高考数学函数专题习题及详细答案

  • 格式:doc
  • 大小:1.03 MB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数专题练习

1.函数1

()x y e

x R +=∈的反函数是( )

A .1ln (0)y x x =+>

B .1ln (0)y x x =->

C .1ln (0)y x x =-->

D .1ln (0)y x x =-+>

2.已知(31)4,1

()log ,1a a x a x f x x x -+<⎧=⎨>⎩

是(,)-∞+∞上的减函数,那么a 的取值范围是

(A )(0,1)ﻩ (B )1

(0,)3 ﻩ(C)11[,)73

(D )1[,1)7

3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意

1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有

(A )1()f x x

=

(B )()||f x x = (C )()2x

f x =

(D)2

()f x x =

4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设

63(),(),52a f b f ==5(),2

c f =则

(A)a b c << (B )b a c << (C )c b a << (D )c a b <<

5.

函数2

()lg(31)f x x =

+的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33

- D .

1(,)3

-∞-

6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C .

,y x x R =∈ D .

x 1

() ,2

y x R =∈

7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点

(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =

A.4 B .3 C . 2 D .1

8、设()f x 是R 上的任意函数,则下列叙述正确的是

(A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数

)

9、已知函数x

y e =的图象与函数()y f x =的图象关于直线y x =对称,则

A .()22()x

f x e x R =∈ B .()2ln 2ln (0)f x x x =>

C .()22()x

f x e x R =∈ D .()2ln ln 2(0)f x x x =+>

10、设12

32,2()((2))log (1) 2.

x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,

则的值为, (A)0 (B )1 (C )2 (D)3 11、对a ,b ∈R ,记max {a ,b}=⎩

⎨⎧≥b a b b

a a <,,,函数f (x )=ma x{|x +1|,|x -2|}(x ∈R)的最小

值是

(A)0 (B)

12 (C ) 3

2

(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;

②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.

命题的个数是 A .0 B .1 C .2 D .3 (一) 填空题(4个)

1.函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=,若()15,f =-则()()5f f =_______________。

2设,0.(),0.

x e x g x lnx x ⎧≤=⎨>⎩则1

(())2g g =__________

3.已知函数()1

,21

x f x a =-

+,若()f x 为奇函数,则a =________。 4. 设0,1a a >≠,函数2

()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集

为 。

(二) 解答题(6个) 1. 设函数54)(2--=x x x f .

(1)在区间]6,2[-上画出函数)(x f 的图像;

(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之

间的关系,并给出证明;

(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方.

2、设f(x)=3ax 0.2=++++c b a c bx b

若,f (0)>0,f (1)>0,求证:

(Ⅰ)a >0且-2<

b

a

<-1; (Ⅱ)方程f(x)=0在(0,1)内有两个实根.

3. 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

4.设函数f (x )=,2

2

a

ax x c ++其中a 为实数. (Ⅰ)若f (x )的定义域为R ,求a的取值范围;

(Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间.

5. 已知定义在正实数集上的函数2

1()22

f x x ax =

+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值; (I I)求证:()()f x g x ≥(0x >).

6. 已知函数2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设11a =,1()

'()

n n n n f a a a f a +=-

(n =1,2,……) (1)求,αβ的值;

(2)证明:对任意的正整数n ,都有n a >a ; (3)记ln

n n n a b a a

β

-=-(n =1,2,……),求数列{b n }的前n 项和Sn 。