2014图论(1) 上传
- 格式:ppt
- 大小:1.35 MB
- 文档页数:35
图论图论图论是数学的⼀个分⽀。
它以图为研究对象。
图论中的图是由若⼲给定的点及连接两点的线所构成的图形,这种图形通常⽤来描述某些事物之间的某种特定关系,⽤点代表事物,⽤连接两点的线表⽰相应两个事物间具有这种关系。
欧拉回路定义边权:离散数学或数据结构中,图的每条边上带的⼀个数值,它代表的含义可以是长度等等,这个值就是边权欧拉路径:如果图中的⼀个路径包括每个边恰好⼀次,则该路径称为欧拉路径。
欧拉回路:⾸尾相接的欧拉路径称为欧拉回路。
dfs(深度优先搜索)深度优先搜索是⼀种在开发爬⾍早期使⽤较多的⽅法。
它的⽬的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML⽂件) 。
在⼀个HTML⽂件中,当⼀个超链被选择后,被链接的HTML⽂件将执⾏深度优先搜索,即在搜索其余的超链结果之前必须先完整地搜索单独的⼀条链。
深度优先搜索沿着HTML⽂件上的超链⾛到不能再深⼊为⽌,然后返回到某⼀个HTML⽂件,再继续选择该HTML⽂件中的其他超链。
当不再有其他超链可选择时,说明搜索已经结束。
判定由于每⼀条边都要经过恰好⼀次,因此对于除了起点和终点之外的任意⼀个节点,只要进来,⼀定要出去。
⼀个⽆向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图只有⼀个存在边的连通块。
⼀个⽆向图存在欧拉路径,当且仅当该图中奇点的数量为0或2,且该图只有⼀个存在边的连通块。
⼀个有向图存在欧拉回路,当且仅当所有点的⼊度等于出度。
⼀个混合图存在欧拉回路,当且仅当存在⼀个对所有⽆向边定向的⽅案,使得所有点的⼊度等于出度。
需要⽤⽹络流。
求法我们⽤ dfs(深度优先搜索)来求出⼀张图的欧拉回路。
我们给每⼀条边⼀个 vis数组代表是否访问过,接下来从⼀个点出发,遍历所有的边。
直接dfs并且记录的话会有⼀些问题。
为了解决这个问题,我们在记录答案的时候倒着记录,也就是当我们通过 (u, v) 这条边到达 v 的时候,先把 v dfs 完再加⼊ (v, u) 这条边。
数学中的图论基础图论作为数学中的一个重要分支,研究的是图这种数学结构。
图论不仅在数学理论中有着重要的地位,而且在计算机科学、运筹学、电路设计等领域也有着广泛的应用。
本文将介绍数学中的图论基础知识,包括图的基本概念、性质以及一些经典的应用。
1. 图的基本概念图由节点(顶点)和边组成,是图论研究的基本对象。
图可以分为有向图和无向图两种。
1.1 有向图有向图中的边是有方向的,即从一个节点指向另一个节点。
有向图用表示,其中为节点集合,为有向边的集合。
1.2 无向图无向图中的边是没有方向的,即连接两个节点的边不区分起点和终点。
无向图用表示,其中为节点集合,为无向边的集合。
2. 图的性质图论中有许多重要的性质和定理,这些性质对于研究图的结构和特点具有重要意义。
2.1 连通图在无向图中,如果任意两个节点之间都存在路径相连,则称该图是连通图。
连通图中任意两个节点都是连通的,不存在孤立的节点。
2.2 完全图完全图是一种特殊的图,任意两个节点之间都存在一条边相连。
完全图用表示,其中表示图中节点的个数。
2.3 欧拉图欧拉图是指一条路径经过图中每条边恰好一次的连通图。
欧拉图有一个著名的结论——存在欧拉回路的充要条件是该图所有节点度数为偶数。
2.4 哈密顿图对于一个图,如果存在一条路径经过图中每个节点恰好一次,则称该路径为哈密顿路径。
如果存在一条经过每个节点恰好一次的回路,则称该回路为哈密顿回路。
3. 图论的应用图论在现实生活和学术研究中有着广泛的应用。
以下介绍一些图论在实际问题中的应用场景。
3.1 网络路由在计算机网络中,路由器通过构建网络拓扑图并使用图论算法来选择最佳路径,实现数据的传输和通信。
3.2 交通规划交通规划中的交通流量分析、交通网络设计等问题可以通过图论模型进行建模和求解,帮助优化城市交通系统。
3.3 社交网络分析社交网络中的节点表示个体,边表示个体之间的关系。
通过图论分析社交网络的拓扑结构和节点之间的连接关系,可以帮助推荐系统、信息传播等问题。
《图论》程序设计目录第一章图的基本概念 2一、图的的定义 2二、图的存储结构 3 第二章图的遍历 5一、深度优先搜索 6二、广度优先搜索8 例、子图划分12 第二章图的生成树14 一、基本概念14 排列方案15 二、图的最小生成树(prim算法) 16 例、机器蛇18 第三章、最短路问题20一、计算单源最短路问题(Dijkstra算法)20二、任意两点间的最短路(floyd算法)23三、最短路径的应用25 例、颜色集28 例计算DAG中的最长路30 例、计算带权有向图的中心31 第四章应用举例32 例、位图32 【例题】士兵排队34 简化图36如果数据元素集合D 中的各元素之间存在任意的前后件关系R ,则此数据结构G=(D ,R )称为图。
奥林匹克信息学联赛的许多试题,需要用图来描述数据元素间的联系,需要用图的经典算法来解题用结点代表城市,每条边代表连接两个城市间的公路,边长的权表示公路长度。
这种公路网的表现形式就是属于图的数据结构。
第一章 图的基本概念一、图的的定义如果数据元素集合D 中的各元素之间存在任意的前后件关系R ,则此数据结构G=(D ,R )称为图。
如果将数据元素抽象为结点,元素之间的前后件关系用边表示,则图亦可以表示为G=(V ,E ),其中V 是结点的有穷(非空)集合,E 为边的集合。
如果元素a 是元素b 的前件,这种前后件关系对应的边用(a ,b)表示,即(a ,b)∈E 。
1、无向图和有向图⑴无向图:在图G=(V ,E )中,如果对于任意的a ,b∈V,当(a ,b)∈E 时,必有(b ,a )∈E(即关系R 对称),对称此图为无向图。
在一无向图中用不带箭头的边连接两个有关联的结点。
在具有n 个结点的无向图中,边的最大数目为n*(n+1)/2。
而边数达到最大值的图称为无向完全图。
在无向图中一个结点相连的边数称为该结点的度,无向完全图中,每一个顶点的度为n-1。
⑵有向图:如果对于任意的a ,b∈V,当(a ,b)∈E 时 ,(b ,a)∈E 未必成立,则称此图为有向图。
2014年图论公选课考查试题学院 学号 姓名一、单项选择题 (本大题共10个小题, 每小题3分, 共30分)1、下面图中是简单图的是( )图Av2v5v1v3v4v4v3v1v5v2图B图Cv2v5v1v3v4v4v3v1v5v2图D2、设图G =(V (G ),E (G )),其中V(G)=﹛v 1,v 2,v 3,v 4,v 5﹜,{}545233543121,,,,,)(v v v v v v v v v v v v G E =,对应的图形表示为( )v 4v3v1v5v 2图A图Bv2v5v1v3v 4v 4v3v1v5v2图D图Cv 2v5v1v3v 43、下面图中不是偶图的是( )图Av2v5v1v3v4v4v3v1v 5v2图B图Cv2v5v1v3v4v4v3v1v5v2图D4、下面图中同构的两个图的是( )图2图3图4图1A 图1和2;B 图1和3; C图2和3; D 图1和4. 5、下面图中连通度是3的是( )图A 图B 图C图D6、下面图中是Euler 图的是( )图A图B 图C图D 7、下面图中边连通度是2的是( )图A 图B 图C图D 8、下面图中图等于它的闭包的是( )图A图B 图C 图D9、下面图中不是Hamilton 图的是( )图A 图B 图D图C10、下面图中有完美匹配的是( )图C 图D图B 图A二、填空题 (本大题共5个小题, 每小题3分, 共30分)1、设G 是一个简单图,若δ(G )≥3,则G 中必然含有 圈.2、图G 是偶图的充分必要条件是 .3、一棵树有x 个1度顶点,其余定点的度和y ,则这课树共有 条边.4、A 是q 条边的图G 的邻接矩阵,则A 各行之和元素之和为 .5、设T 是非平凡树,则T 至少有 个1度顶点.6、p (p ≥3)阶图是块的充分必要条件是 .7、图G 的匹配M 是最大的充分必要条件是 . 8、完全偶图K 8,8有 个边不重的完美匹配. 9、完全图K 4中共有 个不同的Hamilton 圈. 10、完全图K 4中共有 棵不同的树. 三、证明题 (本题每小题10分,共40分)1. 连通图的边是割边的充分必要条件是在的每个生成树中.2. 证明: 每个非连通图的补图都是连通的.3. 设{}n x x x S ,,,21 =是平面上的点集,其中任意两点间的距离至少1,证明:S 中之多有n 3对点没对点的距离恰好是.14. 设),(Y X G =为-k 正则二部图则G 中存在k 个边不重的完美匹配.。