动态规划法求解多边形游戏
- 格式:docx
- 大小:32.20 KB
- 文档页数:5
自相交多边形的三角剖分-概述说明以及解释1.引言1.1 概述【概述】自相交多边形是指一个多边形内部的边与其他边相交或重叠的特殊情况。
与传统的凸多边形或凹多边形相比,自相交多边形具有更复杂的拓扑结构和几何特征。
在计算机图形学、计算几何和计算机辅助设计等领域,对于自相交多边形的处理一直是一个重要而具有挑战性的问题。
本文旨在探讨自相交多边形的三角剖分方法,即将自相交多边形分解为一系列三角形,以便于后续的计算和应用。
三角剖分是将一个多边形或多维几何体划分为若干个互不相交的三角形或四面体的过程,广泛应用于计算机图形学、有限元分析、三维建模等领域。
本文将首先介绍自相交多边形的定义及其与传统多边形的区别。
然后,我们将详细探讨三角剖分的概念及其在几何计算中的重要性。
接下来,我们会讨论自相交多边形的三角剖分方法,并对不同的算法进行比较和分析。
最后,我们将总结自相交多边形的三角剖分在实际应用中的意义,并展望未来的研究方向。
通过本文的阅读,读者将对自相交多边形的三角剖分有一个全面的了解,并能够应用相关算法解决类似问题。
本文的研究对于计算机图形学、计算几何和计算机辅助设计等领域的研究人员和从业者具有一定的参考价值。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文主要分为三个部分:引言、正文和结论。
在引言部分,首先对文章的主题进行了概述,介绍了自相交多边形的三角剖分的主要内容。
然后,对整篇文章的结构进行了说明,明确了各个章节的主题和内容。
最后,介绍了本文的目的,即为了讨论自相交多边形的三角剖分的重要性和相关方法。
正文部分将详细介绍自相交多边形的定义以及三角剖分的概念。
首先,会给出自相交多边形的准确定义,并解释该定义的意义和应用。
然后,会介绍三角剖分的基本概念,包括如何将自相交多边形划分为一组不相交的三角形,以及如何选择合适的三角形进行剖分。
在结论部分,将强调自相交多边形的三角剖分的重要性,指出该方法对于解决自相交多边形相关问题的有效性和实用性。
算法设计与分析——凸多边形最优三⾓剖分(动态规划)⼀、问题描述多边形是平⾯上⼀条分段线性的闭曲线。
也就是说,多边形是由⼀系列⾸尾相接的直线段组成的。
组成多边形的各直线段称为该多边形的边。
多边形相接两条边的连接点称为多边形的顶点。
若多边形的边之间除了连接顶点外没有别的公共点,则称该多边形为简单多边形。
⼀个简单多边形将平⾯分为3个部分:被包围在多边形内的所有点构成了多边形的内部;多边形本⾝构成多边形的边界;⽽平⾯上其余的点构成了多边形的外部。
这⾥给出凸多边形的定义:当⼀个简单多边形及其内部构成⼀个闭凸集时,称该简单多边形为凸多边形。
也就是说凸多边形边界上或内部的任意两点所连成的直线段上所有的点均在该凸多边形的内部或边界上。
与凸多边形对应的就是凹多边形。
通常,⽤多边形顶点的逆时针序列来表⽰⼀个凸多边形,即P={v0 ,v1 ,… ,v n-1}表⽰具有n条边v0v1,v1v2,… ,v n-1v n的⼀个凸多边形,其中,约定v0=v n。
若v i与v j是多边形上不相邻的两个顶点,则线段v i v j称为多边形的⼀条弦。
弦将多边形分割成凸的两个⼦多边形{v i ,v i+1 ,… ,v j}和{v j ,v j+1 ,… ,v i}。
多边形的三⾓剖分是⼀个将多边形分割成互不相交的三⾓形的弦的集合T。
图1是⼀个凸多边形的两个不同的三⾓剖分。
图1 ⼀个凸多边形的2个不同的三⾓剖分在凸多边形P的⼀个三⾓剖分T中,各弦互不相交,且弦数已达到最⼤,即P的任⼀不在T中的弦必与T中某⼀弦相交。
在⼀个有n个顶点的凸多边形的三⾓剖分中,恰好有n-3条弦和n-2个三⾓形。
凸多边形最优三⾓剖分的问题是:给定⼀个凸多边形P={v0 ,v1 ,… ,v n-1}以及定义在由多边形的边和弦组成的三⾓形上的权函数ω。
要求确定该凸多边形的⼀个三⾓剖分,使得该三⾓剖分对应的权即剖分中诸三⾓形上的权之和为最⼩。
可以定义三⾓形上各种各样的权函数ω。
初期:一.基本算法:(1)枚举. (poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)(3)最小生成树算法(prim,kruskal) (poj1789,poj2485,poj1258,poj3026)(4)拓扑排序 (poj1094)(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)(6)最大流的增广路算法(KM算法). (poj1459,poj3436)三.数据结构.(1)串 (poj1035,poj3080,poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)(3)简单并查集的应用.(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树) (poj2513)四.简单搜索(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)五.动态规划(1)背包问题. (poj1837,poj1276)(2)型如下表的简单DP(可参考lrj的书 page149):1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)六.数学(1)组合数学:1.加法原理和乘法原理.2.排列组合.3.递推关系.(POJ3252,poj1850,poj1019,poj1942)(2)数论.1.素数与整除问题2.进制位.3.同余模运算.(poj2635, poj3292,poj1845,poj2115)(3)计算方法.1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)七.计算几何学.(1)几何公式.(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)(poj1408,poj1584)(4)凸包. (poj2187,poj1113)中级:一.基本算法:(1)C++的标准模版库的应用. (poj3096,poj3007)(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)二.图算法:(1)差分约束系统的建立和求解. (poj1201,poj2983)(2)最小费用最大流(poj2516,poj2516,poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点.(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308, )三.数据结构.(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)(2)静态二叉检索树. (poj2482,poj2352)(3)树状树组(poj1195,poj3321)(4)RMQ. (poj3264,poj3368)(5)并查集的高级应用. (poj1703,2492)(6)KMP算法. (poj1961,poj2406)四.搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化 (poj3411,poj1724)(3)记忆化搜索(poj3373,poj1691)五.动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等) (poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)六.数学(1)组合数学:1.容斥原理.2.抽屉原理.3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).4.递推关系和母函数.(2)数学.1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)2.概率问题. (poj3071,poj3440)3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)(3)计算方法.1.0/1分数规划. (poj2976)2.三分法求解单峰(单谷)的极值.3.矩阵法(poj3150,poj3422,poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318,poj2454)(5)杂题. (poj1870,poj3296,poj3286,poj1095)七.计算几何学.(1)坐标离散化.(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)(3)多边形的内核(半平面交)(poj3130,poj3335)(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)高级:一.基本算法要求:(1)代码快速写成,精简但不失风格(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)(2)保证正确性和高效性. poj3434二.图算法:(1)度限制最小生成树和第K最短路. (poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解) (poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446) (3)最优比率生成树. (poj2728)(4)最小树形图(poj3164)(5)次小生成树.(6)无向图、有向图的最小环三.数据结构.(1)trie图的建立和应用. (poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和在线算法(RMQ+dfs)).(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的).(poj2823)(4)左偏树(可合并堆).(5)后缀树(非常有用的数据结构,也是赛区考题的热点). (poj3415,poj3294)四.搜索(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法.(poj3131,poj2870,poj2286)五.动态规划(1)需要用数据结构优化的动态规划. (poj2754,poj3378,poj3017)(2)四边形不等式理论.(3)较难的状态DP(poj3133)六.数学(1)组合数学.1.MoBius反演(poj2888,poj2154)2.偏序关系理论.(2)博奕论.1.极大极小过程(poj3317,poj1085)2.Nim问题.七.计算几何学.(1)半平面求交(poj3384,poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖.(4)对踵点(poj2079)八.综合题.(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263) 以及补充Dp状态设计与方程总结1.不完全状态记录<1>青蛙过河问题<2>利用区间dp2.背包类问题<1> 0-1背包,经典问题<2>无限背包,经典问题<3>判定性背包问题<4>带附属关系的背包问题<5> + -1背包问题<6>双背包求最优值<7>构造三角形问题<8>带上下界限制的背包问题(012背包)3.线性的动态规划问题<1>积木游戏问题<2>决斗(判定性问题)<3>圆的最大多边形问题<4>统计单词个数问题<5>棋盘分割<6>日程安排问题<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)<8>方块消除游戏(某区间可以连续消去求最大效益)<9>资源分配问题<10>数字三角形问题<11>漂亮的打印<12>邮局问题与构造答案<13>最高积木问题<14>两段连续和最大<15>2次幂和问题<16>N个数的最大M段子段和<17>交叉最大数问题4.判定性问题的dp(如判定整除、判定可达性等)<1>模K问题的dp<2>特殊的模K问题,求最大(最小)模K的数<3>变换数问题5.单调性优化的动态规划<1>1-SUM问题<2>2-SUM问题<3>序列划分问题(单调队列优化)6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)<1>凸多边形的三角剖分问题<2>乘积最大问题<3>多边形游戏(多边形边上是操作符,顶点有权值)<4>石子合并(N^3/N^2/NLogN各种优化)7.贪心的动态规划<1>最优装载问题<2>部分背包问题<3>乘船问题<4>贪心策略<5>双机调度问题Johnson算法8.状态dp<1>牛仔射击问题(博弈类)<2>哈密顿路径的状态dp<3>两支点天平平衡问题<4>一个有向图的最接近二部图9.树型dp<1>完美服务器问题(每个节点有3种状态)<2>小胖守皇宫问题<3>网络收费问题<4>树中漫游问题<5>树上的博弈<6>树的最大独立集问题<7>树的最大平衡值问题<8>构造树的最小环转一个搞ACM需要的掌握的算法.要注意,ACM的竞赛性强,因此自己应该和自己的实际应用联系起来.适合自己的才是好的,有的人不适合搞算法,喜欢系统架构,因此不要看到别人什么就眼红, 发挥自己的长处,这才是重要的.第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来.1.最短路(Floyd、Dijstra,BellmanFord)2.最小生成树(先写个prim,kruscal要用并查集,不好写)3.大数(高精度)加减乘除4.二分查找. (代码可在五行以内)5.叉乘、判线段相交、然后写个凸包.6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.8. 调用系统的qsort, 技巧很多,慢慢掌握.9. 任意进制间的转换第二阶段:练习复杂一点,但也较常用的算法。
动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。
它通常用于涉及最
优化问题和最短路径的计算中。
下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。
其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。
解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。
2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。
解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。
然后通过递推关系来计算出最终的结果。
3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。
解
决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。
4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。
解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。
以上是一些常见的动态规划问题解法。
通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。
动态规划算法的常见实例动态规划算法是一种将复杂问题分解为简单子问题来解决的算法,它可被应用于多个领域中,如经济学、生物学、计算机科学等。
在本文中,我们将详细讨论动态规划算法的常见实例。
一、最长公共子序列问题最长公共子序列(LCS)问题是一个经典的计算机科学问题,它要求在两个字符串中找到最长的相同连续子序列。
例如,对于字符串“ABCD”和“ACDF”,最长公共子序列为“ACD”。
使用动态规划方法来解决LCS问题。
首先定义一个m行n列的二维矩阵,其中m和n分别表示两个字符串的长度。
然后,使用以下递推关系:1. 如果一个字符串的长度为0,LCS为0。
2. 如果两个字符不相同,则LCS为它们的前一个字符集合和它们的后一个字符集合的最大值。
3. 如果两个字符相同,则LCS为它们的前一个字符集合和它们的后一个字符集合所组成的子序列中的最大值加1。
最后,矩阵右下角的值就是LCS的长度。
二、背包问题背包问题(Knapsack problem)是一个经典的组合优化问题,被广泛应用于计算机科学和其他领域。
在一个决策者必须决定是否将某些物品放入背包中的场景中,背包问题就发挥了作用。
具体来说,我们要解决的问题是:对于一个固定容量的背包,有一些物品,它们的重量和价值都不同,如何在不超过背包容量的前提下,使所装载物品的总价值最大化。
一种解决方案是使用动态规划方法。
定义一个二维数组,其行表示物品,列表示背包大小。
然后,使用以下递推关系:1. 如果所考虑的物品重量大于背包容量,则不选此物品。
2. 否则,在选取该物品和不选该物品两种情况中选择最优解作为最终结果。
最后,矩阵中右下角的值就是最大的总价值。
三、矩阵链乘法矩阵链乘法是一种计算矩阵乘积的优化算法。
它使用动态规划算法来确定矩阵乘积的最小值。
对于一个长度为n的矩阵链,我们可以定义一个n×n 的矩阵M,其中第i行第j列的元素Mi,j表示第i个矩阵与第j个矩阵相乘的最小次数。
数学闹钟练习题今天,我们来解决一些有趣的数学闹钟练习题,帮助你提升数学思维和解题能力。
这些问题涉及各个数学领域,从代数到几何,从概率到统计。
尽管问题可能有些挑战,但是通过逐步解析,你会发现数学并不可怕,反而充满乐趣。
1. 前进的数字:小明做了一个有趣的实验。
他在时钟上开始从12:00 开始以每秒钟一个单位的速度前进。
他会遇到哪些数字两次?解析:我们可以思考时钟的钟面每过一小时作为一个周期。
在一个周期内,时钟上的数字(除了0之外)会出现两次,一次是小时的个位,另一次是小时的十位。
因此,小明会遇到的数字为0、1、2、3、4、5、6、7、8、9。
2. 正方形或长方形?:一个多边形有四个顶点,它的四条边长度分别为3cm,4cm,5cm和6cm。
它是正方形还是长方形?解析:为了判断多边形的形状,我们需要检查它的各个角是否相等。
如果四个角都相等,则为正方形;如果只有两个相等的角,则为长方形。
我们可以使用勾股定理来解决这个问题。
通过计算可得,3^2 +4^2 = 5^2 和 4^2 + 5^2 = 6^2 成立,而3^2 + 6^2 ≠ 5^2,说明此多边形的四个角不相等。
因此,它是一个长方形。
3. 爱吃苹果的兔子:兔子每天从一个苹果上咬下一半,然后再多咬一个。
如果兔子连续两天吃三个苹果,那么从第一个苹果开始,它一共要吃多少天?解析:兔子连续两天吃三个苹果,可以写成等式:(x/2) + (x/2 + 1) + (x/2 + 2) = 3,其中 x 代表兔子开始吃苹果的天数。
通过解这个等式,我们可以得到 x = 4。
所以,兔子从第一个苹果开始要吃4天才能吃到三个苹果。
4. 掷骰子游戏:小明和小红玩一个掷骰子的游戏。
他们轮流掷一个六面骰子,直到出现两个连续相同的数字(例如,4-4、5-5等)。
如果小明先掷骰子,那么他获胜的概率是多少?解析:我们可以依次列举所有可能的情况。
小明掷出第一个数字后,游戏进入一个新的状态。
动态规划模型的建立与求解步骤动态规划(Dynamic Programming)是一种通过分解复杂问题为简单的子问题,并将其结果保存起来以便重复使用的方法。
其基本思想是从问题的边界条件开始,通过递推式逐步求解更大规模的子问题,直到最终解决整个问题。
动态规划常见的应用包括路径规划、背包问题、字符串匹配等。
下面将介绍动态规划模型的建立与求解步骤,以了解如何使用动态规划解决实际问题。
一、确定状态:在使用动态规划解决问题之前,首先需要确定问题的状态。
状态就是问题需要求解的子问题的集合,每个状态都对应一个解。
二、确定初始条件:初始条件是指在递推关系中最小的、无需依赖于其他状态的子问题的解。
它们可以给出问题的边界,为递推过程提供起点。
三、确定状态转移方程:状态转移方程是把大问题分解为小问题的规律。
通过观察和思考,可以找出问题的递推关系,即大问题如何由小问题组成。
四、确定计算顺序:确定计算顺序是指确定问题的求解顺序,通常是按照自底向上或自顶向下的顺序进行计算。
自底向上是从初始条件开始,逐步计算直到求解整个问题;自顶向下是从大问题开始逐步分解为小问题,直到达到初始条件。
五、实现状态转移方程:通过编程实现状态转移方程,并根据计算顺序逐步求解子问题。
可以使用递归或循环的方法进行实现。
六、求解最优解:根据问题的定义和要求,确定如何从求解的子问题中得到最优解。
通常最优解是基于一些目标函数或约束条件来定义的。
七、分析复杂度:分析算法的时间复杂度和空间复杂度,以确定算法的效率和可行性。
综上所述,建立和求解动态规划模型的步骤可以概括为以下几个阶段:确定状态、确定初始条件、确定状态转移方程、确定计算顺序、实现状态转移方程、求解最优解和分析复杂度。
根据具体问题的特点和要求,可以灵活选择和调整这些步骤,以得到最优的解决方案。
动态规划应用案例动态规划是一种解决复杂问题的优化算法。
它通过将问题拆分成多个子问题,并记录每个子问题的解,以避免重复计算,从而提高算法的效率。
在实际应用中,动态规划被广泛用于解决各种问题,包括最优化问题、路径搜索问题、序列问题等。
本文将介绍几个动态规划的应用案例,以展示其在实际问题中的强大能力。
案例一:背包问题背包问题是动态规划中经典的一个例子。
假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。
要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。
这个问题可以用动态规划来解决。
首先定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些物品,使得它们的总重量不超过j时的最大总价值。
然后,可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)最后,根据状态转移方程,可以循环计算出dp[n][V]的值,即背包中物品总价值的最大值,从而解决了背包问题。
案例二:最长递增子序列最长递增子序列是指在一个序列中,选取一些数字,使得这些数字按照顺序排列,且长度最长。
动态规划也可以应用于解决最长递增子序列问题。
假设有一个序列nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的最长递增子序列的长度。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[j] + 1),其中j < i且nums[j] < nums[i]最后,循环计算出dp数组中的最大值,即为最长递增子序列的长度。
案例三:最大子数组和最大子数组和问题是指在一个数组中,选取一段连续的子数组,使得子数组的和最大。
动态规划也可以用于解决最大子数组和问题。
假设有一个数组nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的连续子数组的最大和。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[i-1] + nums[i], nums[i])最后,循环计算出dp数组中的最大值,即为最大子数组的和。
1. 资源问题1-----机器分配问题f[i,j]:=max(f[i-1,k]+w[i,j-k]);2. 资源问题2------01背包问题f[i,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);3. 线性动态规划1-----朴素最长非降子序列f[i]:=max{f[j]+1}4. 剖分问题1-----石子合并f[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5. 剖分问题2-----多边形剖分f[i,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);6. 剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7. 资源问题3-----系统可靠性(完全背包)f[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]};8. 贪心的动态规划1-----快餐问题f[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3};9. 贪心的动态规划2-----过河f[i]=min{{f(i-k)} (not stone[i]){f(i-k)}+1} (stone[i]); +贪心压缩状态10. 剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正f[I,k]*f[k+1,j];负负g[I,k]*f[k+1,j];正负g[I,k]*f[k+1,j];负正f[I,k]*g[k+1,j];} g为min11. 树型动态规划1-----加分二叉树(从两侧到根结点模型)F[i,j]:=max{f[i,k-1]*f[k+1,j]+c[k]};12. 树型动态规划2-----选课(多叉树转二叉树,自顶向下模型)f[i,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]};13. 计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)14. 递推天地1------核电站问题f[-1]:=1; f[0]:=1;f[i]:=2*f[i-1]-f[i-1-m];15. 递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16. 最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17. 判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18. 判定性问题2-----能否被k整除f[i,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20. 线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k), //dof[i,p,k+len[j]]+f[p+1,j-1,0] //not do}; ans:=f[1,m,0];21. 线型动态规划3-----最长公共子串,LCS问题f[i,j]=0 (i=0)&(j=0);f[i-1,j-1]+1 (i>0,j>0,x[i]=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);22. 最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v[i]]);24. 数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25. 数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划f[i,j]:=min(f[i,j-1],f[i,j+1],f[i-1,j],f[i-1,j-1])+a[i,j];26. 双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j]);27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28. 数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29. 数字三角形6-----优化的打砖块f[i,j,k]:=max{g[i-1,j-k,k-1]+sum[i,k]};30. 线性动态规划3-----打鼹鼠’f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j]);31. 树形动态规划3-----贪吃的九头龙f[i,j,k]:=min(f[x1,j1,1]+f[x2,j-j1-1,k]+d[k,1]*cost[i,fa[i]]] {Small Head}, f[x1,j1,0]+f[x2,j-j1,k]+d[k,0]*cost[i,fa[i]] {Big Head});f[0,0,k]:=0; f[0,j,k]:=max(j>0)d[i,j]:=1 if (i=1) and (j=1)1 if (i=0) and (j=0) and (M=2)0 else32. 状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k]);If (map[i] and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0);33. 递推天地3-----情书抄写员f[i]:=f[i-1]+k*f[i-2];34. 递推天地4-----错位排列f[i]:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35. 递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36. 递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37. 递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1);:=sqr(n)-n+2;38 递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39 递推天地9-----Catalan数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40 递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41 线性动态规划4-----找数线性扫描sum:=f[i]+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42 线性动态规划5-----隐形的翅膀min:=min{abs(w[i]/w[j]-gold)};if w[i]/w[j]<gold then inc(i) else inc(j);43 剖分问题5-----最大奖励f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t;44 最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F[i]:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);49 资源问题-----化工场装箱员50 树形动态规划-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);51 树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,2]);52 递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53 双重动态规划-----有限的基因序列f[i]:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j]);54 最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1] ),f[i-1,j-1,k-1]))+1;55 线性动态规划------日程安排f[i]:=max{f[j]}+P[I]; (e[j]<s[i])56 递推天地------组合数C[i,j]:=C[i-1,j]+C[i-1,j-1];C[i,0]:=157 树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]};58 树形动态规划-----CTSC 2001选课F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0);59 线性动态规划-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked);60 背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]];61 线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1], f[i+length(s),1,1]+1};f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]};62 线性动态规划-----最少单词个数f[i,j]:=max{f[i,j],f[u-1,j-1]+l};63 线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f[i]:=min(g[i-2]+s[i],f[i-1]);64 树形动态规划-----APIO2007 风铃f[i]:=f[l]+f[r]+{1 (if c[l]<c[r])};g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r]);g[l]=g[r]=1 then Halt;65 地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66 地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67 目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]];68 目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]];69 树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j]);leaves[i]>=p>=l, 1<=q<=p;70 地图动态规划-----vijos某题F[i,j]:=min(f[i-1,j-1],f[i,j-1],f[i-1,j]);71 最大子矩阵问题-----最大字段和问题f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1];72 最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵B[I,j]+=a[x,I,j];枚举另外一组边的其实,做最大子矩阵73 括号序列-----线型动态规划f[i,j]:=min(f[i,j],f[i+1,j-1] (s[i]s[j]=”()”or(”[]”)),f[i+1,j+1]+1 (s[j]=”(”or”[” ) , f[i,j-1]+1(s[j]=”)”or”]”);74 棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]};75 概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j];f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1;f[I,i]=0;f[x,j]=1;76 概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2;f[i,i]=1;f[i,j]=0;(i,j无相同基因)77 线性动态规划-----决斗F[i,j]=(f[i,j] and f[k,j]) and (e[i,k] or e[j,k]); (i<k<j)78 线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]]);79 线性动态规划-----积木游戏F[i,a,b,k]=max(f[a+1,b,k],f[i+1,a+1,a+1,k],f[i,a+1,a+1,k]);80 树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
1. 资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k])2. 资源问题2------01背包问题F[I,j]:=max(f[i-1,j-v]+w,f[i-1,j]);3. 线性动态规划1-----朴素最长非降子序列F:=max{f[j]+1}4. 剖分问题1-----石子合并F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5. 剖分问题2-----多边形剖分F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a);6. 剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7. 资源问题3-----系统可靠性(完全背包)F[i,j]:=max{f[i-1,j-c*k]*P[I,x]}8. 贪心的动态规划1-----快餐问题F[i,j,k]:=max{f[i-1,j',k']+(T-(j-j')*p1-(k-k')*p2) div p3}9. 贪心的动态规划2-----过河f=min{{f(i-k)} (not stone){f(i-k)}+1} (stone); +贪心压缩状态10. 剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正f[I,k]*f[k+1,j];负负g[I,k]*f[k+1,j];正负g[I,k]*f[k+1,j];负正f[I,k]*g[k+1,j];} g为min11. 树型动态规划1-----加分二叉树(从两侧到根结点模型)F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}12. 树型动态规划2-----选课(多叉树转二叉树,自顶向下模型)F[I,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t.l,k]+f[t.r,j-k-1]+c}13. 计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a;)14. 递推天地1------核电站问题f[-1]:=1; f[0]:=1;f:=2*f[i-1]-f[i-1-m]15. 递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16. 最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17. 判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false;g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18. 判定性问题2-----能否被k整除f[I,j±n mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20. 线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),f[i,p,k+len[j]]+f[p+1,j-1,0]}ans:=f[1,m,0]21. 线型动态规划3-----最长公共子串,LCS问题f[i,j]={0(i=0)&(j=0);f[i-1,j-1]+1 (i>0,j>0,x=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x<>y[j]);22. 最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v]);24. 数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25. 数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]26. 双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28. 数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29. 数字三角形6-----优化的打砖块f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}30. 线性动态规划3-----打鼹鼠’f:=f[j]+1;(abs(x-x[j])+abs(y-y[j])<=t-t[j])31. 树形动态规划3-----贪吃的九头龙32. 状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k])If (map and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0)33. 递推天地3-----情书抄写员f:=f[i-1]+k*f[i-2]34. 递推天地4-----错位排列f:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35. 递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36. 递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37. 递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1):=sqr(n)-n+2;38 递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39 递推天地9-----Catalan数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40 递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41 线性动态规划4-----找数线性扫描sum:=f+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42 线性动态规划5-----隐形的翅膀min:=min{abs(w/w[j]-gold)};if w/w[j]<gold then inc(i) else inc(j);43 剖分问题5-----最大奖励f:=max(f,f[j]+(sum[j]-sum)*i-t44 最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v-v[fb]-v[fa]]+v*p+v[fb]*p[fb]+v[fa]*p[fa]);49 资源问题-----化工场装箱员50 树形动态规划-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t^.son,0]);f[i,0]:=sigma(f[t^.son,3]);51 树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t^.son,0]);f[i,0]:=sigma(f[t^.son,3]);52 递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53 双重动态规划-----有限的基因序列f:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])54 最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1]),f[i-1,j-1,k-1]))+1;55 线性动态规划------日程安排f:=max{f[j]}+P[I]; (e[j]<s)56 递推天地------组合数C[I,j]:=C[i-1,j]+C[I-1,j-1]C[I,0]:=157 树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l,I,j]+f[r,I,k-j-1]},f[f[l,r,j]+f[r,r,k-j]+w[I,r]]}58 树形动态规划-----CTSC 2001选课F[I,j]:=w(if i∈P)+f[l,k]+f[r,m-k](0≤k≤m)(if l<>0)59 线性动态规划-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked)60 背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a] or f[i-1,j+a]61 线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1],f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+w ords[s]}62 线性动态规划-----最少单词个数f[i,j]:=max{f[I,j],f[u-1,j-1]+l}63 线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f:=min(g[i-2]+s,f[i-1]);64 树形动态规划-----APIO2007 风铃f:=f[l]+f[r]+{1 (if c[l]<c[r])}g:=1(d[l]<>d[r]) 0(d[l]=d[r])g[l]=g[r]=1 then Halt;65 地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66 地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67 目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a] or f[i-1,j-a]68 目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a,delta+a] or g[value,delta-a]69 树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])leaves>=p>=l, 1<=q<=p;70 地图动态规划-----vijos某题F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);71 最大子矩阵问题-----最大字段和问题f:=max(f[i-1]+b,b); f[1]:=b[1]72 最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵B[I,j]+=a[x,I,j]枚举另外一组边的其实,做最大子矩阵73 括号序列-----线型动态规划f[I,j]:=min(f[I,j],f[i+1,j-1](ss[j]=”()”or(”[]”)),f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )74 棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]min{}}75 概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j]f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1f[I,i]=0f[x,j]=176 概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2f[I,i]=1f[I,j]=0(I,j无相同基因)77 线性动态规划-----决斗F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j78 线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])79 线性动态规划-----积木游戏F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])80 树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。
第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。
利用动态规划实现多边形游戏。
一、实验内容:给定N个顶点的多边形,每个顶点标有一个整数,每条边上标有+(加)或是×(乘)号,并且N条边按照顺时针依次编号为1~N。
下图给出了一个N=4个顶点的多边形。
游戏规则:(1) 首先,移走一条边。
(2) 然后进行下面的操作:选中一条边E,该边有两个相邻的顶点,不妨称为V1和V2。
对V1和V2顶点所标的整数按照E上所标运算符号(+或是×)进行运算,得到一个整数;用该整数标注一个新顶点,该顶点代替V1和V2 。
持续进行此操作,直到最后没有边存在,即只剩下一个顶点。
该顶点的整数称为此次游戏的得分(Score)。
二、实验要求:给定一个多边形,顶点和边已按上述方式进行标注。
问:按照游戏规则,最高得分(最优值)是多少?对应该最高得分,按照什么顺序移走边(最优解)?输入文件:文件POLYGON.IN中存储了多边形的信息,该文件中有两行数据:第一行是一个整数N第二行按照边顶点边顶点….边顶点的顺序以此存放了N个顶点和N条边的标注信息。
其中字符t表示+,字符x表示×。
输出文件:文件POLYGON.OUT,该文件中有两行数据:第一行是该游戏可能的最高得分。
第二行列出第一次移走哪条边(可能有多个, 如果是多个,则按照递增顺序排列),会导致最高得分的出现。
实验结果:import java.io.*;public class game {/*** @param args*/static int n,result;static String[] op;static int[] v;static int minf, maxf;static int m[][][];static String firstmove="";public static void minmax(int i, int j, int s) { int[] e = new int[5];int a = m[i][s][0],b = m[i][s][1],r = (i + s - 1) % n + 1,c = m[r][j - s][0],d = m[r][j - s][1];if (op[r].equals("t")) {minf = a + c;maxf = b + d;}else {e[1] = a * c;e[2] = a * d;e[3] = b * c;e[4] = b * d;minf = maxf = e[1];for (int k = 2; k < 5; k++) {if (minf > e[k])minf = e[k];if (maxf < e[k])maxf = e[k];}}}public static int polymax() {for (int j = 2; j <= n; j++) {for (int i = 1; i <= n; i++) {for (int s = 1; s < j; s++) {minmax(i, j, s);if (m[i][j][0] > minf)m[i][j][0] = minf;if (m[i][j][1] < maxf)m[i][j][1] = maxf;}}}int temp = m[1][n][1];for (int k = 2; k <= n; k++) {if (temp < m[k][n][1]) {temp = m[k][n][1];}}for (int k = 1; k <= n; k++) {if(temp == m[k][n][1]){firstmove=firstmove+k+" ";}}return temp;}public static void main(String[] args) throws IOException {// TODO Auto-generated method stubBufferedReader read=new BufferedReader(new InputStreamReader(new FileInputStream("POLYGON.IN.txt")));String a=new String();a=read.readLine();n=Integer.parseInt(a);op = new String[n+1];v = new int[n+1];m = new int[n+1][n+1][2];String[]b=new String[2*n];a=read.readLine();b=a.split(" ");int k=1,j=1;for(int i=0;i<=2*n-2;i+=2){op[k++]=b[i];v[j++]=Integer.parseInt(b[i+1]);}for(int i=1; i<=n; i++){System.out.print(op[i]+" "+v[i]+" "); }System.out.println();for(int i=1; i<=n; i++){m[i][1][0] = v[i];m[i][1][1] = v[i];}result=polymax();System.out.println(result);System.out.println(firstmove);PrintWriter print=new PrintWriter(new OutputStreamWriter(new FileOutputStream("POLYGON.OUT.txt")));print.println(result);print.println(firstmove);read.close();print.close();}}。
例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。
(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。
对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。
这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1 to n do readln(w[i],v[i]);f[0]:=0;for i:=1 to m dofor j:=1 to n dobeginif i>=w[j] then t:=f[i-w[j]]+v[j];if t>f[i] then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。
货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。
他们对货币的数值感到好奇。
传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。
母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。
使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。
写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。
【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。
算法分析与设计实验报告
第次实验
五边形测试:
附录:完整代码
#include<iostream>
#include<string>
#include <time.h>
#include <iomanip>
#include <stdio.h>
#define num 50
using namespace std;
int m[num][num][2],s[num][num];
int Polymax(int n,int v[],char op[]) {
int i,j,k,s1,r;
int min[num],max[num],maxf;
int e[4];
for(i=1;i<=n;i++)
m[i][1][0]=m[i][1][1]=v[i];
for(j=2;j<=n;j++)
for(i=1;i<=n;i++)
{
for(s1=1;s1<=j-1;s1++)
{
r=(i+s1-1)%n+1;
if(op[(i+s1)%n]=='+')
{
min[s1]=m[i][s1][0]+m[r][j-s1][0];
max[s1]=m[i][s1][1]+m[r][j-s1][1];
}
else
{
e[0]=(m[i][s1][0])*(m[r][j-s1][0]);
e[1]=(m[i][s1][0])*(m[r][j-s1][1]);
e[2]=(m[i][s1][1])*(m[r][j-s1][0]);
e[3]=(m[i][s1][1])*(m[r][j-s1][1]);
min[s1]=e[0];
max[s1]=e[0];
for(k=1;k<4;k++)
{
if(min[s1]>e[k])
min[s1]=e[k];
if(max[s1]<e[k])
max[s1]=e[k];
}
}
}
m[i][j][0]=min[1];m[i][j][1]=max[1];
for(k=2;k<=j-1;k++)
{
if(m[i][j][0]>min[k])//计算首次删去第i条边的得分 m[i][j][0]=min[k];
if(m[i][j][1]<max[k])
{
m[i][j][1]=max[k];
s[i][j]=s1;
}
}
}
maxf=m[1][n][1]; //首次删去第1条边的最大得分
for(i=2;i<=n;i++)//首次删去第i条边的最大得分
{
if(maxf<m[i][n][1]) maxf=m[i][n][1];
}
return maxf;
}
int main( )
{
int i,p=0;
double k=0.0;
clock_t start,end,over;
start=clock(); end=clock();
over=end-start;
start=clock();
int n,max;
int v[50];
char op[50];
cout<<"--------动态规划法--多边形游戏-----------"<<endl;
cout<<"请输入边数n:";
cin>>n;
cout<<"请依次输入符号和顶点:"<<endl;
for(i=1;i<=n;i++)
{
cin>>op[i]>>v[i];
getchar();
}
max=Polymax(n,v,op);
cout<<max<<endl;
for(i=0;i<1000000000;i++) p=p+i;
end=clock();
printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); return 0;
}。