西安科技大学概率论习题答案『扫描版』
- 格式:pdf
- 大小:862.09 KB
- 文档页数:20
1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。
习题一1.设C B A ,,为随机试验的三个随机事件,试将下列事件用C B A ,,表示出来.(1)仅仅A 发生;(2)所有三个事件都发生;(3)A 与B 均发生,C 不发生;(4)至少有一个事件发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)没有一个事件发生;(9)不多于两个事件发生.解:(1)C B A ;(2)ABC ;(3)C AB ;(4)C B A ;(5)AC BC AB ;(6)C B A C B A C B A ;(7)C AB C B A BC A ;(8)C B A ;(9)ABC .2.写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子的点数之和;(2)将一枚硬币抛三次,观察出现正反面的各种可能结果;(3)对一目标进行射击,且到击中5次为止,记录射击的次数;(4)将一单位长的线段分为三段,观察各段的长度;(5)从分别标有号码1,2, ,10的10个球中任意取两球,记录球的号码.解:(1){3,4,5, ,18};(2){}TTT THT TTH THH HTT HTH HHT HHH ,,,,,,,;(3) {5,6,7, };(4) }{1,0,0,0:),,(=++>>>z y x z y x z y x ;(5)}{n m n m n m ≠≤≤≤≤,101,101:),(.3.将12个球随机地放入20个盒子,试求每个盒子中的球不多于1个的概率.解:设)(A P 表式所求的概率,则:12122020!12.)(C A P =≈0.01473. 4.将10本书任意地放在书架上,其中有一套4卷成套的书,求下列事件的概率:(1)成套的书放在一起;(2)成套的书按卷次顺序排好放在一起.解: (1)设)(A P 表示所求的概率,则:)(A P =301!10!4!7=⋅. (2)设)(B P 表示所求的概率,则:)(B P =7201!10!7=. 5.一辆公共汽车出发前载有5名乘客,每一位乘客独立的在七个站中的任一个站离开,试求下列事件的概率:(1)第七站恰好有两位乘客离去;(2)没有两位及两位以上乘客在同一站离去. 解:5名乘客在七个站中的任意一个站离开的结果总数57=n .(1)第七站恰好有两位乘客离去,其方法数3256⋅=C m ,故设)(A P 为所求概率,则:1285.076)(5325=⋅=C A P . (2)设=B {没有两位及两位以上乘客在同一站离去},则:1499.07!5)(557=⋅=C B P . 6.有一个随机数发生器,每一次等可能的产生9,,2,1,0 十个数字,由这些数字随机编成的n 位数码(各数字允许重复),从全部n 位数码中任意选取一个,其最大数字不超过k (9≤k )的概率.解:设)(A P 表式所求的概率,则由全部n 位数码的总数为n10,得:n nk A P 10)1()(+=. 7.一元件盒中有50个元件,期中25件一等品,15件二等品,10件次品,从中任取10件,求:(1)恰有两件一等品,两件二等品的概率;(2)恰有两件一等品的概率;(3)没有次品的概率.解:(1)设)(A P 为所求概率,则:41050610215225104397.6)(-⨯=⋅⋅=C C C C A P . (2)设)(B P 为所求概率,则:03158.0)(1050825225=⋅=C C C B P . (3)设)(C P 为所求概率,则:0825.0)(10501040==C C C P . 8.有10个人分别佩戴者标号从1号到10号的纪念章,任意选出3人,记下其纪念章的号码,试求:(1)最小的号码为5的概率;(2)最大的号码为5的概率.解:从10人中任意选3人纪念章号码的总数为310C n =,(1)最小号码为5,则余下2个在6—10中选,即25C m =,设)(A P 为所求概率,则: 083.0)(31025==C C A P . (2)同理设)(B P 为所求概率,则:05.0)(31024==C C A P . 9.设事件B A ,及B A 的概率分别为q p ,和r ,试求:)(),(),(),(B A P B A P B A P AB P . 解:r q p B A P B P A P AB P -+=-+=)()()()( ;p r A P A B P A B P B A P -=-=-=)()()()( (单调性); q r B P B A P B A P B A P -=-=-=)()()()( (单调性);r B A P B A P B A P -=-==1)(1)()( .10.一批产品共100件,其中5件不合格.若抽检的5件产品中有产品不合格,则认为整批产品不合格,试问该批产品被拒绝接收的概率是多少?解:(法一)设i A ={抽检的5件产品中第i 件不合格},i =1,2,3,4,5则所求概率为:∑===5151)()(i i i i A P A P )()()()()(54321A P A P A P A P A P ++++= 2304.0510055510019545510029535510039525510049515≈++++=C C C C C C C C C C C C C C . (法二) 2304.01)(1)(5100595051≈-=-==C C A P A P i i . 11.设A 和B 是试验E 的两个事件,且21)(,31)(==B P A P ,在下述各种情况下计算概率)(A B P :(1)B A ⊂;(2)A 和B 互不相容;(3)81)(=AB P . 解:(1)613121)()()()(=-=-=-=A P B P A B P A B P .(2)21)()(==B P A B P . (3)838121)()()()(=-=-=-=AB P B P A B P A B P . 12.现有两种报警系统A 与B ,每种系统单独使用时,系统A 有效的概率为0.92,系统有效的概率为0.93 .装置在一起后,至少有一个系统有效的概率则为0.988,试求装置后:(1)两个系统均有效的概率;(2)两个系统中仅有一个有效的概率.解:(1)所求概率为)(AB P ,得:)()()()(B A P B P A P AB P -+=862.0988.093.092.0=-+=;(2)所求概率为)(B A B A P ,得:)(B A B A P )()(B A P B A P +=)()()()(AB P B P AB P A P -+-=126.0862.0293.092.0=⨯-+=.13.10把钥匙上有3把能打开门,今任取2把,求能打开门的概率.解:(法一)从10把钥匙中任取2把的试验结果总数45210==C n ,能打开门意味着取到的二两把钥匙至少有一把能打开门,其取法数24171323=+=C C C m ,故设)(A P 为所求概率,则:158)(210231713=+=C C C C A P .(法二)记A 为“能打开门”,则=A “两把钥匙皆开不了门”,于是158452111)(1)(21027=-=-=-=C C A P A P . 14.一个盒子中有24个灯泡,其中有4个次品,若甲从盒中随机取走10个,乙取走余下的14个,求4个次品灯泡被一人全部取走的概率.解:设=A {次品灯泡全部被甲取走},=B {次品灯泡全部被乙取走},则B A ,互不相容,所求概率为:)()()(B P A P B A P += 1140.0424414424410=+=C C C C . 15.设将5个球随意地放入3个盒子中,求每个盒子内至少有一个球的概率.解:5个球随意地放入3个盒子中事件总数53=n ,3个盒子中一个或两个盒子中有球数为332533153p C p C m ++=,设所求概率为)(A P ,则:8150331)(533253315=++-=p C p C A P . 16.已知1A 和2A 同时发生,则A 必发生,证明:1)()()(21-+≥A P A P A P . 证明:由已知,A A A ⊂21,再由单调性,)()(21A P A A P ≤,则)()()()()(212121A A P A P A P A A P A P -+=≥,1)(021≤≤A A P .1)()()()()()()(21212121-+≥-+=≥∴A P A P A A P A P A P A A P A P .17.掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正面的概率是多少?解:设=A {第五次出现正面},=B {第六次停止},则:52)21()21()()()|(256146===C C B P AB P B A P . 18.证明:0)()|(>>A P B A P ,则)()|(B P A B P >. 证明:)()|()()()()|(B P B A P AB P A P AB P A B P =>=,即证. 19.设事件B A ,互不相容,且0)(>B P ,试证:)(1)()|(B P A P B A P -=. 证明:)(1)()()()|(B P A P B P B A P B A P -=互不相容. 20.将两颗均匀骰子同时掷一次,已知两个骰子的点数之和是奇数,求两个骰子的点数之和小于8的概率.解:此事件的样本空间由36个样本点组成,设=A {两个骰子的点数之和小于8},=B {两个骰子的点数之和是奇数},则3618)(=B P ,3612)(=AB P ,于是: 322131)()()|(===B P AB P B A P . 21.设10件产品中有4件是次品,从中任取两件,试求在所取得的产品中发现有一件是次品后,另一件也是次品的概率.解:设=A {所取得两件中至少有一件是次品},=B {所取得两件产品都是次品},B AB A B =∴⊂, .而321)(1)(21026=-=-=C C A P A P ,152)(21024==C C B P ,所求概率为:5132152)()()()()|(====A P B P A P AB P A B P . 22. 10件产品有6件是正品,4件次品,对它们逐一进行检查,问下列事件的概率是多少?(1)最先两次抽到的都是正品;(2)第一、三次抽到正品,第二、四次抽到次品;(3)在第五次检查时发现最后一个次品.解:设i A ={第i 次抽到的是正品},i =1,2,3,4,5,6.则 (1)3195106)|()()(12121=⋅=⋅=A A P A P A A P ; (2) )(4321A A A A P )|()|()|()(3214213121A A A A P A A A P A A P A P =141738594106=⋅⋅⋅=; (3) 设=B {第五次检查时发现最后一个次品},则2104)(151********=*=C C C C C B P . 23.某人忘记电话号码的最后一个数字,他仅记得最末一位数字是偶数.现在他试着拨最后一个号码,求他拨号不超过三次而接通电话的概率.解:设=A {接通电话},=i B {拨号i 次},i =1,2,3.i B 构成样本空间的一个划分,由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=532110321522121=⨯+⨯+⨯=. 24.某型号的显像管主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总产品和的25%、50%、25%,甲、乙、丙三个厂的产品在规定时间内能正常工作的概率分别是0.1、0.2、0.4,求一个随机选取的显像管能在规定时间内正常工作的概率.解:设A ={能在规定时间内正常工作},i B ={选取第i 个厂家的产品},i =1,2,3.则由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=225.04.025.02.05.01.025.0=⨯+⨯+⨯=.25.两批同类产品各自有12件和10件,在每一批产品中有一件次品,无意中将第一批的一件产品混入第二批,现从第二批中取出一件,求第二批中取出次品的概率.解:设=B {第二批中取出次品},=A {第一批的次品混入第二批},A A ,构成样本空间的一个有限划分,由全概率公式:0985.01111211112121)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P . 26.在一个盒子中装有15个乒乓球,其中有9个新球,在第一次比赛时任意取出三个球,比赛后仍放回原盒中,第二次比赛时,同样任意的取出三个球,求第二次取出三个新球的概率.解:设B={第二次取出3个新球}.可以看出,直接确定B 的概率)(B P 是困难的,原因是,第一次比赛之后,12个乒乓球中的新、旧球的分布情况不清楚,而一旦新旧球的分布情况明确了,那么相应的概率也容易求得.为此,设i A ={第一次取到的3个球中有i 个新球}, i =0,1,2,3.容易判断3210,,,A A A A 构成一个划分.由于3,2,1,0,)(315369==-i C C C A P i i i ,又3,2,1,0,)|(31539==-i C C A B P i i . 由全概率公式,得:)|()()(30i i i A B P A P B P ∑==∑=--=3023*******)(i i i i C C C C 0893.02070251680756075601680≈+++=. 27.仓库中存有从甲厂购进的产品30箱,从乙厂购进的同类产品25箱,甲厂的每箱装12个,废品率为0.04,乙厂的每箱装10个,废品率0.05,求:(1)任取一箱,从此箱中任取一个为废品的概率;(2)将所有产品开箱后混放,任取一个为废品的概率.解:(1)设=B {取出的是废品},=A {从甲厂取出},A A ,构成一个划分,则)|()()|()()(A B P A P A B P A P B P +=0441.005.010251230102504.0102512301230=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2) 0441.010********.0102504.01230=⨯+⨯⨯⨯+⨯⨯ 28.已知一批产品中96%是合格品,用某种检验方法辨认出合格品为合格品的概率是0.98,而误认废品是合格品的概率是0.05,求检查合格的一件产品确系合格的概率.解: 设A ={检查合格产品},B ={确系合格}.由已知,05.0)|(,98.0)|(,96.0)(===B A P B A P B P , 由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 9979.005.004.098.096.098.096.0≈⨯+⨯⨯=. 29.已知5%的男人和0.25%的女人是色盲者,现随机挑选一人,此人恰为色盲者,问此人 是男人的概率为多少(假设男人女人各占总人数的一半).解:设=A {色盲者},=B {男人}, B B ,构成样本空间的一个划分,且05.0)|(=B A P , 0025.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P = )|()()|()()|()(B A P B P B A P B P B A P B P +=9524.00025.02105.02105.021=⨯+⨯⨯=. 30.设某种病菌在人口中的带菌率为0.03,由于检验手段不完善,带菌者呈阳性反应的概 率为0.99,而不带菌者呈阳性反应的概率为0.05,若某人检查结果是呈阳性反应,他是带菌者的概率是多少?解:设=A {结果呈阳性},=B {是带菌者},则B B ,构成样本空间的一个划分,且 99.0)|(=B A P ,05.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 3798.005.097.099.003.099.003.0=⨯+⨯⨯=. 31.证明:如果)|()|(B A P B A P =,则事件A 和B 相互独立. 证明:由已知和条件概率公式,有)()()()(B P B A P B P AB P =,即)()()()(AB P B P B A P B P =, 即)())(1()()(AB P B P AB A P B P -=-,又A AB ⊂,上式得:)()](1[)]()()[(AB P B P AB P A P B P -=-,有)()()(B P A P AB P =,即A 和B 相互独立.32.设一个n 位二进制数是由n 各“0”或“1”数字组成,每一位出现错误数字的概率是p ,各位数字出现错误与否是独立的,问组成一个不正确的这类二进制数的概率是多少? 解:每一位出现正确数字的概率是p -1,由已知,各位数字出现正确与否也是独立的,于是所求概率nP A P )1(1)(--=.33.设事件C B A ,,相互独立,且21)(,31)(,41)(===C P B P A P ,试求: (1)三个事件都不发生的概率;(2)三个事件中至少有一个事件发生的概率;(3)三个事件中恰有一个事件发生的概率;(4)至多有两个事件发生的概率.解:(1)41)211)(311)(411()()()()(=---==C P B P A P C B A P ; (2)43411)(1)(=-=-=C B A P C B A P ; (3))(C B A C B A C B A P )()()(C B A P C B A P C B A P ++=2411213243213143213241=⋅⋅+⋅⋅+⋅⋅=; (4))()()(1)(1C P B P A P ABC P -=-24232131411=⋅⋅-=. 34.甲袋中有3只白球,7只红球,15只黑球;乙袋中有10只白球,6只红球,9只黑球.从两袋中各取一球,试求两球颜色相同的概率.解:设C B A ,,表示两球同为白色、红色和黑色,C B A ,,互不相容,则所求概率为:)()()()(C P B P A P C B A P ++= 3312.025925152562572510253=⨯+⨯+⨯=. 35.两部机床独立的工作,每部机床不需要工人照管的概率分别为0.9和0.85,试求:(1)两部均不需照管的概率; (2)恰有一部需要照管的概率;(3)两部同时需要照管的概率.解:设=A {甲机床不需要工人照管},=B {乙机床不需要工人照管},则9.0)(=A P ,85.0)(=B P ,(1)765.085.09.0)()()(=⨯==B P A P AB P (2))()()()()()()(B P A P B P A P B A P B A P B A B A P +=+=22.085.01.015.09.0=⨯+⨯= (3) 015.015.01.0)()()(=⨯==B P A P B A P .36.求下列系统(图1.6)能正常工作的概率,其框图的字母代表组件,字母相同,下标不同的均为同一类组件,知识装配在不同的位置,A 类组件正常工作的概率为a γ,B 类组件正常工作的概率为b γ,C 类为c γ.解:(1)所求概率为)]()()()[()()()]([BC P C P B P A P C B P A P C B A P -+==c b a c a b a γγγγγγγ-+=.(2)所求概率为)()()()()(5421635241635241A A A A P A A P A A P A A P A A A A A A P -++= )()()(65432165326431A A A A A A P A A A A P A A A A P +--,又654321,,,,,A A A A A A 相互独立,则)33(33)(422642635241a a a a a a A A A A A A P γγγγγγ+-=+-= .(3)所求概率为 )()()()]())([(22112211n n n n B A P B A P B A P B A B A B A P =)]()()([)]()()()][()()([22221111n n n n B A P B P A P B A P B P A P B A P B P A P -+-+-+= n b a b a )(γγγγ-+=.习题二1、一批晶体管中有9个合格品和3个不合格品,从中任取一个安装在电子设备上,如果取出不合格品不再放回,求在取得合格品以前已取出的不合格品数的概率.解:设在取得合格品以前已取出的不合格品数为随机变量X ,则X 的所有可能取值为:0,1,2,3。
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
概率论与数理统计习题解答〔第二版〕李书刚编,科学出版社概率论与数理统计习题参考答案〔仅供参考〕第一章第1页 (共79页)第一章随机事件及其概率1. 写出以下随机试验的样本空间:〔1〕同时掷两颗骰子,记录两颗骰子的点数之和;〔2〕在单位圆内任意一点,记录它的坐标;〔3〕10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;〔4〕测量一汽车通过给定点的速度. 解所求的样本空间如下〔1〕S= {2,3,4,5,6,7,8,9,10,11,12} 〔2〕S= {(x, y)| x2+y20} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示以下事件:〔1〕A发生,B和C不发生;〔2〕A与B都发生,而C不发生;〔3〕A、B、C都发生;〔4〕A、B、C都不发生;〔5〕A、B、C不都发生;〔6〕A、B、C至少有一个发生;〔7〕A、B、C不多于一个发生;〔8〕A、B、C至少有两个发生. 解所求的事件表示如下(1A)BC)BC (5A(7A)B(8A)B(2A)BC(6A)(3A)BC(4A)BCBACCACBCBC3.在某小学的学生中任选一名,假设事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运发动,那么〔1〕事件AB 表示什么?〔2〕在什么条件下ABC=C成立?〔3〕在什么条件下关系式C?B是正确的?〔4〕在什么条件下A?B成立?解所求的事件表示如下〔1〕事件AB表示该生是三年级男生,但不是运发动.概率论与数理统计习题参考答案〔仅供参考〕第一章第2页 (共79页) 〔2〕当全校运发动都是三年级男生时,ABC=C成立.〔3〕当全校运发动都是三年级学生时,关系式C?B是正确的.〔4〕当全校女生都在三年级,并且三年级学生都是女生时,A?B成立. 4.设P(A)=0.7,P(A-B)=0.3,试求P(AB) 解由于 A?B = A – AB, P(A)=0.7 所以P(A?B) = P(A?AB) = P(A)??P(AB) = 0.3,所以 P(AB)=0.4, 故P(AB)= 1?0.4 = 0.6.485. 对事件A、B和C,P(A) = P(B)=P(C)=1 ,P(AB) = P(CB) = 0, P(AC)=1 求A、B、C中至少有一个发生的概率. 解由于ABC?AB,P(AB)?0,故P(ABC) = 0那么P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)11115????0?0??0? 444886. 设盒中有α只红球和b只白球,现从中随机地取出两只球,试求以下事件的概率: A={两球颜色相同}, B={两球颜色不同}.解由题意,根本领件总数为Aa2?b,有利于A的事件数为Aa2?Ab2,有利于B 的事件数为111111AaAb?AbAa?2AaAb, 那么2Aa?Ab2P(A)?2Aa?b12AaAP(B)?2bAa?b17. 假设10件产品中有件正品,3件次品,〔1〕不放回地每次从中任取一件,共取三次,求取到三件次品的概率;〔2〕每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解〔1〕设A={取得三件次品} 那么33C3A316P(A)?3?或者P(A)?3?C10120A10720.〔2〕设B={取到三个次品}, 那么3327P(A)?3?101000.8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:〔1〕此人会讲英语和日语,但不会讲法语的概率;〔2〕此人只会讲法语的概率.解设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) P(ABC)?P(AB)?P(ABC)?32?9?23100100100 (2)P(ABC)?P(AB)?P(ABC)?P(A?B)?0?1?P(A?B)?1?P(A)?P(B)?P(AB)9. 罐中有12颗围棋子,其中8颗白子4颗黑子,假设从中任取3颗,求:概率论与数理统计习题参考答案〔仅供参考〕第一章第3页 (共79页) 〔1〕取到的都是白子的概率;〔2〕取到两颗白子,一颗黑子的概率;〔3〕取到三颗棋子中至少有一颗黑子的概率;〔4〕取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 那么3C814P(A)?3??0.255.C1255(2) 设B={取到两颗白子, 一颗黑子}1C82C4P(B)?3?0.509.C12(3) 设C={取三颗子中至少的一颗黑子} P(C)?1?P(A)?0.745.(4) 设D={取到三颗子颜色相同}33C8?C4P(D)??0.273. 3C1210. 〔1〕500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?〔2〕6个人中,恰好有个人的生日在同一个月的概率是多少?解(1) 设A = {至少有一个人生日在7月1日}, 那么364500P(A)?1?P(A)?1??0.746 5003651C64?C12?112P(B)??0.0073 612 (2)设所求的概率为P(B)11. 将C,C,E,E,I,N,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p. 解由于两个C,两个E共有A22A22种排法,而根本领件总数为A77,因此有12. 从5副不同的手套中任取款4只,求这4只都不配对的概率. 解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有C54A={4只手套都不配对},那么有C54?2480 P(A)?4?210C10?24中取法.22A2Ap?72?0.000794A7设13. 一实习生用一台机器接连独立地制造三只同种零件,第i只零件是不合格的概率为pi?1 1?i,i=1,2,3,假设以x表示零件中合格品的个数,那么P(x=2)为多少?1 1?i解设Ai = {第i个零件不合格},i=1,2,3, 那么P(Ai)?pi?所以P(Ai)?1?pi?i 1?iP(x?2)?P(A1A2A3)?P(A1A2A3)?P(A1A2A3)由于零件制造相互独立,有:P(A1A2A3)?P(A1)P(A2)P(A3),P(A1A2A3)?P(A1)P(A2)P(A3)P(A1A2A3)?P(A1)P(A2)P(A3)概率论与数理统计习题参考答案〔仅供参考〕第一章第4页 (共79页) 14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},Bi ={第i次击中目标}, i=1,2.那么 P(A)=0.7, P(Bi|A)=0.6 另外 B=B1+B2,由全概率公式P(B)?P(AB)?P(AB)?P(AB)?P(A)P(B|A) ?P(A)P((B1?B2)|A)另外, 由于两次射击是独立的, 故P(B1B2|A)= P(B1|A) P(B2|A) = 0.36 由加法公式P((B1+B2)|A)= P(B1|A)+ P(B2|A)-P(B1B2|A)=0.6+0.6-0.36=0.84 因此×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解设Ai ={一批产品中有i件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意P(B|A0)?019C1C491P(B|A1)??10C50519C2C4816P(B|A2)??10C504919C3C4739P(B |A3)??10C509819C4C46988P(B|A1)??10C502303由于 A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式P(B)??P(Ai)P(B|Ai)?0.196i?04由Bayes公式P(A0)P(B|A0)?0P(B)P(A1)P(B|A1)P(A1|B)??0.255P(B)P(A2)P(B|A2)P(A2|B)??0.333P(B)P(A0|B)?故P(C)??P(Ai|B)?0.588i?0216. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,概率论与数理统计习题参考答案〔仅供参考〕第一章第5页 (共79页) 0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少〔这里设物品件数很多,取出一件后不影响下一件的概率〕.解设B={三件都是好的},A1={损坏2%}, A2={损坏10%}, A1={损坏90%},那么A1, A2, A3是两两互斥, 且A1+ A2 +A3=Ω, P(A1)=0.8, P(A2)=0.15,P(A2)=0.05. 因此有 P(B| A1) = 0.983, P(B| A2) = 0.903, P(B| A3) = 0.13, 由全概率公式P(B)??P(Ai)P(B|Ai)i?13?0.8?0.983?0.15?0.903?0.05?0.103?0.8624由Bayes公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为P(Ai)P(B|Ai)0.8?0.983P(A1|B)???0.8731P(B)0.8624P(Ai)P(B|Ai)0.15?0.903 P(A2|B)???0.1268P(B)0.8624P(Ai)P(B|Ai)0.05?0.103P(A3|B)???0.0001P(B)0 .8624由于P( A1|B) 远大于P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料说明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;假设未发现残次品,那么通过验收,否那么要逐一检验并更换残次品,试求:〔1〕一次通过验收的概率α;〔2〕通过验收的箱中确定无残次品的概率β. 解设Hi={箱中实际有的次品数},P(A|H0)?1,4C235P(A|H1)?4?,C2464C2295P(A|H2)?4?C24138i?0,1,2, A={通过验收}那么 P(H0)=0.8, P(H1)=0.15, P(H2)=0.05, 那么有:(1)由全概率公式??P(A)??P(Hi)P(A|Hi)?0.962i?0(2)由Bayes公式得??P(Hi|A)?P(H0)P(A|H0)0.8?1??0.83P(A)0.9618. 一建筑物内装有5台同类型的空调设备,调查说明,在任一时刻,每台设备被使用的概率为0.1,问在同一时刻〔1〕恰有两台设备被使用的概率是多少?〔2〕至少有三台设备被使用的概率是多少?解设5台设备在同一时刻是否工作是相互独立的, 因此此题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1?p=0.9, 故。
概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
第 一 章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年,英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题 一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B解:(1)()()A B A B AB AB B B == , (2) ()()A B A B ()A B A B B A A B B ==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率.解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为kn C ,而全为白球的取法有k m n C -种,故所求概率为k n k mn C C --1.解法二:令i A —第i 人中奖,,.,2,1k i =B —无一人中奖,则k A A A B 21=,注意到k ,,, 21不独立也不互斥:由乘法公式)()()()()(11213121-=k k A A A P A A A P A A P A P B P(1)(2)(1)121n m n m n m n m k n n n n k -------+=⋅⋅---+ !,1k k n m n m k k n n C C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少? 解:122585410()C C C P A C -= 7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率.解:此为几何概率问题:]11[,-=Ω,所求事件占有区间 ]5151[,-,从而所求概率为121525P ⋅==. 8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDE OAB S S = . 9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本空间占有区域Ω,两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B .解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--= .12.假设()0.4P A =,()0.7P A B = ,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B . 解:若A 、B 互不相容,()()()0.70.40.P B P A B P A =-=-= ;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5.13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容)故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率.解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A B P A P AB P 16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P且5()8P B C = ,求()P A B . 解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程 085)(3)]([22=+-C P C P 151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-== 17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生).解:设事件i A —第i 次试验中A 出现(1,2,,)i n = ,∵(),()1i i P A P A εε==-,(1,2,,)i n = ,∴n 次试验中,至少出现A 一次的概率为1212()1()n n P A A A P A A A =- 121()n P A A A =-121()()()n P A P A P A =-⋅⋅⋅ (独立性)1(1)n ε=--∴12lim ()1n n P A A A →∞= ,证毕. 18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-1()1()()() P ABC P A P B P C =-=-42331..5345=-=. 19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --;(2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496 P A BC P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A=,求()P A B . 解:由()0.4B P A=得 ()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=, ()()()()0.82P A B P A P B P AB =+-= .22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P AB P B B B P P A A P A P A ===== 23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内 发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为 ()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=. 24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球.1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ==== 25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********⨯+⨯=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=i B {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上} 则%1)(%,4)(%,95)(321===B P B P B P%70)(%,80)(%,90)(321===B A P B A P B A P 所以)()()()()()()(332211B A P B P B A P B P B AP B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i 分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,A P B =32()0.7,()0.85A A P P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()A A A P A P B P P B P P B P B B B =++0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ==== 28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,AA P PB B ==()0.0005,P B =所求概率为().B P A ()0.10,()0.9995.AP P B B ==由Bayes 公式得 ()()()()()()()A P B P BB P A A A P B P P B P B B=+0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯ 29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率.解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1AA A P P PB B B ===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯=2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是 (1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i ii P B P A B P B A P B P A B ====∑. 30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率.解:A ——需经调试 A ——不需调试 B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P(1)由全概率公式:)()()()()(AB P A P AB P A P B P ⋅+⋅= %941%70%80%30=⨯+⨯=. (2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P B A P . 31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率.解:所求的概率为234(1)p p -.32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率解:所求的概率为11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅=34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =, 则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为 222211()()()222n n n n r n r n r n r n r C P n C -----==.第 二 章思 考 题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g 则随机变量)(X g Y =既非离散型又非连续型.事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y ;当10<≤y 时,()2))(()(y y X P y X g P y F Y =≤=≤= 于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==Y Y F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量.4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么?答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x PX x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形.解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩ 0 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}i i A =第次取得废品,{}i A i =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有 19{0}()0.7512P X P A ====, 21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(), 3212311123299{2}()0.0409121110220A A P X P A A A P A PP A A A ===⋅⋅=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A ====⋅⋅⋅=≈()()()()所以X8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i 成正比,即 1,2,,10P X i ki i === (),(),求k . 解:由条件 1,2,,P X i k ii === (),(),由分布律的性质1011ii p==∑,应有1011i ki ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N .解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率.解:设~()X P λ,由题意:)1(=X P =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为2022!0)0(--===e e X P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下: 99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ⎛⎫⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B ,X 的分布律为{})50,,2,1,0(31325050=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kk k14.设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =.解:(3,)Y p B ,12011{}224p P X xdx =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,x ax e x f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率.解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx +∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时, 2220()1(22)2x xxe F x ax edx x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩ .(3)511(0)()(0)12P X F F eλλ<<=-=-. 16.设X 在(1,6)内服从均匀分布,求方程210x Xx ++=有实根的概率.解: “方程210x Xx ++=有实根”即{2}X >,故所求的概率为{2}P X >=45. 17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩ 解得:1,1a b ==-18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内 的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e ,即021=--λe ,∴.2ln =λ19.设随机变量(1,4)X N ,求(0 1.6)P X ≤<,(1)P X <.解:01 1.61(0 1.6)()22P X PX --≤<=≤<1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则 (1)123,,A A A 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭,同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()222D P A P A A P D P D β⎛⎫ ⎪⎝⎭⎛⎫== ⎪⎝⎭0.5760.0010.0090.062⨯==. 21.随机变求2Y X =的分布律解:. 22.变量X 服从参数为0.7的0-1分布,求2X 及22X X -的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22X X -的可能值为1-和0,由于2{}P X u =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P X X P X -=-===,2{20}{0}0.3P X X P X -====,可得22X X -的概率分布为23.X 概率密度函数为21()(1)X f x x π=+,求2Y X =的概率密度函数()Y f y .解:2y x =的反函数为2yx =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4内概率密度()Y f y . 解法一(分布函数法) 当0y <时,()0,4Y F y y =>时()1Y F y =,当04y ≤≤时, ()(Y XF y P X F =≤=从而 ()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x =在()0,2单增,由于反函数x =在()0,4可导,'y x =,从而由公式得()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余25. ,0)0 ,0x X e x f x x -⎧≥=⎨<⎩(,求X Y e =的密度.解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Y f y ey y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)x y e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1X Y f y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量X Y e =和ln Z X =的概率密度()Y f y 和()Z f z .解:X 的密度为1, 01() x f x ⎧<<⎪=⎨⎪⎩0,若其它,(1)函数x y e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y ey ⎧<<⎪=⎨⎪⎩0,其它. (2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数z x e -=,且0Z >,从而()(), () z z X Z f e e f z -->⎧'⎪=⎨⎪⎩z 00,其它 0, zz e ->⎧⎪=⎨⎪⎩0,其它.27. 设()X f x 为X 的密度函数,且为偶函数,求证X -与X 有相同的分布. 证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--, ()()()()1Y X X p y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'Y X X X p y p y y p y p y =--=-=.28.设随机变量X 服从正态分布),(2σμN ,0,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y =. 求证Y 服从区间]1,0[上的均匀分布. 证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F -存在,又因1)(0≤≤x F ,因此Y 的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y F F ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章 思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P 2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P . 由此可看出,即使两个离散随机变量Y X 与相互独立同分布, Y X 与一般情况下也不会以概率1相等. 2解:由∑∑ijijp=1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立. 7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P3解: )()1,1(11AB P Y X P p ====,121)()(==A B P A P )()0,1(12B A P Y X P p ====613241)()(=⋅==A B P A P因为: ,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p 12812161121122=---=p ,结果如表所示. 4 解: X 的边缘分布律为32}2{,31}1{====X P X PY 的边缘分布律为21}2{,21}1{====X P Y P 1=Y 的条件下X 的条件分布为0}1{}1,1{}11{=======Y P Y X P Y X P1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ====== .1,0;1,0}{}{=====j i j Y P i X P于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故 ,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x a x b x a a b x f X ,0,1)(, )(y f Y =⎪⎩⎪⎨⎧><≤≤-d y cy d y c d c ,0,1随机变量X 及Y 是独立的.7 解 (1)),(y x f =y x y x F ∂∂∂),(2=)9)(4(6222y x ++π (2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg =)22(1xarctg +ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dx dx f X X )4(22x +π 同理可得随机变量Y 的边分布函数=+∞=),()(y F y F Y )32)(22(12y arctg ++ππππ=)32(1yarctg +ππ Y 的边缘分布密度函数==)()(y F dy dy f y Y )9(32y +π (3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立. 8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x e y f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====120102110222222222,12121}2{y x r r y x ee rdr e d dxdy e Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x r r y x e ee rdr e d dxdy e Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x r r y x e erdred dxdye Z P πθππ所以,Z 的分布律为:.1}2{,}1{,}0{212212-----==-====eZ P ee Z P e Z P9解:(1)由⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒00)43(121A dxdy e A y x ,即 12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x(2)X 的边缘概率密度为当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy e y x =x e 33-,当0>y ,)(y f Y =⎰∞),(dx y x f =⎰∞+-0)43(12dx e y x =y e 44-,可知边缘分布密度为:)(x f X =⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12e e dxdy e y x 10解 因为⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=101021dy y xdx c , 6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=10226x dy xy,所以)(x f X =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=122,36y dx xy ,所以)(y f Y =⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x f X )(y f Y ,所以X 与Y 相互独立. 11解 由 2ln 12211===⎰e e D x dx xS当21e x ≤≤时,,2121),()(1010xdy dy y x f x f x x X ===⎰⎰其它)(x f X =0. 所以:.41)2(=X f 12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=xx x x dy 10,21)(y f Y =⎰<<--=111,11yy y dx故)(y x f Y X =)(),(y f y x f Y =⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f X Y =)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X )(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx x dy y f dx x f dxdy y f x f Y X P )()()()(}{⎰⎰⎰⎰>∞+∞-∞+==>yx ydx x f dy y f dxdy y f x f Y X P )()()()(}{交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dx x f )()(⎰⎰∞+∞+∞-ydx x f dy y f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P . 14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p +()1p --p )1p -=9712=+-p p 解得:,32,3121==p p 因而a 有两个值. 由于2121}{)(1-==≤=⎰a dx a X P A P a ,所以,当311=p 时,由21-a =31得35=a当322=p 时,由21-a =32得37=a .15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P ,41}2{}2{}4{=====+Y P X P Y X P 故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P(2)由已知易得 ;21}42{,21}22{====X P X P16解 由已知得所以有17证明:对任意的,,,1,021n n k += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n i k i k n i n i i nq p C q p C 0)(2211 =∑=-+-ki k n n k i k n i n q p C C 02121)((利用组合公式 ∑=+-=ki k n m i k n im C C C)=kn n kkn n qp C -++2121即Y X Z +=~),(21p n n b +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z f dx x z f x f z f Y Y X Z -=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。
习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P ,又因为)()(B A P B P 即.0)()( B A P B P 所以(1) 当)()(B A P B P 时P (AB )取到最大值,最大值是)()(A P AB P =0.6.(2)1)( B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P ,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P ,即)()()(1)(1)()(AB P B P A P B A P B A P AB P ,所以.1)(1)(p A P B P4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)( AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k +25C其中:!2161815C C C为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k +25C其中:)(142815C C C 为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k -25C法五:考虑对立事件:410C k -45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k其中:!4141618110C C C C 为没有一双配对的方法数所求概率为.2113410C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025 C C p ,法二:1213102513 A A C p (2) 法二:20131024 C C p ,法二:2013102413 A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341 A M P , 1694)(324232 A C M P , 1614)(3143C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232 C C M P ,6.0)(2512131 C C C M P ,1.0)(25221 C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则2121M M M M M 且.所以.2813C C C C )()()()(282328252121 M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2的面积的面积A A P . 图?11.随机地向半圆220x ax y(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标, 表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x}事件A =“原点和该点的连线与x 轴的夹角小于4” ={(x ,y ):40,20,202x ax y a x }因此211214121)(222 a aa A A P 的面积的面积.12.已知21)(,31)(,41)( B A P A B P A P ,求)(B A P . 解:,1213141)()()( A B P A P AB P ,6121121)|()()(B A P AB P B P.311216141)()()()(AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1) ni i A 1=; (2) n i in i i AA 11===; (3) ni ni j j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i j i A A ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。
习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p ==16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |)≥P (B |),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6. 习题7习题9 习题10习题12 习题13 习题14习题15 习题16习题18习题20 习题21习题23 习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,?,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22?1C53=110, P{X=4}=C32?1C53=310, P{X=5}=C42?1C53=35,所以X的分布律为X 3 4 5pk 1/10 3/10 3/5习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:X 10 20 30 40pi 0.15 0.25 0.45 0.15求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,?;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于 5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为X 0 1P 0.4 0.6习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,?,k,?.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×?×310×710=(310)k-1×710,k=1,2,?.习题10设随机变量X~b(2,p),Y~b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X~b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y~b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{?0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ?λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,?x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0?A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π?π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=ˉ~N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ~N(0,1), 所以Y=3+X2~N(0,1).习题2已知X~f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X~N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X~N(3,22), 所以X-32=Z~N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X~N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y~b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X~N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X~N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X~N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X~N(170,36), 则X-1706~N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X~N(40,102),Y~N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为X -2 -1 0 1 2 3pi 2a 1/10 3a a a 2a试求:(1)a; (2)Y=X2-1的概率分布.解答:(1)\because2a+1/10+3a+a+a+2a=1,∴a=1/10.(2)Y -1 0 3 8pi 3/10 1/5 3/10 1/5习题2设X的分布律为P{X=k}=12k,k=1,2,?, 求Y=sinπ2X的分布律.解答:因为sinxnπ2={1,当n=4k-10,当n=2k-1,当n=4k-3,所以Y=sin(π2X)只有三个可能值-1,0,1. 容易求得P{Y=-1}=215,P{=0}=13,P{Y=1}=815故Y的分布律列表表示为Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答:fY(y)={fX(y-dc)?1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它. 习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X~N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12?y-12?122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2?f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{?}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(°F)是一个随机变量, 且有T~N(98.6,2), 已知θ=5(T-32)/9, 试求θ(°F)的概率密度.解答:已知T~N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)?95=12π?2e-(95y+32-98.6)24?95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1~20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,?,20.因为P(?K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪?∪A20} =1210(2+4+?+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X~b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X~b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X~b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,?,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:X -101pi 1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=ˉ,P{∣X∣<π/6}=ˉ.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)?A=1.因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(?)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X~f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λvlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλa. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X~f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度?(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-a?(x)dx=∫a+∞?(-t)dt=∫a+∞?(x)dx=1-∫-∞a?(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K~U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4?4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X~N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X~N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为X -2-1013pi 1/51/61/51/1511/30试求Y=X2的分布律.解答:pi 1/51/61/51/1511/30X -2-1013X2 41019所以X2 0149pi 1/57/301/511/30注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i?jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:X\Y 01/31-1 01/121/30 1/6002 5/1200(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为X\Y 0101 7/157/307/301/15(1)求Y的边缘分布律;(2)求P{Y=0∣X=0},P{Y=1∣X=0};(3)判定X与Y是否独立?解答:(1)由(x,y)的分布律知,y只取0及1两个值.P{y=0}=P{x=0,y=0}+P{x=1,y=0}=715+730=0.7 P{y=1}=∑i=01P{x=i,y=1}=130+115=0.3.(2)P{y=0∣x=0}=P{x=0,y=0}P{x=0}=23, P{y=1∣x=0}=13.(3)已知P{x=0,y=0}=715, 由(1)知P{y=0}=0.7, 类似可得P{x=0}=0.7.因为P{x=0,y=0}≠P{x=0}?P{y=0}, 所以x与y不独立.习题2将某一医药公司9月份和8份的青霉素针剂的订货单分别记为X与Y. 据以往积累的资料知X和Y 的联合分布律为X\Y 51525354555152535 4550.060.050.050.010.010.070.050.010.010.010.050.100.100.050.050.050.020.010.010.03 0.050.060.050.010.03(1)求边缘分布律;(2)求8月份的订单数为51时,9月份订单数的条件分布律.解答:(1)边缘分布律为X 5152535455pk 0.180.150.350.120.20对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.Y 5152535455pk 0.280.280.220.090.13(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:k 5152535455P{X=k∣Y=51}6/287/285/285/285/28习题3已知(X,Y)的分布律如下表所示,试求:(1)在Y=1的条件下,X的条件分布律;(2)在X=2的条件下,Y的条件分布律.X\Y 012012 1/41/8001/301/601/8解答:由联合分布律得关于X,Y的两个边缘分布律为X 012pk 3/81/37/24Y 012pk 5/1211/241/8故(1)在Y=1条件下,X的条件分布律为X∣(Y=1)012pk 3/118/110(2)在X=2的条件下,Y的条件分布律为Y∣(X=2)012pk 4/703/7习题4已知(X,Y)的概率密度函数为f(x,y)={3x,0<x<1,0<y<x0,其它, 求:(1)边缘概率密度函数;(2)条件概率密度函数.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={3x2,0<x<10,其它,fY(y)=∫-∞+∞f(x,y)dx={32(1-y2),0<y<10,其它.(2)对?y∈(0,1), fX∣Y(x∣y)=f(x,y)fY(y)={2x1-y2,y<x<1,0,其它,对?x∈(0,1), fY∣X(y∣x)=f(x,y)fX(x)={1x,0<y<x0,其它.习题5X与Y相互独立,其概率分布如表(a)及表(b)所示,求(X,Y)的联合概率分布,P{X+Y=1}, P{X+Y≠0}.X -2-101/2pi 1/41/31/121/3表(a)Y -1/213pi 1/21/41/4表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为X\Y -1/2 1 3-2-1 01/2 P{X=-2}P{Y=-1/2}P{X=-1}P{Y=-1/2}P{X=0}P{Y=-1/2}P{X=1/2}P{Y=-1/2}P{X=-2}P{Y=1}P{X=-1}P{Y=1}P{X=0}P{Y=1}P{X=1/2}P{Y=1}P{X=-2}P{Y=3}P{X=-1}P{Y=3}P{X=0}P{Y=3}P{X=1/2}P{Y=3}亦即表X\Y -1/213-2-101/2 1/81/161/161/61/121/121/241/481/481/61/121/12 P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55~8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则?a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}?P{∣X∣≤a},而事件{∣X∣≤a}?{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}?P{∣X∣≤a}, P{∣X∣≤a}(1-P{X≤a})=0P{∣X≤a∣}=0或1=P{X≤a}?(?a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)?fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413, Φ(0)=0.5, 于是Φ(1)-Φ(0)=0.3413, 所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为概率\U 1 2 31 1/9 2/9 2/92 0 1/9 2/9 30 0 1/9习题2设(X,Y)的分布律为X\Y -112-121/101/53/101/51/101/10 试求:(1)Z=X+Y; (2)Z=XY;(3)Z=X/Y;(4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z 的相同值的概率要合并. 概率1/101/53/101/51/101/10(X,Y)X+YXYX/Ymax{x,Y}(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221112222于是(1)(2)X+Y -20134 pi1/101/51/21/101/10(3)(4)X/Y -2-1-1/212 pi1/51/53/101/51/10习题3设二维随机向量(X,Y)服从矩形区域D={(x,y ∣0≤x ≤2,0≤y ≤1}的均匀分布,且U={0,X ≤Y1,X>Y,V={0,X ≤2Y1,X>2Y,求U 与V 的联合概率分布.解答:依题(U,V)的概率分布为P{U=0,V=0}=P{X ≤Y,X ≤2Y}=P{X ≤Y}=∫01dx ∫x112dy=14,P{U=0,V=1}=P{X ≤Y,X>2Y}=0,P{U=1,V=0}=P{X>Y,X ≤2Y}=P{Y<X ≤2Y}=∫01dy ∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2, 即U\V 01 011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z 的分布密度.解:FZ(z)=P{Z ≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(?)=0;当z ≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e -x2+y22dxdy=12π∫02πd θ∫0ze -ρ22ρd ρ=∫0ze -ρ22ρd ρ=1-e-z22.故Z 的分布函数为FZ(z)={1-e-z22,z ≥00,z<0.XY -20134 pi1/21/51/101/101/10max{X,Y} -112 pi1/101/57/10Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0?e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。
第一章 随机事件与概率 §1.1 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==U 甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=ΦU ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间 1.{}3,420L ,, 2[]0,100 3.z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度。
三、(1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=(2){}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=U ,{}6AB ω=,{}15,A B ωω=U四、(1)ABC ;(2)ABC ;(3)“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;(4)A B C U U ;(5)“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC U U .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB AC BC U U .§1.2 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10!,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排。
故8!3!1()10!15P A ⋅==。
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件分别表C,示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C,中的样本点。
A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件分别表D,,示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以分别表示C,某城市居民订阅日报、晚报和体育报。
试用表A,B示以C,下事件:BA,(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件分别表321,,A A A 示甲、乙、丙射中。
习题1解答1.写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数. A =“出现奇数点”;(2)将一颗骰子掷两次,记录出现点数. A =“两次点数之和为10”,B =“第一次的点数,比第二次的点数大2”;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =“球的最小号码为1”;(4)记录在一段时间内,通过某桥的汽车流量,A =“通过汽车不足5台”,B =“通过的汽车不少于3台”.解 (1)123456{,,,,,}ωωωωωωΩ=其中i ω=“出现i 点”1,2,,6i = ,135{,,}A ωωω=.(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)Ω=(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =.(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)Ω=(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){0,1,2,},{0,1,2,3,4},{3,4,}A B Ω=== .2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:(1)仅A 发生;(2),,A B C 中至少有两个发生;(3),,A B C 中不多于两个发生;(4),,A B C 中恰有两个发生;(5),,A B C 中至多有一个发生.解 (1)ABC(2)AB AC BC 或ABC ABC ABC ABC ;(3)A B C 或ABC ABC ABC ABC ABC ABC ABC ;(4)ABC ABC ABC ;(5)AB AC BC 或ABC ABC ABC ABC ;3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品.解 (1)123A A A ;(2)123A A A ;(3)123123123A A A A A A A A A ;(4)121323A A A A A A .4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率.解 设A =“任取一电话号码后四个数字全不相同”,则4104126()0.50410250P P A === 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求(1)5只全是好的的概率;(2)5只中有两只坏的的概率.解 (1)设A =“5只全是好的”,则537540()0.662C P A C = ; (2)设“5只中有两只坏的”,则23337540()0.0354C C P B C = . 6.袋中有编号为1到10的10个球,今从袋中任取3个球,求(1)3个球的最小号码为5的概率;(2)3个球的最大号码为5的概率.解 (1)设A =“最小号码为5”,则253101()12C P A C ==; (2)设B =“最大号码为5”,则243101()20C P B C ==. 7.求下列事件的概率:(1) 一枚骰子连掷4次,至少出现一个6点;(2)两枚骰子连掷24次,至少出现一对6点.这是概率论发展历史中非常著名的一个问题(德·梅尔问题),当年德·梅尔认为这两个事件的概率应当相同,但是在实际下赌注中发现其中一个发生的次数要稍微多些.为此他迷惑不解,把问题提交给了当时的数学家帕斯卡.下面我们就来具体计算一下两个事件的概率:设1A =“一枚骰子连掷4次,至少出现一个6点”,2A =“两枚骰子连掷24次,至少出现一对6点”则 444144655()10.517766P A -==-≈,24242422424363535()10.49143636P A -==-≈ 8.(1)教室里有r 个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一个月的概率.解 (1)设A =“他们的生日都不相同”,则365()365r r P P A =; (2)设B =“至少有两个人的生日在同一个月”,则212223214121141241212441()1296C C P C C C P C P B +++==; 或 412441()1()11296P P B P B =-=-=. 9.从6双不同的鞋子中任取4只,求:⑴其中恰有一双配对的概率;⑵至少有两只鞋子配成一双的概率.解 ⑴分析:先从6双中取出一双,两只全取;再从剩下的5双中任取两双,每双中取到一只,则⑴中所含样本点数为1212252216C C C C C ,所以所求概率P =1212252216C C C C C /412C =3316 ⑵设B 表示“至少有两只鞋子配成一双”,则:=-=)(1)(B P B P 1-1212121.2.46C C C C C /C 412=3317,或=[/]2612122516C C C C C +C 412=3317 [注]:不能把有利事件数取为2102216C C C ,否则会出现重复事件.这是因为,若鞋子标有号码1,2,…,6时,16C 可能取中第i 号鞋,此时210C 可能取中j 号一双,此时成为两双的配对为),(j i ;但也存在配对),(i j ,),(j i 与),(i j 是一种,出现了重复事件,即多出了26C 个事件.10.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B 解 ()1()1()()0.3P A B P A B P A P B =-=--= 因为,A B 不相容,所以A B ⊃,于是()()0.6P A B P A ==11.若()()P AB P AB =且()P A P =,求()P B .解 ()1()1()()()P A B P A B P A P B P A B =-=--+ 由()()P AB P AB =得()1()1P B P A p =-=-12.对任意三事件,,A B C ,试证()()()()P AB P AC P BC P A +-≤.证明 ()()()()()(P A B P A C P B C P A B P A C PA B C +-≤+- ()P AB AC = {()}()P A B C P A =≤ . 证毕.13.随机地向半圆202y ax x <<-(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.解 半圆域如图 设A =“原点与该点连线与x 轴夹角小于/4π” 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+ 14.把长为a 的棒任意折成三段,求它们可以构成三角形的概率.解1 设A =“三段可构成三角形”,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .A 发生0,0,222a a ax y x y a ⇔<<<<<+< 不等式确定S 的子域A ,所以 1()4A P A S ==的面积的面积 解2 设三段长分别为,,x y z ,则0,0,0x a y a z a <<<<<<且x y z a ++=,不等式确定了三维空间上的有界平面域S .A 发生x y z ⇔+>x z y +>y z x +>不等式确定S 的子域A ,所以1()4A P A S ==的面积的面积. 15.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解 01,01x y ≤≤≤≤,不等式确定平面域S .0yy x a /4π x S0 a /2 a /2 a aA x z y AA =“1,0.09x y xy +≤≥”则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故 0.90.10.9()(1)A P A x dx S x==--⎰的面积的面积 0.40.18ln30.2=-=16.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =“任取一件是i 等品” 1,2,3i =,所求概率为 13133()(|)()P A A P A A P A =, 因为 312A A A =+ 所以 312()()()0.60.30.9P A P A P A =+=+= 131()()0.6P A A P A == 故 1362(|)93P A A ==. 17.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =“所取两件中有一件是不合格品”i B =“所取两件中恰有i 件不合格” 1, 2.i =则 12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为 2242112464()1(|)()5P B C P B A P A C C C ===+. 18.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =“发现是同一颜色”,B =“全是白色”,C =“全是黑色”,则A B C =+,所求概率为 336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 19.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.1y 10.9 0.1 0 A S x解 ()()()() 1.1()(|) 1.10.P A B P A P B P A B P A P B A =+-=-=-= ()()()0.60.4P B A P B P A B -=-=-=.20.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率.解 设A =“从乙袋中取出的是白球”,i B =“从甲袋中取出的两球恰有i 个白球”0,1,2i =. 由全概率公式001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B =++11223232222555416131021025C C C C C C C =⋅+⋅+⋅=. 21.已知一批产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率是0.02,一个次品被误认为是合格品的概率是0.05,求在检查后认为是合格品的产品确是合格品的概率.解 设A =“任取一产品,经检查是合格品”,B =“任取一产品确是合格品”,则 A B A B A=+ ()()(|)()(|)P A P B P A B P B P A B =+ 0.960.980.040.050.9428=⨯+⨯=, 所求概率为()(|)0.960.98(|)0.998()0.9428P B P A B P B A P A ⨯===. 22.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求:(1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,确无残次品的概率β.解 设A =“顾客买下该箱”,B =“箱中恰有i 件残次品”,0,1,2i =,(1)001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B α==++4419184420200.80.10.10.94C C C C =+⨯+⨯≈; (2)00()0.8(|)0.85()0.94P AB P B A P A β===≈. 23.某大型商场所出售的一种商品来自甲、乙、丙、丁四个厂家,它们的产品在该卖场所占的份额依次为:60%,20%,10%,10%,且根据以往的检验记录知,它们的次品率分别为1%,2%,3%,2%. 现有一件商品因质量问题被退货,商场欲将该产品退给原厂家,或由其承担相关费用,但该产品的标识已脱落,从外观无法弄清生产厂家,请你通过计算分析,为该商场处理此事提出建议.解 用i A (1,2,3,4i =)分别表示产品来自甲、乙、丙、丁四个厂家,设B =“产品被退货” 则1()0.60P A =,2()0.20P A =,3()0.10P A =,4()0.10P A =,1()0.01P B A =,2()0.02P B A =,3()0.03P B A =,4()0.02P B A =(1)由全概率公式,41()()()0.600.010.200.020.100.030.100.020.015i i i P B P A P B A ===⨯+⨯+⨯+⨯=∑(2) 由贝叶斯公式,1111()()()0.600.016()()()0.01515P A P B A P A B P A B P B P B ⨯==== 2222()()()0.200.024()()()0.01515P A P B A P A B P A B P B P B ⨯==== 3333()()()0.100.033()()()0.01515P A P B A P A B P A B P B P B ⨯==== 4444()()()0.100.022()()()0.01515P A P B A P A B P A B P B P B ⨯==== 以上结果表明,这只产品来自甲工厂的可能性最大,尽管甲厂次品率最低,但甲厂所占的份额大,所以该产品出自甲厂的可能性最大.处理办法:商场可以将该产品退回甲厂,也可按照比例6:4:3:2由四个厂家分摊相关费用.24.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,求甲击中的概率.解 设A =“目标被击中”,i B =“第i 个人击中” 1,2,i = 所求概率为11111212()()()(|)()()1()P B A P B P B P B A P A P B B P B B ===+- 0.60.7510.40.5==-⨯. 25.设()0,()0P A P B >>,证明A 、B 互不相容与A 、B 相互独立不能同时成立. 证明 若A 、B 互不相容,则AB φ=,于是()0()()0P AB P A P B =≠>所以A 、B 不相互独立.若A 、B 相互独立,则()()()0P AB P A P B =>,于是AB φ≠,即A 、B 不是互不相容的.注:从上面的证明可得到如下结论:1)若A 、B 互不相容,则A 、B 又是相互独立的()0P A ⇔=或()0P B =.2)因A BA BA =+,所以()()()P A P BA P BA =+如果 ()1P B =,则()0P BA =,从而()()()()P AB P A P A P B ==可见概率是1的事件与任意事件独立,自然,必然事件与任意事件独立.如果()0P B =,则()0()()P AB P A P B ==,即概率是零的事件与任意事件独立,自然,不可能事件与任何事件独立.26.证明若三事件,,A B C 相互独立,则A B 及A B -都与C 独立.证明 {()}()()()()P A B C P AC BC P AC P BC P ABC ==+-()()()()()()()P B P C P B P C P A P B P C =+-[()()()]()P A P B P AB P C =+-()()P A B P C =即A B 与C 独立.{()}()()()()()()P A B C P A B C P A P B P C P A B P C -===()()P A B P C=- 即 A B -与C 相互独立.27.某个公司招聘员工,指定三门考试课程,目前有两种考试方案:方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中任选两门,两门都及格为考试通过.若某应聘者对三门指定课程及格的概率分别为,,a b c ,且三门课程之间及格与否互不影响.(1)分别求该应聘者用方案一和方案二时考试通过的概率;(2) 哪种方案对应聘者更有利?为什么?解 设i A =“考生参加第i 门考试且及格”,j B =“第i 个方案通过”,则1123123123123()()()()()P B P A A A P A A A P A A A P A A A =+++(1)(1)(1)a b c a b c a b c a b c=-+-+-+ 2a b b c c a a b c=++- 2121323111()()()()333P B P A A P A A P A A =++1()3ab bc ac =++ 由于 ,,(0,1)a b c ∈,所以1222()()()2((1)(1)(1))033P B P B ab bc ac abc ab c bc a ac b -=++-=-+-+-≥ 因此方案一比方案二更容易通过.28.图中1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率均为p ,且设各继电器闭合与否相互独立,求L 至R 是通路的概率.解 设A =“L R -是通路”,i B =“第i 个接点闭合” 1,2,3,4,5i =,则1245135432A B B B B B B B B B B =1245135432234512()()()()()()()P A P B B P B B P B B B P B B B P B B B B P B B B B =+++-- 12451235134512345()()()()P B B B B P B B B B P B B B B P B B B B B ---- 123451234512345()()()P B B B B B P B B B B B P B B B B B +++23451234512345()()2252.P B B B B B P B B B B B p p p p +-=+-+29.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,求该射手的命中率.解 设该射手的命中率为p ,由题意 4801(1)81p =--,41(1)81p -=,113p -= 所以 23p =. 30.设一批晶体管的次品率为0.01,今从这批晶体管中抽取4个,求其中恰有一个次品和恰有两个次品的概率.解 1344(1)(0.01)(0.99)0.0388P C ==.22244(2)(0.01)(0.99)0.000588P C ==.31.设在伯努里试验中,成功的概率为p ,求第n 次试验时得到第r 次成功的概率. 解 设A =“第n 次试验时得到第r 次成功”,则A =“前1n -次试验,成功1r -次,第n 次试验出现成功”,所以()P A P =(前1n -次试验,成功1r -次)P (第n 次试验成功)11111(1)(1)r r n r r r n r n n C pp p C p p -------=-⋅=-. L 1 4 5 3 2 R32.设一厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品,不能出厂.现该厂生产了(2)n n ≥台仪器(假定各台仪器的生产过程相互独立).求(1)全部能出厂的概率α;(2)其中恰有两台不能出厂的概率β;(3)其中至少有两台不能出厂的概率θ.解 设A =“任取一台可以出厂”,B =“可直接出厂”,C =“需进一步调试”. 则 A B A C A =+,()()(|)()(|)0.70.30.8P A P B P A B P C P A C p=+=+⨯== 将n 台仪器看作n 重伯努里试验,成功的概率为p ,于是(1)(0.94)n α=,(2)222(0.06)(0.94)n n C β-=, (3)11(0.94)(0.06)(0.94)n n n θ-=--⨯⨯.习题2解答1.试说明下列函数能否为某随机变量的分布函数.10,0,()sin ,0,21,.2x F x x x x ππ⎧<⎪⎪⎪=≤<⎨⎪⎪≥⎪⎩ 20,0,()ln(1),0.1x F x x x x <⎧⎪=⎨+≥⎪+⎩解 1()F x 是;2()F x 不是,因为2()01F +∞=≠.2.设随机变量X 的分布函数为0,1,1,1,4(),11,1,1.x x F x ax b x x <-⎧⎪⎪=-⎪=⎨⎪+-<<⎪≥⎪⎩ 且1(1)2P X ==,试求:(1)常数,a b 的值;(2)(21)P X -<<. 解 (1) 由于(1)(1)lim ()x F F x →-+-=,即(1)1lim ()4x ax b b a →-+=+=-. 又1(1)(1)(10)2P X F F ===-- 11lim()1x ax b a b →-=-+=--.由上两式知13,88a b ==.(2) 11(21)(10)(2)lim()2x P X F F ax b a b →--<<=---=+=+=. 3.将编号为1,2,3,4的四个球随机地放入3个不同的盒子中,每个盒子所放球的个数不限,以X 表示放球最多的盒子中球的个数,试求X 的分布列及其分布函数()F x .解 12123434422(2)33C C C C P X ⋅+===;1334428(3)327C C P X ⋅===; 1341(4)327C P X ===. 0,2,2,23,3()2826,34,327272811, 4.32727x x F x x x <⎧⎪⎪≤<⎪⎪=⎨+=≤<⎪⎪⎪++=≥⎪⎩4.现定期发行某种彩票,每注1元,中奖率为p . 某人每次购买1注,如果没有中奖下次再继续购买1注,直至中奖为止. 试求该人购买次数X 的分布列. 解 1()(1),1,2,k P X k p p k -==-= .5.一袋中装有m 个不同的白球,n m -个不同的黑球,连续从袋中不放回地取球,直至取出黑球为止,设此时取出了X 个白球,试求X 的分布列.解 11(1)(1)()(),0,1,2,(1)()k m n m k n A C m m m k n m P X k k m A n n n k -+--+-====-- .6.设随机变量X 的分布列为试求:(1)常数c 的值;(2)在2X ≤的条件下0X >的概率. 解 (1) 由23173 +2+=1 25210c c c -+-知32c =或2. 又72202-⨯<,故2c =舍去,X 0 1 2 3 P 232c c - 15 722c - 310即32c =. (2) (02)(1)(2)(0|2)1(2)1(3)P X P X P X P X X P X P X <≤=+=>≤===≤-=.7.设离散型随机变量X 的分布函数为0,2,0.2,21,()0.4,12,1, 2.x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩试求:(1)X 的分布列;(2)(02)P X ≤≤;(3)设sin cos66XXY ππ=,求Y 的分布函数()Y F y .解 (1) X 可以取值2,1,2-.(2)(2)(20)0.200.2P X F F =-=----=-=; (1)(1)(10)0.40.20.2P X F F ==--=-=; (2)(2)(20)10.40.6P X F F ==--=-=.故X 的分布列为(2) (02)(1)(2)0.8P X P X P X ≤≤==+==. (或(2)(00)10.20.8F F =--=-=) (3) 由于1sin23XY π=,从而Y 分布列为 即X2- 1 2 P0.2 0.2 0.6Y34-34 34P0.2 0.2 0.6所以,30,,433()0.2,,4430.20.81,.4Y x F y x x ⎧<-⎪⎪⎪⎪=-≤<⎨⎪⎪+=≥⎪⎪⎩8.设连续型随机变量X 的分布函数为32,0,(),0.x c x F x a be x -<⎧⎪=⎨⎪+≥⎩试求:(1)常数,,a b c 的值;(2)随机变量X 的密度函数;(3)0lim (|2|)x P X x →-≤.解 (1) 由()0F -∞=知0c =;由()1F +∞=知1a =;由()F x 在0点连续知0(0)lim ()x F F x →-=,即0a b +=,故1b =-.(2) 在()F x 导数存在的处有()()f x F x '=,所以,3220,0,()3,0.2x x f x x e x -≤⎧⎪=⎨>⎪⎩(3) 由于()F x 为连续函数,故lim (|2|)lim((2)(2))(2)(2)0x x P X x F x F x F F →→-≤=+--=-=.9.设连续型随机变量X 的密度函数为2,01,()2,12,0,ax x f x x x ⎧≤≤⎪=-<≤⎨⎪⎩其他.Y34-34P0.2 0.8试求:(1)常数a 的值;(2)随机变量X 的分布函数;(3)13()22P X <<. 解(1)由于1220111()(2)32a f x dx ax dx x dx +∞-∞==+-=+⎰⎰⎰. 故32a =.(2)当0x <时,()0F x =;当01x ≤≤时,23031()22xF x t dt x ==⎰; 当12x <≤时,1220131()(2)2122x F x t dt t dt x x =+-=--⎰⎰;当2x >时,()1F x =. 故,320,0,1,01,2()121,1221, 2.x x x F x x x x x <⎧⎪⎪≤≤⎪=⎨⎪-+-<≤⎪⎪>⎩(3)132212113313()(2)22216P X x dx x dx <<=+-=⎰⎰.10.设连续型随机变量()X Exp λ ,证明:对一切实数0s >,0t >有(|)()P X s t X t P X s >+>=>.证明 由于()X Exp λ ,从而其分布函数为0,0,()1,0.xx F x e x λ-≤⎧⎪=⎨->⎪⎩ 故,对一切实数0s >,0t >,(,)()(|)()()P X s t X t P X s t P X s t X t P X t P X t >+>>+>+>==>> ()1()1()1()1()s t t P X s t F s t e P X t F t eλλ-+--≤+-+===-≤- 1()()s e F s P X s λ-==-=>.11.设离散型随机变量X 的分布列为1()(1),1,2,k P X k p p k -==-= ,其中01p <<,证明:对任意正整数,m n 有(|)()P X n m X m P X n >+>=>,(上述分布列对应的分布称为参数为p 的几何分布,上述性质称为几何分布的无记忆性). 解 111()()(1)(1)k n k n k n P X n P X k p p p +∞+∞-=+=+>===-=-∑∑.从而, (,)()(|)()()P X n m X m P X n m P X n m X m P X m P X m >+>>+>+>==>> (1)(1)()(1)n m nmp p P X n p +-==-=>-. 12.某人购买某种彩票,若已知中奖的概率为0.001,现购买2000张彩票,试求:(1) 此人中奖的概率;(2)至少有3张彩票中奖的概率(用泊松分布近似计算). 解 设中奖的彩票数为X ,则(2000,0.001)X B .(1)2000(1)1(0)1(0.999)0.8648P X P X ≥=-==-≈.(2)由于20000.0012⨯=,故(3)1(0)(1)(2)P X P X P X P X ≥=-=-=-=012222221()150.32330!1!2!e e --≈-++=-≈.13.假设测量的随机误差(0,4)X N ,试求在10次独立重复测量中,至少有二次测量误差的绝对值大于3.92的概率.解 3.92 3.92(|| 3.92)1( 3.92 3.92)1(()())22P X P X >=--<<=-Φ-Φ- 22(1.96)0.05=-Φ=.设Y 为10次测量中误差的绝对值大于3.92的次数,则(10,0.05)Y B . 故(2)1(0)(1)P Y P Y P Y ≥=-=-=1019101(0.95)0.05(0.95)0.0861C =--⨯⨯≈.14.一个完全不懂中文的外国人去参加一个中文考试,假设此考试有5个选择题,每题有4个选择,其中只有一个正确答案,试求:此人能答对3题以上而及格的概率. 解 设X 为答对的题目数,则1(5,)4X B . 故(3)(3)(4)(5)P X P X P X P X ≥==+=+=3324415555513131()()()()()44444C C C =⨯⨯+⨯⨯+⨯530.1035512=≈ 15.假设一保险公司在任何长为t 的时间内发生索赔的次数()N t 服从参数为(0)t λλ>的泊松分布,试求:(1)相继两次索赔之间时间间隔Y 的分布;(2)在保险公司6小时内无索赔的情况下,再过4小时仍无索赔的概率. 解 (1)当0y >时,0()()(()0)0!yy y P Y y P N y e e λλλ-->====,故,()1()1yY F y P Y y eλ-=->=-;当0y ≤时,()()0Y F y P Y y =≤=. 从而,Y 的密度函数为,0,()0,0.y Y e y f y y λλ-⎧>⎪=⎨≤⎪⎩故,()Y Exp λ .(2)所求概率为(64|6)P Y Y >+>. 由第10题的结论知4(64|6)(4)P Y Y P Y e λ->+>=>=.16.设连续型随机变量X 的分布函数为()F x ,其密度函数()f x 为偶函数. 试证明:对任意实数0a >,有(1)01()1()()2aF a F a f x dx -=-=-⎰; (2)(||)2()1P X a F a <=-; (3)(||)2(1())P X a F a >=-.证明 由于()f x 为偶函数,所以,()()f x f x -=. 从而,()()f x dx f x dx +∞-∞=⎰⎰. 又()1f x dx +∞-∞=⎰,所以,01()()2f x dx f x dx +∞-∞==⎰⎰. (1) ()()()()y xaaaF a f x dx f y dy f y dy =--+∞+∞-∞-==-=⎰⎰⎰1()1()a f y dy F a -∞=-=-⎰.又001()()()()2aaa f y dy f y dy f y dy f y dy -∞-∞=+=+⎰⎰⎰⎰. 所以,由上式知,00111()1()()22a aF a f y dy f y dy -=--=-⎰⎰.(2)(||)()()()(1())2()1P X a F a F a F a F a F a <=--=--=-. (3)(||)1(||)1(2()1)2(1())P X a P X a F a F a >=-<=--=-. 17.设随机变量(1,4)X N ,试求:(1)(6)P X <;(2)(23)P X -<<;(3)(7)P X >. 解 (1)61(6)()(2.5)0.99382P X -<=Φ=Φ=; (2)3121(23)()()(1)(1(1.5))0.774522P X ----<<=Φ-Φ=Φ--Φ=;(3)71(7)1(7)1()1(3)0.001352P X P X ->=-≤=-Φ=-Φ=.18.设随机变量(2,2)Z U - ,随机变量1,1,1,1;Z X Z -≤-⎧⎪=⎨>-⎪⎩ 1,1,1,1.Z Y Z -≤⎧⎪=⎨>⎪⎩试求:(1)二维随机变量(,)X Y 的联合分布列;(2)(,)X Y 的联合分布函数(,)F x y . 解 (1)由(2,2)Z U - 知其密度函数为1,22,4()0,.z f z ⎧-<<⎪=⎨⎪⎩其他1211(1,1)(1,1)(1)44P X Y P Z Z P Z dz --=-=-=≤-≤=≤-==⎰; (1,1)(1,1)0P X Y P Z Z =-==≤->=;1111(1,1)(1,1)(11)42P X Y P Z Z P Z dz -==-=>-≤=-<≤==⎰; 2111(1,1)(1,1)(1)44P X Y P Z Z P Z dz ===>->=>==⎰.故,(,)X Y 的联合分布列为(2)当1x <-或1y <-时,(,)0F x y =;当11,11x y -≤<-≤<时,1(,)(1,1)4F x y P X Y ==-=-=; 当11,1x y -≤<≥时,1(,)(1,1)(1,1)4F x y P X Y P X Y ==-=-+=-==; 当1,11x y ≥-≤<时,3(,)(1,1)(1,1)4F x y P X Y P X Y ==-=-+===; 当1,1x y ≥≥时,(,)1F x y =. 从而,1,11,143,1,11,(,)41,1,1,0,x y x y F x y x y ⎧-≤<≥-⎪⎪⎪≥-≤<=⎨⎪≥≥⎪⎪⎩其他.19.设二维连续型随机变量(,)X Y 的联合密度函数为(),01,01,(,)0,k x y x y f x y +<<<<⎧⎪=⎨⎪⎩其他.试求:(1)常数k 的值;(2)X 与Y 的边缘密度函数()X f x 及()Y f y ;(3)(1)P X Y +<及1()2P X <.解 (1)11001(,)()f x y dxdy k x y dxdy k +∞+∞-∞-∞==+=⎰⎰⎰⎰.(2)()(,)X f x f x y dy +∞-∞=⎰.当0x ≤或1x ≥时,()0X f x =; 当01x <<时,11()()2X f x x y dy x =+=+⎰. Y X1- 11-11412 14故,1,01,2()0,X x x f x ⎧+<<⎪=⎨⎪⎩其他.类似地,1,01,2()0,Y y y f y ⎧+<<⎪=⎨⎪⎩其他.(3)11001(1)(())3xP X Y x y dy dx -+<=+=⎰⎰; 12120113()()()228X P X f x dx x dx -∞<==+=⎰⎰或121003(())8x y dy dx =+=⎰⎰.20.设二维连续型随机变量(,)X Y 的联合密度函数为1,01,02,(,)0,x y x f x y <<<<⎧⎪=⎨⎪⎩其他.试求:(1)X 与Y 的边缘密度函数()X f x 及()Y f y ;(2)X 与Y 相互独立吗?(3)2Z X Y =-的密度函数()Z f z .解 (1)()(,)X f x f x y dy +∞-∞=⎰.当0x ≤或1x ≥时,()0X f x =; 当01x <<时,20()12xX f x dy x ==⎰.故,2,01,()0,X x x f x <<⎧⎪=⎨⎪⎩其他.()(,)Y f y f x y dx +∞-∞=⎰.当0y ≤或2y ≥时,()0Y f y =; 当01y <<时,12()112Y y y f y dx ==-⎰. 故,1,02,2()0,Y y y f y ⎧-<<⎪=⎨⎪⎩其他.(2)由于当(,){01,02}x y x y x ∈<<<<时,(,)()()X Y f x y f x f y ≠⋅,且区域{01,02}x y x <<<<的面积不为0,所以,X 与Y 不相互独立. (3)先求2Z X Y =-的分布函数()Z F z .()()(2)Z F z P Z z P X Y z =≤=-≤.当02z≤,即0z ≤时,()0Z F z =; 当012z<<,即02z <<时,221220221()(1)(1)4z x xZ z x z F z dy dx dy dx z z -=+=-⎰⎰⎰⎰; 当12z≥,即2z ≥时,1200()(1)1x Z F z dy dx ==⎰⎰.从而,20,0,1(),02,41, 2.Z z F z z z z z ≤⎧⎪⎪=-<<⎨⎪⎪≥⎩所以,2Z X Y =-的密度函数为1,02,2()0,Z z z f z ⎧-<<⎪=⎨⎪⎩其他.21.设二维离散型随机变量(,)X Y 的联合分布列试求:(1)X 与Y 的边缘分布列;(2)在Y 的条件下,X 的条件分布列;(3)X 与Y 相互独立吗? 解 (1)Y X 0 1 2 120.1 0.2 0.10.15 0.3 0.15(2)在0Y =的条件下,X 的条件分布列为0.1(1|0)0.40.25P X Y ====; 0.15(2|0)0.60.25P X Y ====.在1Y =的条件下,X 的条件分布列为0.2(1|1)0.40.5P X Y ====; 0.3(2|1)0.60.5P X Y ====;在2Y =的条件下,X 的条件分布列为0.1(1|2)0.40.25P X Y ====;0.15(2|2)0.60.25P X Y ====.(3)对任意的1,2;0,1,2i j ==可验证(,)()()P X i Y j P X i P Y j =====.所以,X 与Y 相互独立.22.设二维连续型随机变量(,)X Y 的联合密度函数为(1)26(41),01,01,5(,)0,x xy x y f x y ⎧+<<<<⎪=⎨⎪⎩其他.(2)24(1),0,0,1,(,)0,y x y x y x y f x y -->>+<⎧⎪=⎨⎪⎩其他.试求:条件密度函数|(|)Y X f y x 及|(|)X Y f x y . 解 (1)先求边缘密度函数()X f x 及()Y f y .()(,)X f x f x y dy +∞-∞=⎰.当0x ≤或1x ≥时,()0X f x =; 当01x <<时,123206126()(41)555X f x x xy dy x x =+=+⎰. X1 2 P0.4 0.6Y0 1 2P0.25 0.5 0.25故,32126,01,55()0,X x x x f x ⎧+<<⎪=⎨⎪⎩其他.类似地,62,01,55()0,Y y y f y ⎧+<<⎪=⎨⎪⎩其他.所以,当01x <<时,|41,01,(,)21(|)()0,Y X X xy y f x y x f y x f x +⎧<<⎪+==⎨⎪⎩其他.当01y <<时,2|3(41),01,(,)31(|)()0,X Y Y x xy x f x y y f x y f y ⎧+<<⎪+==⎨⎪⎩其他.(2)先求边缘密度函数()X f x 及()Y f y .()(,)X f x f x y dy +∞-∞=⎰.当0x ≤或1x ≥时,()0X f x =; 当01x <<时,130()24(1)4(1)xX f x y x y dy x -=--=-⎰.故,34(1),01,()0,X x x f x ⎧-<<⎪=⎨⎪⎩其他.类似地,212(1),01,()0,Y y y y f y ⎧-<<⎪=⎨⎪⎩其他.所以,当01x <<时,3|6(1),01,(,)(1)(|)()0,Y X X y x y y x f x y x f y x f x --⎧<<-⎪-==⎨⎪⎩其他.当01y <<时,2|2(1),01,(,)(1)(|)()0,X Y Y x y x y f x y y f x y f y --⎧<<-⎪-==⎨⎪⎩其他.23.设连续型随机变量X 的密度函数为2341,12,()20,x e xe x f x e -⎧--<<⎪=⎨⎪⎩其他.试求:21X -及||X 的密度函数.解 设21Y X =-,先求Y 的分布函数()Y F y ,在对其求导数.121()()(21)()()2y Y y F y P Y y P X y P X f x dx +-∞+=≤=-≤=≤=⎰.当112y +≤-,即3y ≤-时,()0Y F y =,故()0Y f y =; 当122y +≥,即3y ≥时,()1Y F y =,故()0Y f y =;当1122y +-<<,即33y -<<时,2132411()2y x Y e F y xe dx e +---=⎰, 故, 21(1)3324441111()()(1)2228y y Y Y e y e f y F y e y e e e++---+-'===+ .所以,21X -的密度函数为2(1)3441(1),33,()80,.y Y e y e y f y e+-⎧-+-<<⎪=⎨⎪⎩其他设||Z X =,先求Z 的分布函数()Z F z ,在对其求导数.()()(||)Z F z P Z z P X z =≤=≤.当0z <时,()0Z F z =,故()0Z f z =; 当0z ≥时,()()()zZ zF z P z X z f x dx -=-≤≤=⎰.当10z -<-≤,即01z ≤<时,2341()2zx Z z e F z xe dx e ---=⎰,故, 22341()()()02z z Z Z e f z F z ze ze e---'==-=; 当1z -≤-且02z ≤≤,即12z ≤≤时,23411()2zx Z e F z xe dx e ---=⎰,故, 2341()()2z Z Z e f z F z ze e --'==;当1z -≤-且2z >,即2z >时,232411()12x Z e F z xe dx e ---==⎰,故()0Z f z =.所以,||X 的密度函数为2341,12,()20,.z Z e ze z f z e-⎧-≤≤⎪=⎨⎪⎩其他24.设连续型随机变量X 的密度函数为1,10,21(),02,40,x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他.令2Y X =,(,)F x y 为二维随机变量(,)X Y 的联合分布函数. 试求:(1)Y 的密度函数()Y f y ;(2)1(,4)2F -.解 (1)先求Y 的分布函数()Y F y ,在对其求导数.2()()()Y F y P Y y P X y =≤=≤.当0y <时,()0Y F y =,故()0Y f y =;当0y ≥时,()()()yY yF y P y X y f x dx -=-≤≤=⎰.当1y ->-,即01y ≤<时,113()244yY yF y dx dx y -=+=⎰⎰, 故,123()()8Y Y f y F y y -'==;当1y -≤-且2y <,即14y ≤<时,11111()2424yY F y dx dx y -=+=+⎰⎰, 故,121()()8Y Y f y F y y -'==;当1y -≤-且2y ≥,即4y ≤时,()1Y F y =,故()0Y f y =.所以,12123,01,81(),14,80,Y y y f y y y --⎧<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它.(2) 2111(,4)(,4)(,4)222F P X Y P X X -=≤-≤=≤-≤121111(2)224P X dx --=-≤≤-==⎰.25.设随机变量(0,1)X U ,试求:X e 及2X -的密度函数.解 由(0,1)X U 知其密度函数为1,01,()0,.x f x <<⎧⎪=⎨⎪⎩其他 设XY e =,函数()xy g x e ==.则min{(),()}0g g α=-∞+∞=,max{(),()}g g β=-∞+∞=+∞. 由于()x y g x e ==单调,反函数存在ln x y =且当(0,)y ∈+∞时,1(ln )y y'=. 所以,当(0,)y ∈+∞时,11()(ln )(ln )Y f y f y f y y y==. 从而,当0ln 1y <<,即1y e <<时,1()Y f y y =. 所以,XY e =的密度函数为1,1,()0,.Y y e y f y ⎧<<⎪=⎨⎪⎩其他设2Z X -=,先求Z 的分布函数()Z F z ,在对其求导数.2()()()Z F z P Z z P X z -=≤=≤.当0z ≤时,()0Z F z =,故()0Z f z =; 当0z >时,1121()1()1()z Z z F z P X z f x dx ----=-<=-⎰.当11z -≥,即01z <≤时,1()110Z F z dx =-=⎰,故, ()0Y f y =;当11z -<,即1z >时,110()111z z Z F z dx --=-=-⎰,故, 321()()2Y Y f y F y z -'==.所以,2Z X -=的密度函数为321,1,()20,.Z z z f z -⎧>⎪=⎨⎪⎩其他26.设连续型随机变量X 的密度函数为121,14,()20,x x f x -⎧<<⎪=⎨⎪⎩其他.()F x 为随机变量X 的分布函数. 试求:(1)()F x ;(2)随机变量()Y F X =的密度函数. 解 (1)()()()xF x P X x f t dt -∞=≤=⎰.当1x ≤时,()0F x =;当14x <<时,112211()12xF x t dt x -==-⎰; 当4x ≥时,()1F x =. 所以,120,1()1,14,1, 4.x F x x x x ≤⎧⎪⎪=-<<⎨⎪≥⎪⎩(2)先求()Y F X =的分布函数()Y F y ,在对其求导数.()()(())Y F y P Y y P F X y =≤=≤.当0y <时,()0Y F y =,故()0Y f y =; 当01y ≤<时,()((),1)((),14)Y F y P F X y X P F X y X =≤≤+≤<<((),4)P F X y X +≤≥12(1)(1,14)0P X P X y X =≤+-≤<<+220((1),14)(1(1))P X y X P X y =+≤+<<=<≤+21(1)2112y x dx y +-==⎰. 故,()()1Y Y f y F y '==;当1y ≥时,()(())1Y F y P F X y =≤=,故()0Y f y =. 所以,()Y F X =的密度函数为1,01,()0,.Y y f y ≤<⎧⎪=⎨⎪⎩其他 27.设随机变量X 的分布函数()F x 为严格单调的连续函数.(1)试证明随机变量()Y F X =服从均匀分布(0,1)U ;(2)若对任意实数x ,()1F x <且()ln(1())R x F x =--,试证明随机变量()Z R X =服从指数分布(1)Exp .解 由于()F x 为严格单调递增,从而()F x 的反函数存在且单调递增.(1)先求()Y F X =的分布函数()Y F y ,在对其求导数.()()(())Y F y P Y y P F X y =≤=≤.当0y <时,()0Y F y =,故()0Y f y =; 当1y ≥时,()(())1Y F y P F X y =≤=,故()0Y f y =; 当01y ≤<时,11()(())(())Y F y P X F y F F y y --=≤==. 故,()()1Y Y f y F y '==;所以,()Y F X =的密度函数为1,01,()0,.Y y f y <<⎧⎪=⎨⎪⎩其他 即,()Y F X =服从均匀分布(0,1)U .(2)先求()Z R X =的分布函数()Z F z ,在对其求导数.()()(())(ln(1()))Z F z P Z z P R X z P F X z =≤=≤=--≤.当0z <时,()0Z F z =,故()0Z f z =; 当0z ≥时,()(ln(1()))(()1)z Z F z P F X z P F X e -=--≤=≤-11((1))((1))1z z zP X F e F F e e-----=≤-=-=-,故,()()zZ Z f z F z e -'==. 所以,,0,()0,0.z Z e z f z z -⎧≥⎪=⎨<⎪⎩从而,()Z R X =服从指数分布(1)Exp .28.设离散型随机变量X 的分布列为试求:(1)常数a 的值;(2)22Y X =-的分布列.X 1- 0 1 2 P 2a 14 a 12解 (1)由于111242a a =+++,故112a =.(2)由X 的分布列知,合并取1-的概率得Y 的分布列为11(,)X B n p ,29.设随机变量22(,)X B n p 且1X 与2X 相互独立,试证明1212(,)X X B n n p ++ .证明 设12Z X X =+,可取120,1,2,,n n + . 从而,由1X 与2X 相互独立知,对任120,1,2,,k n n =+ ,()()()ki P Z k P X i P Y k i =====-∑.由于11(,)X B n p ,22(,)X B n p ,故当1i n >时,1{}X i =是不可能事件,所以只须考虑1i n ≤; 当2k i n ->时,{}Y k i =-是不可能事件,所以只须考虑2i k n ≥-. 因此记2max{0,}a k n =-, 1m i n {,}b n k=, 则()()()ki P Z k P X i P Y k i =====-∑1212()(1)(1)bn i n k i ii k i k in n i a Cp p C p p -----==--∑ 1212(1)bn n kkik i n n i ap p CC +--==-∑. 而由组合公式知Y 1- 2- 1- 2P 16 14 112 12Y 2- 1- 2P 0.25 0.25 0.51212bi k i k n n n n i aCC C -+==∑. 所以,121212()(1),0,1,2,,n n k k kn n P Z k C p p k n n +-+==-=+ .这说明1212(,)X X B n n p ++ .30.设随机变量(0,1)X U ,(1)Y Exp 且X 与Y 相互独立,Z X Y =+,试求:(1)(2)P X Y -≥-;(2)Z 的密度函数. 解 由(0,1)X U ,(1)Y Exp 知,X 与Y 的密度函数分别为1,01,()0,.X x f x <<⎧⎪=⎨⎪⎩其他 及 ,0,()0,0.yY e y f y y -⎧>⎪=⎨≤⎪⎩又由X 与Y 相互独立知(,)X Y 的一个联合密度函数为,01,0,(,)0,.ye x yf x y -⎧<<>⎪=⎨⎪⎩其他(1)()12320(2)1x y P X Y e dy dx e e +----≥-==+-⎰⎰.(2)设Z X Y =+的密度函数为()Z f z . 由于X 与Y 相互独立,从而()()()Z X Y f z f x f z x dx +∞-∞=-⎰.由()X f x ,()Y f z x -不等于零的区域知01,0.x z x <<⎧⎨->⎩所以,当0z ≤时,()0Z f z =; 当01z <<时,()()11zz x z Z f z edx e ---==-⎰ ;当1z ≥时,1()0()1(1)z x zZ f z e dx e e ---==-⎰ . 所以,1,01,()(1),1,0,.z z Z e z f z e e z --⎧-<<⎪⎪=-≥⎨⎪≤⎪⎩z 031.设离散型随机变量X 的分布列为连续型随机变量Y 的密度函数为()f y 且X 与Y 相互独立. 试问随机变量X Y +为连续型吗?若是,求其密度函数.解 设X Y +的分布函数为()G z ,则由X 与Y 相互独立知()()G z P X Y z =+≤(,1)(,1)P X Y z X P X Y z X =+≤=-++≤= (1,1)(1,1)P Y z X P Y z X =≤+=-+≤-=(1,1)(1,1)(1,P Y z X P Y z X P Y z X =≤+≤-+≤-≤-≤-≤-(1)(1)(1)(1)(1)(1)P Y z P X P Y z P X P Y z P X =≤+≤-+≤-≤-≤-≤-(1)(1)(1)(1)P Y z P X P Y z P X =≤+=-+≤-=110.4()0.6()z z f y dy f y dy +--∞-∞=+⎰⎰(0.4(1)0.6(1))z f x f x dx -∞=++-⎰.所以,X Y +为连续型,其密度函数为0.4(1)0.6(1)f z f z ++-.习题3解答1.设有n 把看上去样子相同的钥匙,其中只有一把能打开门上的锁,用它们去逐一试开门锁,设每把钥匙被取到的可能性相等. 若每把钥匙试开一次后除去,试求试开次数X 的数学期望及方差. (提示:222(1)(21)1236n n n n ++++++= )解 X 的分布列为111(),1,2,,k n kn A P X k k n A n--==== .从而, 111()()2nk n E X k n =+=⨯=∑. X 1- 1 P 0.4 0.6。