西南交大专升本项目工程数学考题
- 格式:doc
- 大小:877.69 KB
- 文档页数:21
工程力学C主观题作业第一次作业三、主观题(共16道小题)36. 试作下列各杆件的受力图。
答:37. 1-4 试作下面物体系中各指定物体的受力图:(a)圆柱体O、杆AB及整体;(b)吊钩G、钢梁、构件;(c)折杆ABC、圆柱体O及整体;(d)杆AB及整体;(e)棘轮O、棘爪AB;(f )梁AB、DE和滚柱C。
答:38.图示三铰刚架由AB和BC两部分组成,A、C为固定铰支座,B为中间铰。
试求支座A、C和铰链B的约束力。
设刚架的自重及摩擦均可不计。
答:39.压路的碾子O重P = 20 kN,半径R = 400 mm。
试求碾子越过高度d = 80 mm的石块时,所需最小的水平拉力Fmin。
设石块不动。
答:Fmin = 15 kN40. 构架ABCD在A点受力F = 1 kN作用。
杆AB和CD在C点用铰链连接,B、D两点处均为固定铰支座。
如不计杆重及摩擦,试求杆CD所受的力和支座B的约束力。
答:41.梁AB如图所示,作用在跨度中点C的力F = 20 kN。
试求图示两种情况下支座A和B的约束力。
梁重及摩擦均可不计。
答:42. 如图a所示,重量为P = 5 kN的球悬挂在绳上,且和光滑的墙壁接触,绳和墙的夹角为30º。
试求绳和墙对球的约束力。
(4)根据平衡条件列平衡方程。
可先求出各力在x、y轴上的投影,如表2-1中所示,于是43. 重P = 1 kN的球放在与水平成30º角的光滑斜面上,并用与斜面平行的绳AB系住(图2-15 a)。
试求绳AB受到的拉力及球对斜面的压力。
44.答:45.答:46. 已知AB梁上作用一矩为Me的力偶,梁长为l,梁重及摩擦均不计。
试求在图示四种情况下支座A、B的约束力。
答:47. 汽锤在锻打工件时,由于工件偏置使锤头受力偏心而发生偏斜,它将在导轨DA和BE上产生很大的压力,从而加速导轨的磨损并影响锻件的精度。
已知锻打力F = 1000 kN,偏心距e = 20 mm,锤头高度h = 200 mm,试求锻锤给两侧导轨的压力。
西南交通大学高等数学练习题答案详解精品文档西南交通大学高等数学练习题答案详解高等数学1. 函数y?xcos2? A. 奇函数x3?x是1?xB. 偶函数C. 非奇非偶函数D. 有界函数2. 函数y?2cos的周期是B.?C.?D. 0an?2,. 设数列an,bn及cn满足:对任意的n,an?bn?cn,且limn??lim?0,则limbn?n??n??A. 0B. 1C.D. -21 / 32精品文档x2?2x?14. lim=x?ix3?xA.1B. 0C.1D. ?5. 在抛物线y?x2上点M的切线的倾角为 A. 1124tan2x?,则点M的坐标为11B. C. D.426.limx?0e?1?sinxB.2 / 32精品文档1xA. 0 C. 1 D. -27. A.limx?012B. eC.1D. ?8. 设曲线y?x与直线x=2的交点为P,则曲线在P点的切线方程是 A x-y-4=0B x+y-1=0C x+y-3=0D x-y+2=09. y?x?3?sinx,则y?? A. xx?1xx?3x?cosx1B. x?3ln3?cosxxxC. xlnx?3ln3?cosxxxD. x?3ln3?cosx3 / 32精品文档xx10. f在点x0可微是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件11. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.C. ,12.?sin3xdx?11cos3x?c B. ?cos3x?C C. ?cos3x?C D. cos3x?C3 21dt,则??? 13. 设??? sinx1?t21cosxcosx1?? A.B.C.D.1?sin2x1?sin2x1?sin2x1?sin2xA.14. 函数5e的一个原函数为 A.e5x5xB.e4 / 32精品文档5xC.15xeD. ?e5x15.??2??2xcos3xdx= B.A.2???4C. 0D.216. 下列广义积分收敛的是 A.5 / 32精品文档??dxx1B.dx? 022C.??11dx 1?xD.?adxa?x2217. 下列集合可作为一条有向直线在空间直角坐标系中的方向角?,?,?的是 A. 5?,45?,60?C. 0?,45?,60?,18. 设函数f?xy? A. 06 / 32精品文档B. 12B.5?,60?,60? D.5?,60?,90? y,则f?=xxC. ?1D.2219. 设函数u?ln,则du2=A.1C. dx?dy?dz 0.24D.3B.7 / 32精品文档23x ??xA?2xcos2x B xsinx2C sinxDsin2x2. 当D?{|x2?y2?1} 时,则??dx?DA ?B 1C 0D ?a23. 设a?0,则?? A.?B.?C.发散D.?4225. 曲面z?x2?y2在点处的切平面方程是A.?4??0 B ?4??0 C. ?2??0,D.?4??0?26. 判断级数?n?118 / 32精品文档n?12n2?n是 A绝对收 . B条件收敛. C 发散 . D 以上都不正确 . ?g27. f???x,x?0其中g?=2要使f在x?0处连续,则a?A. 0B. 1C.D. e28. 方程y???4y?0的通解是 A. y?Ce2x?Ce?2xC.y?C1e2x?C2e?2x?B. y?C1e2x?e?2x D. y?e2x?C2e?2xn?1x2n?129. ?内的和函数是n?1!AsinxB cosx Cex30. 设f?3??x9 / 32精品文档20tdt,,则f=西南交通大学网络教育2010年秋季入学考试模拟题高等数学1.函数y?x2sinx?ln,则y?? A. xx?1x3?3x?cosx2B. x?3ln3?cosx D. x?3ln3?cosxxxxxC. x?3x?sinxx7. f在点x0可导是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件8. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.10 / 32精品文档C. ,1x9. 曲线y?e?1的水平渐近线方程为 A. x?1B. y?1C. x?0D.y?0210.?5一、填空题: 1(设函数z?z是由?nxz?lnzy所确定,则dz?0,1,1??dx?dy (?2(设幂级数?anx的收敛区间为??3,3?,则幂级数?an?x?1?的收11 / 32精品文档n?0n?0n敛区间为 ??2,4? ((设函数??x,f???0,y???x?00?x??的付氏级数的和函数为S,则S??2(4(设z?f,其中f具有连续的二阶偏导数,则x??z?x?y2=1x???f121x12 / 32精品文档2f2??yx3?? ( f225(设幂级数?an?x?1?在x?0处收敛,而在x?2处发散,则幂级数?anxn的n?0n?0n?收敛域为 [?1,1)((函数?n?1?n关于x的幂级数展开式为 ? ( f??1??x,x?2n?1x?x?2n?0?2?3?y7(设函数z?x,则dz? dx?2ln2dy8(曲线x?t,y??t2,z?t3的切线中,与平面x?2y?3z?6垂直的切线方程是13 / 32精品文档x?11?y?1?2?z?13z(9(设z?z是由方程e?zsin?lna a?0为常数所确定的二元函数,则 dz? yzcose?sin2zdx?xzcose?sinzdy(10.旋转抛物面z?x?y的切平面:x?4y?8z?1?0,2平行与已知平面x?y?2z?1.111(微分方程2y???y??y?0的通解为 Y?C1e2x?C2e14 / 32精品文档?x,1x2y???y??y?e的通解为 y?C1e2?C2ex?x?12e(x12.曲线?:x??tecosudu,y?2sint?cost,z?1?eu3t在点?0,1,2?处的切线方程为3(函数f?1x?4的麦克劳林级数的第5项为?x44515 / 32精品文档,收敛域为.14.(已知函数f?2x?3y?x?y,有一个极值点,则a?2, b?3,此时函数f 的极大值为 .ab15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a为三个正数x,y,z之和,使x,y,z的倒数之和最小L?x,y,z??1x?1y?1z???x?y?z?a?16函数f?xln?1?x?的麦克劳林级数的收敛域为x???1,1?,f?二、单项选择题:请将正确结果的字母写在括号内。
西南交通大学高等数学考试一、选择题(每题4分,共16分)1.函数222222 0(,)0 0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点 .(A) 连续,且偏导函数都存在(B) 不连续,但偏导函数都存在;(C) 不连续,且偏导函数都不存在; (D) 连续,且偏导函数都不存在。
2.设f 为可微函数,(,)z f x y z xyz =++,则z x ∂=∂ 。
(A )12121f yz f f x y f ''+''+- (B )12121f x y f f yz f ''--''+ (C )12121f yz f f x y f ''+''-- (D )1212f xzf f yzf ''+''+。
3.设),(y x f 在()22:24D x y +-≤上连续,则二重积分⎰⎰D y x f σd ),(表示成极坐标系下的二次积分的形式为 。
(A ). 220 0d (cos ,sin )d f r r r rπθθθ⎰⎰;(B ). 2d (cos ,sin )d f r r r rπθθθ⎰⎰;(C ). 4cos 00d (cos ,sin )d f r r r rπθθθθ⎰⎰;(D ). 4sin 0d (cos ,sin )d f r r r rπθθθθ⎰⎰4.幂级数0(1)nn n a x ∞=+∑在3x =处条件收敛,则幂级数0nnn a x∞=∑的收敛半径为 。
(A ).3; (B ).4;(C ).1; (D ).5。
二、填空题(每题4分,共20分)1.设函数y z x =,则函数yz x =的全微分 。
2.函数222u x y z =++在点)1,1,1(0P 处沿0OP 方向的方向导数为 ,其中O 为坐标原点。
西南交大高等数学教材答案在文中我不能提供任何无关的题目内容或者文章的链接,但是我可以帮助您解答一些与西南交大高等数学教材相关的问题。
以下是一些常见的高等数学题目,希望对您有所帮助:
1. 求极限:
lim(x->0) (sinx / x)
解答:使用泰勒级数展开sinx以及lim(x->0) (1/x)的性质,可以得到lim(x->0) (sinx / x) = 1。
2. 计算偏导数:
求函数 f(x, y) = x^2 + 2xy + y^2 的关于 x 和 y 的偏导数。
解答:对于 f(x, y) = x^2 + 2xy + y^2,对 x 求偏导数,得到∂f/∂x = 2x + 2y;对 y 求偏导数,得到∂f/∂y = 2x + 2y。
3. 求定积分:
计算∫(0 to π/2) sinx dx。
解答:对于∫(0 to π/2) sinx dx,使用不定积分的方法可以得到该定积分的结果为 1。
4. 求微分方程的解:
求解微分方程 dy/dx = x^2 - y^2。
解答:该微分方程可以化为 dy / (x^2 - y^2) = dx,使用偏微分分式的方法可以得到 y = ±(e^(2x)+1) / (e^(2x)-1+C),其中 C 为常数。
这些是一些常见的高等数学问题,希望对您有所帮助。
如果您有其他具体的问题或者需要进一步的解答,请告诉我具体的要求,我会尽力帮助您。
西南交通大学“车辆工程”《数字电子技术A》23秋期末试题库含答案第1卷一.综合考核(共20题)1.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。
()A.错误B.正确2.在()的情况下,函数Y=A+B运算的结果是逻辑“1”。
A.全部输入是“0”B.任一输入是“0”C.任一输入是“1”D.全部输入是“1”3.七段译码器74LS47的输入是4位(),输出是七段反码。
A.BCD码B.七段码C.七段反码D.二进制码4.5.描述触发器的逻辑功能的方法不包括()A.状态转表B.特性方程C.状态转换图D.状态方程6.三态门输出高阻状态时,()是正确的说法A.用电压表测量指针不动B.相当于悬空C.电压不高不低D.测量电阻指针不动7.8.9.改变()值,不会改变555构成的多谐振荡器电路的振荡频率。
A.电源VCCB.电阻R1C.电阻R2D.电容C10.11.12.13.格雷码具有任何相邻码只有一位码元不同的特性。
()A.错误B.正确14.以下表达式中不符合逻辑运算法则的是()。
A.C·C=2CB.1+1=2C.0+1=1D.A+1=115.要想把串行数据转换成并行数据,不应选()。
A.并行输入串行输出方式B.串行输入串行输出方式C.串行输入并行输出方式D.并行输入并行输出方式16.17.18.数据选择器和数据分配器的功能正好相反,互为逆过程。
()A.错误B.正确19.若两个函数具有相同的真值表,则两个逻辑函数必然相等。
()A.错误B.正确20.下列哪些信号不属于数字信号()。
A.正弦波信号B.时钟脉冲信号C.音频信号D.视频图像信号第1卷参考答案一.综合考核1.参考答案:A2.参考答案:BCD3.参考答案:A5.参考答案:D6.参考答案:ABD9.参考答案:A13.参考答案:B14.参考答案:AB15.参考答案:ABD18.参考答案:B19.参考答案:B20.参考答案:ACD。
工程数学I 第3次作业客观题本次作业是本门课程本学期的第3次作业,注释如下:一、单项选择题(只有一个选项正确,共10道小题)1.(A)(B)(C)(D)你选择的答案: C [正确]正确答案:C解答参考:2.(A)(B)(C)(D)你选择的答案: B [正确] 正确答案:B解答参考:3.(A)(B)(C)(D)你选择的答案: D [正确] 正确答案:D解答参考:4. 下列说法正确的是()(A)(B)(C)(D)你选择的答案: D [正确] 正确答案:D解答参考:5.(A)(B)(C)(D)你选择的答案: C [正确] 正确答案:C解答参考:6.(A)(B)(C)(D)你选择的答案: C [正确] 正确答案:C解答参考:7.(A) 合同且相似(B) 合同但不相似(C)不合同但相似(D) 不合同且不相似你选择的答案: A [正确] 正确答案:A解答参考:8.(A)(B)(C)(D)你选择的答案: C [正确] 正确答案:C解答参考:9.(A)(B)(C)(D)你选择的答案: D [正确] 正确答案:D解答参考:10.(A)(B)(C)(D)你选择的答案: C [正确]正确答案:C解答参考:二、判断题(判断正误,共16道小题)11.你选择的答案:说法错误 [正确]正确答案:说法错误解答参考:12.你选择的答案:说法正确 [正确]正确答案:说法正确解答参考:13.你选择的答案:说法错误 [正确] 正确答案:说法错误解答参考:14.你选择的答案:说法错误 [正确] 正确答案:说法错误解答参考:15.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:16.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:17.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:18.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:19.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:20.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:21.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:22.你选择的答案:说法错误 [正确] 正确答案:说法错误解答参考:23.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:24.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:25.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:26.你选择的答案:说法正确 [正确] 正确答案:说法正确解答参考:。
当代远程教诲专升本高等数学入学考试复习题注:答案一律写在答题卷上,写在试题上无效考生注意:依照国家规定,试卷中正切函数、余切函数、反正切函数、反余切函数分别用tan ,cot ,arctan ,arccot x x x x 来表达。
一、 单项选取题1.设)(x f 是奇函数,)(x g 是偶函数,则)]([x g f 是【 】A .即不是奇函数,又不是偶函数B .偶函数C .有也许是奇函数,也也许是偶函数D .奇函数 2.极限03limtan4x xx→=【 】A .0B .3C .43D .4 3.由于e n nn =⎪⎭⎫ ⎝⎛+∞→11lim ,那么=xe 【 】A .xnn n x ⎪⎭⎫ ⎝⎛+∞→1lim B .nn n x ⎪⎭⎫ ⎝⎛+∞→1lim C .nxn n x ⎪⎭⎫ ⎝⎛+∞→1lim D .xnn n ⎪⎭⎫ ⎝⎛+∞→11lim4.若2)(2+=xex f ,则=)0('f 【 】A .1B .eC .2D .2e 5.设1)(-=xe xf ,用微分求得(0.1)f 近似值为【 】A .11.0-eB .1.1C .1.0D .2.06.设⎩⎨⎧==2bt y at x ,则=dy dx【 】A .a b 2 B .bt a 2 C .abt 2 D .bt 2)()('x f de x f 7.设0=-yxe y ,则=dxdy 【 】A .1-y y xe eB .y y xe e -1C .y y e xe -1D .yy e xe 1-8.下列函数中,在闭区间]1,1[-上满足罗尔定理条件是【 】 A .xe B .21x - C .x D .x ln 9.函数x x y ln =在区间【 】A .),0(+∞内单调减B .),0(+∞内单调增C .)1,0(e 内单调减D .),1(+∞e内单调减 10.不定积分⎰=dx x x )cos(2【 】A .C x +)sin(212 B .21sin 2x C + C .C x +-)sin(212 D .C x +-)sin(22 11.不定积分⎰=+dx exx ln 32【 】A .C e x +233 B .C e x +236 C .C e x +2331 D .C e x +236112.已知()f x 在0x =某邻域内持续,且(0)0f =,0()lim 21cos x f x x→=-,则在 0x =处()f x 【 】A .不可导B .可导但()0f x '≠C .获得极大值D .获得极小值 13.广义积分2 21dx x+∞=⎰【 】 A .0 B .∞+ C .21-D .2114.函数223y x z -=在)0,0(点为【 】A .驻点B .极大值点C .极小值点D .间断点 15.定积分122121ln1xx dx x-+=-⎰【 】A .1-B .0C .∞-D .116.设在区间[],a b 上()0,()0,()0f x f x f x '''><>,令 1 ()ba S f x dx =⎰,2()()S fb b a =-,31(()())()2S f a f b b a =+-。
普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=().A .23-B .32-C .32D .233.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像().A .向左平移π6个长度单位B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.函数|lg |)(x x x f -=在定义域上零点个数为().A .1B .2C .3D .45.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为().A .1B .21C .31D .616.一个等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是()A.a11B.a10C.a9D.a87.设函数f(x)=logax(a>0,且a ≠1)满足f(9)=2,则f -1(log92)等于()A.2B.2C.21 D.±28.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,则三棱锥D —ABC 的体积为()A.63a B.123a C.3123a D.3122a 9.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a+b+c=0,a ·b=b ·c=c ·a=-1,则|a|+|b|+|c|等于()A.22B.23C.32D.3310.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是()A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞⎥⎝⎦11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=()A .15BC .3D .512.设F 为双曲线C :22221x y a b -=(a>0,b>0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x2+y2=a2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为()ABC .2D二、填空题(共4小题,每小题5分;共计20分)1、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______.2、已知2tan -=α,71tan =+)(βα,则βtan 的值为______.3.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E-BCD 的体积是______.4.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线x+y=0的距离的最小值是______.三、大题:(满分70分)1、已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和;(2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.3.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠=四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证:平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值4.设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.5.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程. 6.已知函数(a ∈R ).(Ⅰ)讨论g (x )的单调性;(Ⅱ)若.证明:当x >0,且x ≠1时,.参考答案:一、选择题:1-5题答案:CDCCC 6-10题答案:ABDCB 11-12题答案:BA 二、填空题:1、︒60;2、3;3、10;4、4.三、大题:1、【解析】(1)由3()x x b f x x++=得211(1)21b a f b ++===+,3322(2)522b ba f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x +<,即x <()0f x '<,函数()f x 在(,-∞上单调递减,当330x +>,即x >时,()0f x '>,函数()f x 在()+∞上单调递增,故函数()f x 在x =极小值为53(31f =+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴2226633()1()()1()()()11f x x x x x x x x =-+=-++=-+++≥+---53131==+,当且仅当23()x x-=-,即x =综上所述,函数()f x 在x =53(31f =+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题.2、解:由-3∈A ,可得-3=a -2或-3=2a2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3,∴a =-32.3.参考答案:解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------①---1分连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O 是AC 的中点,连OG ,OG 是三角形ACE 的中位线//OG AE -②-----3分由①②知,平面//AEF 平面BDGH ----4分(2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD -------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON设2AB BF t ==,,则()()()100,03,0,10B C F t ,,,,,13,,222t H ⎛⎫⎪ ⎪⎝⎭--------6分()131,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭ 设平面BDGH 的法向量为()1,,n x y z = 110130222n OB x t n OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,3n t =- 平面ABCD 的法向量()20,0,1n = ----9分12231|cos ,|23n n t <>==+ ,所以29,3t t ==----10分所以()1,3,3CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n CF θ4.参考答案:解:(1)∵OP→·OQ →=0,则x1x2+y1y2=0,-1分又P 、Q 在抛物线上,故y12=2px1,y22=2px2,故得y122p ·y222p+y1y2=0,y1y2=-4p2222212144)(||pp y y x x ==∴-------3分又|x1x2|=4,故得4p2=4,p=1.所以抛物线的方程为:22y x =-------------4分(2)设直线PQ 过点E(a,0)且方程为x =my +a联立方程组⎩⎨⎧=+=x y amy x 22消去x 得y2-2my -2a =0∴⎩⎨⎧-==+ay y m y y 222121①设直线PR 与x 轴交于点M(b,0),则可设直线PR 方程为x =ny +b,并设R(x3,y3),同理可知,⎩⎨⎧-==+by y n y y 223131②--7分由①、②可得32y b y a=由题意,Q 为线段RT 的中点,∴y3=2y2,∴b=2a又由(Ⅰ)知,y1y2=-4,代入①,可得-2a =-4∴a =2.故b =4.∴831-=y y ∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+=2481222≥+⋅+=n n .当n=0,即直线PQ 垂直于x 轴时|PR|取最小值245.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y 轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.∴△OAB的面积为S△OAB=S△AOC+S△BOC====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.6.已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.。
数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。
2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。
又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。
联立两个方程,得到d = 2,故选A。
3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。
4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。
一、填空题: 1.设函数(,)z z x y =是由ln x zz y=所确定,则()0,1,1dz =dx dy + . 2.设幂级数0nn n a x ∞=∑的收敛区间为()3,3-,则幂级数()01nn n a x ∞=-∑的收敛区间为 ()2,4- .3.设函数,0()0,0x x f x x ππ--<≤⎧=⎨<≤⎩的付氏级数的和函数为()S x ,则(5)S π=2π.4.设),(xyx f z =,其中f 具有连续的二阶偏导数,则y x z∂∂∂2= 223221211f xy f x f x ''-'-'' . 5.设幂级数()01nn n a x ∞=-∑在0x =处收敛,而在2x =处发散,则幂级数0n n n a x ∞=∑的收敛域为 [1,1)-.6.函数23)(2-+=x x x f 关于x 的幂级数展开式为 110(1)1,(1,1)2n n n n x x +∞+=⎡⎤--∈-⎢⎥⎣⎦∑ . 7.设函数y z x =,则(2,1)dz = 2ln 2dx dy +8.曲线23,,x t y t z t ==-=的切线中,与平面236x y z -+=垂直的切线方程是111123x y z -+-==-. 9.设),(y x z z=是由方程sin()ln z e z xy a -= 0a >为常数所确定的二元函数,则 =dz cos()cos()sin()sin()z zyz xy xz xy dx dy e xy e xy +--. 10.旋转抛物面22zx y =+的切平面: 44810x y z -++=,平行与已知平面21x y z -+=.11.微分方程20y y y '''+-=的通解为 1212x x YC eC e -=+,2x y y y e '''+-=的通解为 121212x x x yC eC e e -=++.12.曲线:Γt tu e z t t y udu e x 301,cos sin 2,cos +=+==⎰在点()2,1,0处的切线方程为 3.函数41)(-=x x f 的麦克劳林级数的第5项为544x -,收敛域为)4,4(-.14..已知函数(,)23a b f x y x y x y =+--(其中,a b 是大于1的实数),有一个极值点(1,1), 则3,2==b a , 此时函数(,)f x y 的极大值为 3.15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a 为三个正数z y x ,,之和,使z y x ,,的倒数之和最小()()a z y x zy x z y x L -+++++=λ111,, 16函数()x x x f -=1ln )(的麦克劳林级数的收敛域为[)1,1-∈x ,=)0()5(f-30二、单项选择题:请将正确结果的字母写在括号内。
工程数学Ⅰ第1次离线作业三、主观题(共15道小题)29.求5元排列52143的逆序数。
解答:在排列52143中,排在5之后,并小于5的数有4个;排在2之后,并小于2的数有1个;排在1之后,并小于1的数有0个;排在4之后,并小于4的数有1个。
所以30.计算行列式解答:容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得31.求行列式中元素a和b的代数余子式。
解答:行列式展开方法==32.计算行列式解答:容易发现D的特点是:每列元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四列都减去第一列,第一行就出现了三个零元素,即33.设,求解答:34.,求解答:35.求矩阵X使之满足解答:36.解矩阵方程,其中解答:首先计算出,所以A是可逆矩阵。
对矩阵(A,B)作初等行变换所以所以秩(A)= 4。
37.解答:38.求向量组解答:设39.求解非齐次线性方程组解答:对增广矩阵施行初等行变换化成简单阶梯形矩阵40.设解答:若41.设,求A的特征值和特征向量。
解答:42.求一个正交矩阵P,将对称矩阵化为对角矩阵。
解答:43.已知二次型,问:满足什么条件时,二次型 f 是正定的;满足什么条件时,二次型 f 是负定的。
解答:二次型 f 的矩阵为计算 A 的各阶主子式得工程数学Ⅰ第2次离线作业三、主观题(共14道小题)30.判断(1);(2)是否是五阶行列式 D5 中的项。
解答:(1)是;(2)不是;31.设求的根。
解答:行列式特点是:每行元素之和都等于 a+b+c+x,那么,把二、三、四列同时加到第一列,并提出第一列的公因子a+b+c+x,便得到二、三、四列-a依次减去第一列的-a、-b、-c倍得32.计算四阶行列式解答:D的第一行元素的代数余子式依次为由行列式的定义计算得33.用克莱姆法则解方程组解答:34.解答:35.解答:36.用初等行变换把矩阵化为阶梯形矩阵和简单阶梯形矩阵。
2003理科专升本高数试题(西南交大)(共2页)一、填空(每小题3分,共42分) 1. =∞→xx x 1sinlim ;2. 设⎪⎩⎪⎨⎧=≠-+=0012sin )(2x a x xe x xf ax 在),(+∞-∞内连续,则=a ; 3. 过曲线3x y =上点 的切线平行于直线0112=--x y ; 4. 方程0=-+e xy e y 确定了函数)(x y y =,则='y ; 5. 曲线14334+-=x x y 的拐点为 ; 6. 若某函数的导数为211x-,且1=x 时23π=y ,则此函数的表达式为 ;7. 在]2,0[中,函数x x x f 2)(3+=满足拉格朗日中值定理的条件,则中值=ξ ; 8. 两条抛物线y x x y ==22,所围成的图形的面积为 ; 9. 若)(x f 是可微函数,且满足⎰+=x x dt t f e x f 0)()(,则)(x f 的表达式为 ;10.点)4,1,1(P 到平面032=+-+z y x 的距离为 ;11.设y x z 2sin 2=,则xz ∂∂= ,=∂∂yz ;12.改变积分秩序⎰⎰-1122xy dy e dx x = ;13.计算⎰+Ldy x xydx 22= ;14.幂级数nn nx n ∑∞=+1212的收敛域为 。
二、选择填空(每小题4分,共20分)1. 函数⎪⎩⎪⎨⎧=≠=0001arctan)(x x xx x f 在0=x 处( )A .可导不连续B . 连续不可导C .可导且连续D .不连续不可导2. 设⎰=21,sin )(x tdt x ϕ 则=')(x ϕ( )A .2sin xB .2sin 2x xC .1sin sin 2-xD .0 3.⎰-=1121dx x( )A .2-B .2C .发散D .0 4. 设函数)(x f 在),(+∞-∞内连续,则])([⎰dx x f d =( )A .)(x fB .dx x f )(C .c x f +)(D .dx x f )(' 5. 设曲线积分ydy x f ydx e x f Lxcos )(sin ])([--⎰与路径无关,其中)(x f 具有一阶连续导数,且0)0(=f ,则)(x f =( ) A .)(21xxe e-- B .)(21xx ee -- C .)(21x x e e -+ D .)(21xx e e -+-。
考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。
通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。
本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。
考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。
非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。
解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。
解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。
插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。
工程数学自考试题及答案一、单项选择题(每题2分,共20分)1. 下列哪项是线性方程组的解?A. 解存在且唯一B. 解不存在C. 解有无穷多个D. 无解答案:A2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行数或列数D. 矩阵的元素个数答案:C3. 微分方程的解是下列哪一项?A. 函数B. 数值C. 矩阵D. 向量答案:A4. 泰勒级数展开的中心点是?A. 0B. 1C. 任意点D. 函数的零点答案:C5. 傅里叶级数是用于什么?A. 函数的近似B. 函数的精确表示C. 函数的积分D. 函数的微分答案:A6. 线性代数中,向量空间的基是什么?A. 一组线性无关的向量B. 一组线性相关的向量C. 一组向量D. 一组标量答案:A7. 拉普拉斯变换是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A8. 欧拉公式是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A9. 概率论中,随机变量的期望值是什么?A. 随机变量的平均值B. 随机变量的中位数C. 随机变量的众数D. 随机变量的方差答案:A10. 泊松分布适用于描述什么?A. 连续型随机变量B. 离散型随机变量C. 正态分布的随机变量D. 二项分布的随机变量答案:B二、填空题(每题2分,共20分)1. 如果一个线性方程组有唯一解,则该方程组是_________的。
答案:相容2. 矩阵的对角线元素之和称为矩阵的_________。
答案:迹3. 微分方程的通解是包含_________的解。
答案:任意常数4. 泰勒级数展开的公式是_________。
答案:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...5. 傅里叶级数的公式是_________。
答案:f(x) = a0/2 + Σ[an*cos(nπx/L) + bn*sin(nπx/L)]6. 向量空间的基有_________个向量。
(完整版)西南交通大学数值分析题库完整版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)西南交通大学数值分析题库完整版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)西南交通大学数值分析题库完整版的全部内容。
(完整版)西南交通大学数值分析题库完整版编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)西南交通大学数值分析题库完整版这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)西南交通大学数值分析题库完整版> 这篇文档的全部内容.考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。
通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。
本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。
考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。
《工程数学》试题(A 卷)参考答案及评分标准一、填空题:(每题2分,共20分)1.在n 阶行列式中等于零的元素的个数如果比n 2-n 多,则此行列式必等于 .答案:0;2.行列式D 的第4行元素为-1,2,0,3,对应的余子式分别为3,1,-2,3,则D= .答案:14; 3.设四阶方阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333322221111d cbad c b a dc b a , 则A = .答案: ()a b -()a c -()a d -()b c -()b d -()c d -; 4.设A 为n 阶方阵,且A =2,则T A A = .答案: 21+n ;5.设n 阶方阵A 的伴随矩阵为A *,若A =0,则*A = . 答案: 0;6.设A 是s ×r 矩阵,则AA T 是 阶矩阵. 答案: s ;7.已知()T2,5,1,31=α,()T10,1,5,102=α,()T4,1,1,13-=α,若()()βαβαβα+=-+-321523,则=β .答案: ()1,2,3,4T;8.一个向量组含有两个或两个以上的极大无关组,则各个极大无关组所含向量个数必 .答案: 相同.9.在映射下,集合的像集为:答案: .10.在 处展开成Taylor 级数的收敛半径为答案:.二、单项选择题:(每题2分,共10分)1.四阶行列式D =44332211000000a b a b b a b a的值等于( )()A 43214321b b b b a a a a -; ()B 43214321b b b b a a a a +;()C ))((43432121b b a a b b a a --; ()D ))((41413232b b a a b b a a --.答案: D.2.设A ,B 为n 阶方阵,满足等式AB=O,则必有( )()A A=O 或B=O ;()B A+B=O ;()C0=A 或0=B ;()D 0=B A +.答案: C.3.若A ,B 为n 阶方阵,则正确的是( )()A ()()22B A B A B A -=+-;()B ()2222B AB A B A ++=+;()C 若AB=O ,且A ≠O ,则B=O ; ()D 若AB=BA ,则()2222B AB A B A ++=+.答案: D.4.1α,2α,…,r α线性无关的充分必要条件是( )()A 存在全为零的数1k ,2k ,…,r k ,使得1k 1α+2k 2α+…+r k r α=0;()B 存在不全为零的数1k ,2k ,…,r k ,使得1k 1α+2k 2α+…+r k r α≠0;()C 每个i α都不能用其他1-r 个向量线性表示; ()D 有线性无关的部分组.答案: C. 5.若i iy i x +=++++135)3(1 则()A 1-=x 11-=y ; ()B 1-=x 11=y()C 1=x11-=y ()D 1=x 11-=y答案: D.三、计算下列各行列式:(共15分)1. D n =111110111110111110111110;(此小题7分)解:D n =0111110111110111110111110=(n-1)111110111110111110111111=(n-1)10001000001000001011111----=(-1)1-n (n-1); (7分)2. D n =nnn nnnn323232333322221111;(此小题8分)解:D n =nnn nnnn323232333322221111=n !1212121333122211111---n n n nnn=n!(n-1)!(n-2)!…2!1! (8分)四、(10分)设矩阵A =⎪⎪⎪⎭⎫⎝⎛--121112231--,B =⎪⎪⎪⎭⎫⎝⎛-141224452,求4A 2-B 2-2BA+2AB. 解:4A 2-B 2-2BA+2AB =(4A 2-2BA)+(2AB-B 2)=2(2A-B)A+(2A-B)B=(2A-B)(2A+B)=⎪⎪⎪⎭⎫⎝⎛----3014480110⎪⎪⎪⎭⎫ ⎝⎛--183000814=⎪⎪⎪⎭⎫⎝⎛-----11255602444000; (10分)五、(10分)设a 、b 是实数,函数在复平面解析,则分别求a 、b 之值,并求.解:因为)f是复平面上的解析函数,则在平(z面上满足C—R方程,即:故对成立,六、(10分)验证是z平面上的调和函数,并求以为实部的解析函数,使.解:(1)故是调和函数。
工程数学 复习题填空题1.设A 是2阶矩阵,且9=A ,='-)(31A .2.已知齐次线性方程组0=AX 中A 为53⨯矩阵,且该方程组有非零解,则≤)(A r .3.2.0)(,5.0)(==A B P A P ,则=+)(B A P .4.若连续型随机变量X 密度函数是,则=)(X E .5.若参数θ两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比1ˆθ更 .单项选择题1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确是( ).A . 若AC AB =,且0≠A ,则C B = B . 2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明各向量组中,( )中向量组是线性无关.A . 向量组中含有零向量B . 任何一个向量都不能被其余向量线性表出C . 存在一个向量可以被其余向量线性表出D . 向量组向量个数大于向量维数3.设矩阵,则A 对应于特征值2=λ一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 4. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )事件.A . 至少有一人没射中B . 二人都没射中C . 至少有一人射中D . 两人都射中5.设)1,0(~N X ,)(x Φ是X 分布函数,则下列式子不成立是( ).A . 5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD . 1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体N (,)μσ2样本,则( )是μ无偏估计.A . 321x x x ++B .C .D .7.对正态总体),(2σμN 假设检验问题中,U 检验解决问题是( ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差计算题 1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A 是否可逆?若A 可逆,求B A 1-.2.线性方程组增广矩阵为求此线性方程组全部解.3.用配方法将二次型32212322213214242),,(x x x x x x x x x x f ++++=化为标准型,并求出所作满秩变换.4.两台车床加工同样零件,第一台废品率是1%,第二台废品率是2%,加工出来零件放在一起。