高中物理专题复习物理图像
- 格式:ppt
- 大小:524.50 KB
- 文档页数:44
高中物理必修一·图像专题【一次函数y=kx+b 】坐标轴:x 轴表示时间,y 轴表示位移,位移-时间图像(重点掌握) x 轴表示时间,y 轴表示速度,速度-时间图像(重点掌握) x 轴表示时间,y 轴表示加速度,加速度-时间图像物理意义:(直线表示随时间均匀变化,绝不是运动轨迹)反映了物体做直线运动的位移随时间变化的规律(直接读出任意时刻的位置坐标) 反映了物体做直线运动的速度随时间变化的规律(直接读出任意时刻的速度) 反映了物体做直线运动的加速度随时间变化的规律(直接读出任意时刻的加速度) 倾斜程度(斜率k =∆y ∆x=tanθ):(有正有负,矢量中只表示方向,不表示大小。
)瞬时速度(物体位置变化快慢或物体运动快慢)加速度(物体速度变化快慢)加速度的变化率(物体加速度变化快慢)截距b :表示物体t=0时的位移或位置坐标(初始坐标x 0=x 3) 表示物体t=0时的速度(初速度v 0=v 3)表示物体t=0时的加速度(初始加速度a 0=a 3)图像①:表示质点向正方向做匀速直线运动(运动方向即速度方向,速度始终大于零) 表示质点做匀加速直线运动(加速度大于零,速度也大于零,符号相同) 表示质点做加速度增大的直线运动(速度可能变大,可能变小)图像②:表示质点静止(位置不变)表示质点做匀速直线运动(速度不变)表示质点做匀变速直线运动(加速度不变)图像③:表示质点向负方向做匀速直线运动,t 0到t 3在正半轴上运动,t 3时位移减小到零(回到坐标原点),而后继续向负方向做匀速直线运动,在负半轴上运动表示质点做匀减速直线运动,t 3时速度减小到零(加速度小于零,速度大于零,符号相反),运动到正半轴原点最远的地方,而后做反向的匀加速直线运动(加速度小于零,速度小于零,符号相同)表示质点做加速度减小的直线运动,加速度减小到零用时为t 3,而后质点做加速度增大的直线运动(速度可能变大,可能变小)OxtX 2 X 3X 1t 1t 2t 3④⑤①②③⑥OVtv 2 v 3v 1t 1t 2t 3④⑤①②③⑥Oata 2 a 3a 1t 1 t 2 t 3④⑤①②③⑥交点④:表示两物体该时刻t=t2位移相同(矢量:大小和方向),即相遇表示两物体该时刻t=t2速度相同(矢量:大小和方向)表示两物体该时刻t=t2加速度相同(矢量:大小和方向)面积⑤S=xy:(x轴上方为正,x轴下方为负,只表示方向,直线运动中可以进行加减运算)没有实际物理意义0到t1时间内,质点运动的位移0到t1时间内,质点速度的变化量【二次函数y=ax2+bx+c】坐标轴、截距、交点、面积与一次函数情况相同。
高中物理各种图像总结1. 实物图像实物图像是物体真实存在的图像,具有明确的位置、形状和大小。
1.1 球面镜中实物图像球面镜是一种曲面镜,可以分为凸面镜和凹面镜。
在物理中,我们经常使用球面镜来观察实物图像。
1.1.1 凸面镜中的实物图像凸面镜将光线向外聚焦,因此在凸面镜中观察实物时,我们可以得到以下结论:•实物位于凸面镜的外部。
•实物距离凸面镜的距离大于焦距时,得到的是倒立、缩小的实物图像。
•实物距离凸面镜的距离等于焦距时,得到无穷远处的实物图像。
•实物距离凸面镜的距离小于焦距时,得到的是倒立、放大的实物图像。
1.1.2 凹面镜中的实物图像凹面镜将光线向内发散,因此在凹面镜中观察实物时,我们可以得到以下结论:•实物位于凹面镜的外部时,得到的是倒立、缩小的实物图像。
•实物位于凹面镜的内部时,得到的是倒立、放大的实物图像。
1.2 平面镜中的实物图像平面镜是一种平板镜,它具有非常特殊的性质。
在平面镜中观察实物时,得到的实物图像与实物本身完全相同,即实物和图像重合。
2. 虚物图像虚物图像是没有真实存在的图像,它仅仅是光线追迹的结果。
2.1 球面镜中的虚物图像2.1.1 凸面镜中的虚物图像凸面镜在光线追迹过程中,可以得到以下结论:•物体位于凸面镜焦点前方时,虚物图像位于焦点后方。
•物体位于凸面镜焦点上时,虚物图像位于无穷远处。
•物体位于凸面镜焦点后方时,虚物图像位于焦点前方。
•物体位于凸面镜无穷远处时,虚物图像位于焦点前方。
2.1.2 凹面镜中的虚物图像凹面镜在光线追迹过程中,可以得到以下结论:•物体位于凹面镜前方时,虚物图像位于焦点后方。
•物体位于凹面镜焦点上时,虚物图像位于无穷远处。
•物体位于凹面镜焦点后方时,虚物图像位于焦点前方。
2.2 镜子中的虚物图像无论是凸面镜还是凹面镜作为镜子进行光线追迹,得到的都是虚物图像。
3. 光学仪器中的图像光学仪器包括显微镜、望远镜等,在这些仪器中观察的图像有一些特殊性质。
1、下图为一物体做直线运动的v —t 图象,根据图象有如下分析,(分别用v 1、a 1表示物体在0~t 1时间内的速度和加速度;v 2、a 2表示物体在t 1~t 2时间内的速度和加速度),分析正确的是 A 、v 1与v 2方向相反,a 1与a 2方向相反 B 、v 1与v 2方向相反,a 1与a 2方向相同 C 、v 1与v 2方向相同,a 1与a 2方向相反 D 、v 1与v 2方向相同,a 1与a 2方向相同2、一辆汽车从静止开始由甲地出发,沿平直公路开往乙地,汽车先做匀加速运动,接着做匀减速运动,开到乙地刚好停止,其速度图象如图所示,那么在0—t 0和t 0—3t 0两段时间内( )A 、加速度大小之比为3 :1B 、位移大小之比为2:1C 、平均速度大小之比为2:1D 、平均速度大小之比为1:13、如图所示为某物体做直线运动的速度—时间图象,关于该质点在前4s 内运动情况的说法,不正确...的是( )A.质点始终向同一方向运动B.加速度大小不变,方向与初速度相反C.前2s 内做匀减速运动D.4s 内的位移为零4、如图所示为一物体做直线运动的v-t 图象,根据图象做出的以下判断中,正确的是( )A 、物体始终沿正方向运动B 、物体先沿负方向运动,在t =2 s 后开始沿正方向运动C 、在t = 2 s 前物体位于出发点负方向上,在t = 2 s 后位于出发点正方向上D 、在t = 4s 时,物体距出发点最远5、如图为一物体沿南北方向(规定向北为正方向)做直线运动的速度—时间图象,由图可知A .3s 末物体回到初始位置B .3s 末物体的加速度方向发生变化t 1 t 2tv(m/s)C .物体所受合外力的方向一直向南D .物体所受合外力的方向一直向北6、如图所示为一物体作匀变速直线运动的速度一时间图象,已知物体在前2s 内向东运动,则根据图线作出以下判断中正确的是( ) A .物体在4s 内始终向东运动B .物体在4s 内的加速度大小不变,方向始终向西 c .物体在4s 内的加速度大小不变,方向先向西,后向东 D .物体在第2s 回到出发点7、西昌卫星中心发射的运载火箭由地面竖直向上升空,其速度图象如图所示,则( )A .在t 2时刻火箭到达最大高度B .在t 4时刻火箭落回地面C .在t 1至t 2时间内火箭加速度最大D .在t 2至 t 3时间内火箭静止在最大高度处8、物体由静止开始做直线运动的速度—时间图象如图,则物体的运动情况是( )A .往复运动B .作匀变速直线运动C .朝某一方向作直线运动D .不能确定9、某物体沿直线运动的v 一t 图象如图所示,由图可看出物体 ( )A .沿直线向一个方向运动B .沿直线做往复运动C .该物体任意两秒内的位移为零D .做匀变速直线运动10、如图所示是甲、乙两物体的v 一t 图象,由图可知 ( )A .甲做匀加速运动,乙做匀减速运动B .甲、乙两物体相向运动C .乙比甲晚1s 出发D .5s 末两物体相遇1C 2C 3A 4B 5C 6B 7C 8C 9B 10C1-11(多选)、如图所示为甲、乙两物体相对于同一参考系的x-t图象,下面说法正确的是()。
专题08 典型运动学图像(一)1.路程-时间图像(x t -)图像物体做直线运动,如果在任意时刻的速度都相等,即在任意相等的时间内通过的位移都相等,则物体做的是匀速直线运动。
做匀速直线运动的物体的位移-时间图像是一条倾斜的直线。
如图所示:xtxt1t 1x B①②图1 图2 图1上各点切线斜率tan xk tα∆==∆表示速度v ,即图线的倾斜程度反映物体运动的快慢,其倾斜程度越大,速度越快。
斜率的大小表示做匀速直线运动物体的速度的大小,斜率的正负即为速度的正负。
注 意:(1)x -t 图像不代表物体的运动轨迹,x-t 图像中倾斜直线表示物体做匀速直线运动。
(2)若图像不过原点,有两种情况:①图像在纵轴上截距表示开始计时物体相对于参考点的位移; ②图像在横轴上的截距表示物体过一段时间再从参考点出发。
(3)两图线相交说明两物体相遇,其交点B 的横坐标表示相遇的时刻,纵坐标表示相遇处对参考点的位移。
如上图中,图线①和图线②相交于B 点,表示两物体在t 1时刻相遇,其中x 1表示相遇处对参考点的位移。
(4)图像是倾斜直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动。
2.速度-时间图像(v-t 图像) (1)图像的物理意义 由于t v a ∆∆=,而v-t 图像中的斜率k=tv∆∆=αtan ,所以αtan =a ,斜率的大小即为加速度的大小,斜率的正负即为加速度的正负。
(2)匀速直线运动的v -t 图像匀速直线运动的速度v 是恒定的,不随时间发生变化,所以v -t 图像是一条与横轴平行的直线。
(3)变速直线运动的v -t 图像在变速直线运动中,如果在任意相等的时间内速度的改变都相等,这种运动叫匀变速直线运动,它的v -t 图像是一条倾斜直线,如图所示,A 表示匀加速直线运动的v -t 图像,B 表示匀减速直线运动的图像。
vt(4)v -t 图像的应用(1)可求出任一时刻的速度。
(2)可求出达到某一速度所需的时间。
高中物理图像知识点在高中物理的学习中,图像是一种非常重要的工具和表达方式。
它能够直观地展现物理量之间的关系,帮助我们更好地理解和解决物理问题。
接下来,让我们一起深入探讨高中物理中常见的图像知识点。
一、位移时间图像(x t 图像)位移时间图像描述的是物体在直线运动中位移随时间的变化关系。
在 x t 图像中,横坐标表示时间 t,纵坐标表示位移 x 。
图像的斜率代表物体的速度。
如果图像是一条倾斜的直线,说明物体做匀速直线运动,其速度等于斜率的大小。
斜率为正,表示速度方向与规定的正方向相同;斜率为负,表示速度方向与规定的正方向相反。
如果图像是一条平行于时间轴的直线,表示物体处于静止状态,位移不随时间变化。
通过分析位移时间图像,我们可以轻松判断物体的运动状态、位移大小和方向,以及速度的变化情况。
二、速度时间图像(v t 图像)速度时间图像反映的是物体在直线运动中速度随时间的变化规律。
横坐标为时间 t,纵坐标为速度 v 。
图像与时间轴所围成的面积表示位移的大小。
如果图像在时间轴上方,面积为正,代表位移方向与规定的正方向相同;如果图像在时间轴下方,面积为负,代表位移方向与规定的正方向相反。
图像的斜率表示加速度。
斜率为正,加速度方向与速度方向相同,物体做加速运动;斜率为负,加速度方向与速度方向相反,物体做减速运动。
当图像是一条平行于时间轴的直线时,物体做匀速直线运动,加速度为零。
利用速度时间图像,我们能够清晰地了解物体的速度变化、加速度大小和方向,以及位移的情况。
三、加速度时间图像(a t 图像)加速度时间图像展示了物体加速度随时间的变化情况。
同样,横坐标是时间 t,纵坐标是加速度 a 。
通过加速度时间图像,我们可以直观地看到加速度的变化规律。
如果加速度不变,说明物体做匀变速运动;如果加速度变化,则物体做非匀变速运动。
要计算物体在某段时间内的速度变化量,可以通过加速度时间图像与时间轴所围成的面积来计算。
四、力位移图像(F x 图像)在涉及到力学问题时,力位移图像常常会出现。
高中物理各种图像总结高中物理涉及了许多不同类型的图像,这些图像帮助我们更好地理解物理现象和原理。
下面是对高中物理各种图像的总结,帮助学生们更好地理解这些概念。
1. 力学图像:力学图像主要涉及物体在运动和静止状态下的图像。
这些图像包括距离-时间图像,速度-时间图像和加速度-时间图像。
距离-时间图像描述了物体在不同时间内移动的距离,速度-时间图像描述了物体在不同时间内的速度变化,加速度-时间图像描述了物体在不同时间内的加速度变化。
通过分析这些图像,我们可以了解物体的运动特性和力的作用。
2. 光学图像:光学图像主要涉及光的传播和反射。
最常见的光学图像是光线图像和光的波动图像。
光线图像描述了光在传播过程中的路径和角度变化,光的波动图像描述了光的波动形态和传播特性。
通过分析这些图像,我们可以了解光在不同介质中的传播规律以及光的反射和折射现象。
3. 电磁图像:电磁图像主要涉及电荷、电场和磁场的图像。
静电场图像描述了电荷在空间中的分布以及电荷受力的大小和方向,电场力线图像描述了电场力线的形态和分布,磁场图像描述了磁场的形态和分布。
通过分析这些图像,我们可以了解电荷、电场和磁场之间的相互作用和现象。
4. 热力学图像:热力学图像主要涉及热量传递和热力学变化的图像。
热量传递图像描述了热量在不同物体间的传递方式,热力学过程图像描述了物体在热力学变化过程中的温度变化和状态变化。
通过分析这些图像,我们可以了解热量传递和热力学变化的规律和原理。
总之,高中物理各种图像为我们理解物理现象和原理提供了重要的工具和方法。
通过分析这些图像,我们可以更好地理解物体的运动特性、光的传播和反射、电荷和场的相互作用,以及热量的传递和热力学变化。
希望这些总结对学生们的学习有所帮助。
高中物理图像知识点高中物理里的图像知识点,那可真是让同学们又爱又恨!就像一场刺激的冒险,充满了挑战和惊喜。
先来说说位移时间图像(xt 图像)。
这就好比是一个人的运动轨迹记录。
想象一下,你在操场上跑步,老师拿着秒表和尺子在旁边记录你的位置变化。
在 xt 图像中,横坐标表示时间,纵坐标表示位移。
如果图像是一条倾斜的直线,那就说明你在做匀速直线运动,直线的斜率就代表着你的速度。
要是图像是一条曲线,那可就复杂啦,说明你的运动速度在不断变化。
再讲讲速度时间图像(vt 图像)。
这就像汽车仪表盘上的速度显示。
假如你开着车在路上,vt 图像能清楚地告诉你速度是怎么变化的。
图像在纵坐标上的截距,就是初始速度。
图像与横坐标围成的面积,就是位移的大小。
比如说,有一段时间速度是恒定的,那图像就是一段水平的线段;要是在加速,图像就是向上倾斜的;减速呢,就是向下倾斜的。
还有一个很重要的图像——加速度时间图像(at 图像)。
这个图像能反映出物体加速度的变化情况。
想象一下坐过山车,那种忽快忽慢、忽上忽下的感觉,其实就是加速度在不断变化。
在 at 图像中,曲线的斜率表示加速度的变化率。
我记得有一次给学生们讲这些图像的时候,有个学生一脸困惑地问我:“老师,这些图像到底有啥用啊?”我笑了笑,给他举了个例子。
我说:“假如你知道一辆车的 vt 图像,就能算出在某段时间内它跑了多远,还能知道什么时候速度最快,什么时候在减速,这对于判断交通状况是不是很有用?”那学生恍然大悟地点点头。
总之,高中物理的图像知识点就像是一把神奇的钥匙,能帮助我们解开很多物理现象的谜团。
但要掌握好它们,可得下一番功夫。
多做些题目,多观察生活中的物理现象,慢慢地,你就会发现这些图像不再那么可怕,而是变成了你的好帮手,让你在物理的世界里畅游无阻!在学习物理图像的过程中,同学们要特别注意图像中的细节。
比如坐标轴的单位、刻度,图像的起点、终点,还有图像的走势。
有时候,一个小小的细节就能决定你能不能正确理解和运用图像。
专题复习1:x-t图像1.行驶中的汽车遇到红灯刹车后做匀减速直线运动直到停止,等到绿灯亮时又重新启动开始做匀加速直线运动直到恢复原来的速度继续匀速行驶,则从刹车到继续匀速行驶这段过程,下列位移随速度变化的关系图象描述正确的是( )2.如图为一段某质点做匀变速直线运动的x-t图线.从图中所给的数据可以确定质点在运动过程中,经过图线上P点所对应位置的瞬时速度大小一定( )A.大于2 m/s B.等于2 m/sC.小于2 m/s D.无法确定3.如图所示为甲、乙两物体相对于同一参考系的xt图象,下面说法不正确的是( )A.甲、乙两物体的出发点相距x0B.甲、乙两物体都做匀速直线运动C.甲物体比乙物体早出发的时间为t1D.甲、乙两物体向同方向运动4.可视为质点的a、b两个物体在同一位置沿同一方向同时开始运动,它们的位移-时间图像分别如图中图线甲、乙所示,其中图线甲是一条倾斜的直线,图线乙是一条x=0.4t2的抛物线,两图线的交点坐标(5,10),则在0~5 s内( )A.a做的是直线运动,b做的是曲线运动B.b运动的加速度大小为0.4 m/s2C.t=2.5 s时,a、b相距最远D.a、b相距的最大距离为2 m5.国产歼15舰载战斗机在航母甲板上加速起飞过程可看做匀变速直线运动,在某段时间内的x-t图象如图所示,视歼15舰载战斗机为质点,根据图中所给数据判断该机加速起飞过程中,下列选项正确的是( )A .经过图线上M 点所对应位置时的速度小于20 m/sB .在t =2.5 s 时的速率等于20 m/sC .在2 s ~2.5 s 这段时间内位移等于10 mD .在2.5 s ~3 s 这段时间内位移等于10 m6.A 、B 两质点在同一直线上运动,t =0时刻,两质点从同一地点运动的x -t 图象如图所示,则下列说法正确的是( )A .A 质点以20 m/s 的速度匀速运动B .B 质点先沿正方向做直线运动,后沿负方向做直线运动C .经过4 s ,B 质点的位移大于A 质点的位移D .在图示的运动过程中,A 、B 两质点之间的距离在0~4 s 内某一时刻达到最大7.物体A 、B 的x -t 图象如图所示,由图可知( )A .从第3 s 起,两物体运动方向相同,且v A >v BB .两物体由同一位置开始运动,但物体A 比B 迟3 s 才开始运动C .在5 s 内物体的位移相同,5 s 末A 、B 相遇D .5 s 内A 、B 的平均速度相等8.如图所示是一做匀变速直线运动的质点的位移—时间图像(x t 图像),P (t 1,x 1)为图像上一点。
高中物理各种图像总结1. 平面镜成像1.1 凸面镜凸面镜是一种中间厚,两边薄的镜子,其反射面向外弯曲。
当光线通过凸面镜时,会发生折射现象。
•当物体位于凸面镜的焦点前时,其成像为虚像,直立和放大。
•当物体位于凸面镜的焦点后时,其成像为实像,倒立和缩小。
•当物体距离凸面镜的焦点等于焦距时,成像为无穷远。
1.2 凹面镜凹面镜是一种中间薄,两边厚的镜子,其反射面向内弯曲。
当光线通过凹面镜时,同样会发生折射现象。
•当物体位于凹面镜的焦点前时,其成像为虚像,直立和放大。
•当物体位于凹面镜的焦点后时,其成像为实像,倒立和缩小。
•当物体距离凹面镜的焦点等于焦距时,成像为无穷远。
2. 球面镜成像球面镜是一种反射面为球面的镜子,包括凸透镜和凹透镜。
使用球面镜进行成像有以下特点。
2.1 凸透镜成像凸透镜是一种中间厚,两边薄的透明物质,其两面都为球面反射面。
通过凸透镜进行成像也遵循一定的规律。
•当物体位于凸透镜的焦点前时,其成像为虚像,直立和放大。
•当物体位于凸透镜的焦点后时,其成像为实像,倒立和缩小。
•当物体距离凸透镜的焦点等于焦距时,成像为无穷远。
2.2 凹透镜成像凹透镜是一种中间薄,两边厚的透明物质,其两面都为球面反射面。
通过凹透镜进行成像同样遵循一定的规律。
•当物体位于凹透镜的焦点前时,其成像为虚像,直立和放大。
•当物体位于凹透镜的焦点后时,其成像为实像,倒立和缩小。
•当物体距离凹透镜的焦点等于焦距时,成像为无穷远。
3. 光的几何反射光的几何反射是指光线在边界上发生反射现象。
根据反射定律,入射角等于反射角,可以得出一些关于反射光线的性质。
•入射光线、法线和反射光线在同一平面内。
•入射角和反射角的大小相等,但方向相反。
•入射光线和反射光线之间的夹角是固定的。
在光的几何反射中,常用的概念包括入射角、反射角、法线和镜面。
4. 光的折射光的折射是指光线从一种介质传播到另一种介质时,由于介质的折射率不同,光线方向发生变化的现象。
《匀变速直线运动》图像专题1.礼让行人己写入我国道路交通安全法:机动车行至人行横道时应减速慢行,遇行人正在通过时,应停车让行。
现有一辆汽车在平直公路上以v=15m/s速度匀速行驶,司机发现前方20m处的人行横道上有人通行,于是刹车礼让,假设驾驶员的反应时间为0.5s,汽车刚好在到达人行横道前停下,则下列关于此过程中汽车的v﹣t图像中,可能正确的是()A.B.C.D.2.一物体由静止开始,在粗糙的水平面内沿直线运动,其加速度a随时间t变化的a﹣t图像如图所示。
若选物体开始运动的方向为正方向,那么,下列说法中正确的是()A.在t=0~2s的时间内,物体先做匀速直线运动后做匀减速运动B.在t=2s时物体的位移最大C.在t=2s~3s的时间内,物体速度的变化量为﹣1m/sD.在t=0~4s的时间内,物体的位移为零3.如图甲所示是郑新黄河大桥的照片,乙图中a、b、c、d、e是五个连续等距的桥墩,若一汽车从a点由静止开始做匀加速直线运动,已知通过ab段的时间为t,则通过be段的时间为()A.(2+√2)t B.√2t C.2t D.t4.甲、乙两名运动员同时从泳池的两端出发,在泳池里训练,甲、乙的速度﹣时间图像分别如图(a)、(b)所示,不计转向的时间,两人的运动均可视为质点的直线运动。
则()A.两人第一次相遇时处于泳池的正中间处B.两人前两次相遇的时间间隔为20sC.50s内两人共相遇了2次D.两人第一次在泳池的两端处相遇的时刻为t=75s5.如图所示是某物体做直线运动的v 2﹣x 图象(其中v 为速度,x 为位置坐标),下列关于物体从x =0处运动至x 0处的过程分析,其中正确的是( )A .该物体做加速度逐渐减小的直线运动B .该物体的加速度大小为v 022x 0C .该物体在位移中点的速度等于12v 0D .该物体在运动中间时刻的速度大于12v 06.我们的社会正从信息时代、数字时代跨入智能时代,无人驾驶的智能汽车也已经进入路试阶段.某公司自主研发了两辆无人驾驶汽车,测试过程中两车的速度﹣时间图像如图所示,其中甲车的图像为一正弦曲线,乙车的图像与横轴平行.已知两车在t =0s 时恰好经过同一位置,由图可知( )A .t =4s 时,甲车的运动方向发生改变B .甲车在t =4s 和t =8s 时的加速度相同C .t =8s 时,两车相遇D .0~4s 内,两车距离先增大后减小7.在平直的公路上,甲车在t =0时刻由静止开始运动,某时刻乙车匀速通过甲车的出发点,如图所示,甲车的x —t 图像是一条抛物线,两车的x —t 图像在t =4s 时相切(乙车的x —t 图像未画出),两车均可视为质点。