4余1,那么A除以12的余数是_________________.n+被4除余数是___________________.2-2. 如果2n被4除余数为1,则()252-3.(第14届“五羊杯”)五羊足球学校有3位教练带着学员一起跑步,如果学员每2人一行,那么最后一行只有1人;如果学员每3人一行,那么最后一行只有2人;如果教练和学员合起来每5人一行,那么刚好可以跑成一个方阵,已知学员人数约为250左右,那么跑步的人数为( )A.230B. 250C. 260D.280例题 3 (第十九届江苏省初中数学竞赛)在0,1,2,3,4,…,100这101个整数中,能被2或3整除的数一共有( )A. 85个B. 68C. 34个D. 17个3-1.(第14届“希望杯”)在1,2,3,…,100中,不能被2整除也不能被5整除的所有整数的乘积的个位数字是( )A. 7B. 1C. 3D.例题 4 (第十五届江苏省初中数学竞赛)今天是星期天,从今天起第20001111天是星期_____.4-1. (第14届“五羊杯”) 2002年10月1日是星期二,2008年10月1日是星期__________ 4-2. (第十六届江苏省初中数学竞赛)给出一列数1237,7,7, ,20017,其中末位数是3的有_________个.4-3. (第十八届江苏省初中数学竞赛)设2222=1+2+3++2003,m 今天是星期一,若算为第一天,则第m 天是星期几?。
第4章 多项式4.1整数的一些整除性质教学内容:4.1整数的一些整除性质教学目标:掌握整除的性质及带余除法,掌握最大公因数与互素的概念及互素的一些简单性质授课时数:2学时教学重点:整除的性质、带余除法、最大公因数存在定理教学难点:带余除法定理及最大公因数存在定理的证明(定理4.1.1与定理4.1.2的证明)教学过程:一、整数的整除1、整除的定义定义1 设,a b 是两个整数。
如果存在一个整数q 使得b aq =,则称a 整除b ,或称b 被a 整除,记作|a b ,也说a 是b 的因数,b 是a 的倍数。
如果对任意整数q ,都有b aq ≠,则称 a 不整除,记作|a b 。
注:用乘积的等式来定义整除,给后面的讨论带来方便,这是研究方法上的一个进步。
例1 3|6,3|6,5|11,0|0,0|(0),|0.b b a -≠2、整除与除法的区别除法中不能用0作除数;由于整除是由乘积的等式来定义的,有0|0。
二.整除的基本性质根据定义,容易推出整除的基本性质:1)若|,|,a b b c ,则|a c 。
2)若|,|a b a c ,则.|()a b c +。
3)若|,a b c Z ∈,则|a bc 。
4)若|,1,2,,i a b i n = ,,对任意12,,,n c c c Z ∈ ,则有1122|()n n a b c b c b c +++ 。
* 4)是2、3)的推广5)对于任意整数a 有,|0,1|,|a a a a ±±。
6)若|a b 且|b a ,则|b a ±。
6)的证明:按定义,存在整数,c d ,使得,b ac =且a bd =。
将b ac =代入a bd =,有()()a bd ac d a cd ===。
若0a =,则0b ac a ===;若0a ≠,则由消去律得1ad =,因此1c d ==±,于是|b a ±。
例2 若3|n ,且7|n ,则21|n 。
带余除法与整除性判断带余除法是一种数学运算方法,用于计算两个数相除的商和余数。
它可以帮助我们判断一个数能否整除另一个数。
本文将介绍带余除法的概念和使用方法,并详细解释如何利用带余除法进行整除性判断。
一、带余除法的概念带余除法又称为长除法,是一种将除数逐步从被除数中减去并计数的方法,直到无法再减去时得到的商为止。
在进行带余除法时,除数通常为整数,而被除数可以是任意实数。
二、带余除法的使用方法1. 将被除数写在除号上方,除数写在除号下方。
2. 从被除数中取出与除数位数相同的数字作为第一个除数位数。
3. 判断第一个除数位数能否整除除数,如果可以,则将商写在上方对应位置,否则向后取一位进行下一步计算。
4. 将上一步中得到的商乘以除数,并在下面写出结果。
5. 将上一步中得到的结果减去被除数,并将差写在下方。
6. 重复以上步骤,直到无法再减去被除数为止。
三、整除性判断利用带余除法,我们可以判断一个数能否整除另一个数。
如果在整个带余除法的过程中,被除数始终能够被整除,则被除数是除数的倍数,即可以整除。
如果在带余除法的过程中出现了余数,则被除数不能整除除数。
例如,我们要判断36能否被9整除:1. 将36写在除号上方,9写在除号下方。
2. 取出与除数位数相同的数字3,作为第一个除数位数。
3. 9可以整除3,商为3,将3写在上方对应位置。
4. 3乘以9得27,将27写在下方。
5. 36减去27得到9,将9写在下方。
6. 9可以整除9,商为1。
7. 1乘以9得到9,将9写在下方。
8. 9减去9得到0,此时已无法再减去被除数,整个过程结束。
因此,36能够被9整除。
通过带余除法,我们不仅可以判断整除性,还可以得到具体的商和余数。
这在数学计算和实际生活中都具有重要的应用价值。
综上所述,带余除法是一种实用的数学运算方法,可以帮助我们判断一个数能否整除另一个数。
通过正确运用带余除法,我们能够快速准确地进行整除性判断,提高解题效率。
第二节常用方法一、整除特性1)基础知识1.在1000以内,除以3余2,除以7余3,除以11余4的数有多少个?A.5B.6C.7D.42.有一个三位数能被7整除,这个数除以2余1,除以3余2,除以5余4,除以6余5。
这个数最小是多少?A.105B.119C.137D.3593. 有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和。
如30就满足上述要求。
因为30=9+10+11,30=6+7+8+9,30=4+5+6+7+8。
在700至1 000之间满足要求的数有?A.5个B.7个C.8个D.10个4.数学竞赛团体奖品是10000本数学课外读物。
奖品发给前五名代表队所在的学校。
名次在前的代表队获奖的本数多,且每一名次的奖品本数都是100的整数倍。
如果第一名所得的本数是第二名与第三名所得的本数之和,第二名所得的本数是第四名与第五名所得本数之和,那么,第三名最多可以获得多少本?A.1600B.1800C.1700D.21002)巧妙应用1. 如果单独完成某项工作,那么甲需24天,乙需36天,丙需48天。
现在甲先做,乙后做,最后由丙完成。
甲、乙工作的天数比为1:2,乙、丙工作的天数为3:5。
则完成这项工作共用了多少天?A.30B.38C.32D.402. 在自然数1至50中,将所有不能被3除尽的数相加,所得的和是?A.865B.866C.867D.8683.学校原有少先队员240人,其中女队员占7/12。
今年开学后,从外校转来了几名女队员,这样,女队员人数便占总人数的3/5,今年转进了多少女队员?A.5B.10C.15D.204. 有一段长不超过3500米的马路需要整修,有甲、乙、丙三个施工队分别对人行道、非机动车道和机动车道进行施工。
它们于某天零时同时开始动工,每天24小时连续施工。
若干天后的零时,甲完成任务;几天后的18时,乙完成任务;自乙队完成的当天零时起,再过几天后的8时,丙完成任务。