第11章反常积分答案
- 格式:doc
- 大小:407.00 KB
- 文档页数:11
习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
第十一章反常积分§1反常积分概念一问题提出在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”,或是无界函数的“积分”,这便是本章的主题.例1(第二宇宙速度问题)在地球表面垂直发射火箭(图11-1),要使火箭克服地球引力无限远离地球,试问初速度v0至少要多大?设地球半径为R,火箭质量为m,地面上的重力加速度为g.仅供个人学习参考r mgR ∫∫2∫d x= mgR21-1 .Rx2R r当r →+∞时,其极限mgR 就是火箭无限远离地球需作的功.我们很自然地会把这极限写作上限为+∞的“积分”:图11-1+∞mgR2d x= limrmgR2Rx2r →+∞Rd x= mgR.x2最后,由机械能守恒定律可求得初速度v 0至少应使122mv 0= mgR.用g =9.81(m 6s /2),R =6.371×106(m )代入,便得例211-2).2∫ ∫ ∫ §1反常积分概念265从物理学知道,在不计摩擦力的情形下,当桶内水位高度为(h -x)时,水从孔中流出的流速(单位时间内流过单位截面积的流量)为 v=2g(h- x),其中g 为重力加速度. 设在很小一段时间d t 内,桶中液面降低的微小量为d x,它们之间应满足πR 2d x=v πr 2d t, 图11-2由此则有t=Rd 2.上可积.(1)+∞J=f(x )d x,(1′)a+∞ +∞ 并称 f(x)d x 收敛.如果极限(1)不存在,为方便起见,亦称f(x)d xaa发散.类似地,可定义f 在(-∞,b]上的无穷积分:bb∫∫ ∫ ∫∫266第十一章反常积分∫f(x)d x=lim∫f(x )d x.(2)-∞u →-∞u对于f 在(-∞,+∞)上的无穷积分,它用前面两种无穷积分来定义:+∞af(x)d x=-∞-∞+∞ f(x)d x+af(x)d x, (3)其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注1无穷积分(3)的收敛性与收敛时的值,都和实数a 的选取无关.注2由于无穷积分(3)是由(1)、(2)两类无穷积分来定义的,因此,f 在任何有限区间[v,u]ì(-∞,+∞)上,首先必须是可积的.+∞注3af(x)d x 收敛的几何意义是:若f 在[a,+线轴之间那一块向右无限延伸的 图11-31∫) +∞ d x 2 x(ln x)p ; 2) +∞d x-∞1+x 2.解1)由于无穷积分是通过变限定积分的极限来定义的,因此有关定积分的换元积分法和图11-4a∫∫§1反常积分概念267分部积分法一般都可引用到无穷积分中来.对于本例来说,就有∫+∞d x+∞d t2x(ln x)p =∫ln2tp.从例3知道,该无穷积分当p >1时收敛,当p ≤1时发散.2)任取实数a,讨论如下两个无穷积分:∫d x+∞d x -∞1+x2和∫a由于a1+x2.lim∫d x = lim (arctan a-arctan u)u →-∞ u1+x 2v u →-∞=arctan a+π,2注定义[u,b]ì(5)(5′)bf(x)a 而无 b界函数反常积分 f(x)d x 又称为瑕积分.a类似地,可定义瑕点为b 时的瑕积分:bu∫f(x)d x=lim∫f(x)d x.au →b-a其中f 在[a,b)有定义,在点b 的任一左邻域内无界,但在任何[a,u]ì[a,b)1 1 x 268 第十一章反常积分上可积.若f 的瑕点c ∈(a,b),则定义瑕积分b c b∫f(x )d x=∫f(x )d x+∫f(x)d xaacub=lim ∫f(x )d x+lim ∫f(x )d x.(6)u →c-av →c+v其中f 在[a,c)∪(c,b]上有定义,在点c 的任一领域内无界,但在任何[a,u]ì[a,c)和[v,b]ì(c,b]上都可积.当且仅当(6)式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.又若a 、b 两点都是f 的瑕点,而f 在任何[u,v]ì(a,b)上可积,这时定义瑕积分b c b∫f(x)d x=∫f(x)d x+∫f(x )d x(7)其中c ,上可积例6(8)故当0<q <1时,瑕积分(8)收敛,且∫d x ∫d x 1q = lim 0 u →0+u x q=1- q ;∫∫§1反常积分概念269而当q ≥1时,瑕积分(8)发散于+∞.上述结论在图11-4中同样能获得直观的反映. 如果把例3与例6联系起来,考察反常积分 +∞我们定义d xx p (p>0). (9)∫+∞d x 1d x+∞d x 0xp=∫0x p+∫1xp,它当且仅当右边的瑕积分和无穷积分都收敛时才收敛.但由例3与例6的结果可知,这两个反常积分不能同时收敛,故反常积分(9)对任何实数p 都是发散的.习题1.讨论下列无穷积分是否收敛?若收敛,则求其值:+∞2.3.4.举例说明: f(x)d x 收敛且f 在[a,+∞)上连续时,不一定有limax →+∞f(x)=0.+∞5.证明:若af(x)d x 收敛,且存在极限lim x →+∞f(x)=A,则A=0.∫ ∫∫ ∫∫ ∫ ∫ ∫ 270第十一章反常积分+∞6.证明:若f 在[a,+∞)上可导,且a+∞f(x)d x 与 af ′(x )d x 都收敛,则lim x →+∞f(x)=0.§2无穷积分的性质与收敛判别一无穷积分的性质+∞由定义知道,无穷积分auf(x)d x 收敛与否,取决于函数F(u) =f(x)d x 在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷 a积分收敛的柯西准则.+∞定理11.1无穷积分af(x)d x 收敛的充要条件是:任给ε>0,存在G此外,+∞ [k a(1)性质d x 与+∞ b(2)另一充要条件:任给ε>0,存在G ≥a,当u> G 时,总有 +∞f(x)d x<ε.u∫ ∫ ∫ ∫∫ ∫ ∫ §2无穷积分的性质与收敛判别271事实上,这可由+∞u +∞∫f(x)d x=∫f(x)d x+∫f(x)d xaau结合无穷积分的收敛定义而得.+∞性质3若f 在任何有限区间[a,u ]上可积,且有a+∞f(x)d x 亦必收敛,并有a|f(x)|d x 收敛,则+∞+∞f(x)d x≤aa+∞f(x) d x. (3)证由≥a,当u等式(u +∞由于 |f(x)|d x 关于上限u 是单调递增的,因此aa|f(x)|d x 收敛的u 充要条件是 a| f(x)|d x 存在上界.根据这一分析,便立即导出下述比较判别法(请读者自己写出证明):定理11.2(比较法则)设定义在[a,+∞)上的两个函数f 和g 都在任何∫ ∫ ∫ ∫∫∫∫272 第十一章反常积分有限区间[a,u]上可积,且满足f(x)≤g(x),x ∈[a,+∞),+∞+∞ 则当 g(x )d x 收敛时aa+∞ +∞|f(x)|d x 必收敛(或者,当 a|f(x)|d x 发散时,ag(x)d x 必发散).+∞例1讨论sin xd x 的收敛性. 1+x 2+∞解由于sin x1d x π1+x2≤1+x 2,x ∈[0,+∞),以及∫1+x 2=为收敛2(§1sin xd x 为绝对收敛. =c,则有:(i i .则有:.xp a推论3设f 定义于[a,+∞),在任何有限区间[a,u]上可积,且则有: lim x →+∞x pf(x) =λ.+∞(i)当p >1,0≤λ<+∞时, f(x)d x 收敛;a+∞(ii)当p ≤1,0<λ≤+∞时,af(x)d x 发散.+∞∫∫∫1§2无穷积分的性质与收敛判别273例2讨论下列无穷限积分的收敛性:1∫)+∞x αe -xd x;2)1+∞x 2d x. 0x 5+1解本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事.1)由于对任何实数α都有limx →+∞x 2·x αe -x= lim x →+∞ x α+2ex=0,因此根据上述推论3(p =2,λ=0),推知1)对任何实数α都是收敛的.2)由于12limx →+∞x 2·x x 5+1=1,, g(x)limx →+∞又因u 2>u 1 11于是有uξuf(x)g(x)d x ≤g(u 1)·uuf(x)d x+ g(u 2)·∫ f(x)d x11ξξ u=g(u 1)·∫f(x )d x ∫-f(x)d xaa22u∫∫ ∫ ∫∫∫∫ ∫274第十一章反常积分2+ g(u 2)·ξf(x)d x-∫f(x)d xε4M ·2M+ +∞ aaε4M·2M=ε.根据柯西准则,证得af(x)g(x)d x 收敛.+∞定理11.4(阿贝尔(Abel)判别法)若 af(x)d x 收敛,g(x)在[a,+∞)+∞上单调有界,则a f(x)g(x)d x 收敛.这定理同样可用积分第二中值定理来证明,但又可利用狄利克雷判别法更方便地获得证明(留作习题).:+而1 u∫1cos2x 1 其中12xd x=2 2 cos ttd t 满足狄利克雷判别条件,是收敛的,而+∞d x12x是发散的,因此当0<p ≤1时该无穷积分不是绝对收敛的.所以它是条 件收敛的.例4证明下列无穷积分都是条件收敛的:<∫∫ ∫∫ ∫ ∫∫ ∫∫+∞ §2无穷积分的性质与收敛判别275+∞sin x 2d x,1+∞cos x 2d x,1+∞x sin x 4d x.1证前两个无穷积分经换元t =x 2得到+∞+∞sin x 2d x=1 1+∞ +∞ cos x 2d x= 11sin t d t, 2 tcos t d t.2 t由例3已知它们是条件收敛的.对于第三个无穷积分,经换元t =x 2而得∫x sin x 4d x=1+∞sin t 2d t,,甚至是无界的,1.2.+∞若a收敛.3.g(x).(1(4.(5∫)ln (1+x)d x;(6)11+x +∞x md x(n 、m ≥0).1xn0 1+xn5.讨论下列无穷积分为绝对收敛还是条件收敛:(1∫)sin xd x;(2)1x+∞sgn(sin x)d x;1+x2+∞+∞∫ ∫∫∫∫∫276第十一章反常积分(3∫)x cos xd x; (4)100+xln(ln x)sin x d x.eln x6.举例说明∫:+∞+∞ +∞f(x)d x 收敛时aaf 2(x )d x 不一定收敛∫; +∞ f(x)d x 绝对收敛时,af 2(x)d x 也不一定收敛. a+∞ +∞7.证明:若af(x)d x 绝对收敛,且lim x →+∞f(x)=0,则a+∞f 2(x)d x 必定收敛.8.证明:若f 是[a,+∞)上的单调函数,且 af(x)d x 收敛,则lim x →+∞f(x)=0,且f(x)=o 1x,x →+∞.+∞9.10,存在δ>性质b∫f 1(x )a敛,(1)性质b c∫f(x)d x 与∫f(x)d x 同敛态,并有aab c b∫f(x)d x=∫f(x )d x+∫f(x)d x,(2)aacb其中 f(x)d x 为定积分.c+∞+∞∫∫∫∫(x- a)p ∫§3瑕积分的性质与收敛判别277性质3设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可b积.则当af(x) d x收敛时∫,b bf(x)d x也必定收敛,并有ab∫f(x)d x ≤∫f(x) d x. (3)a ab b同样地,当a f(x) d x收敛时,称f(x)d x为绝对收敛.又称收敛而不绝a对收敛的瑕积分是条件收敛的.判别瑕积分绝对收敛的比较法则及其推论如下:定理11.6(比较法则)设定义在(a,b]上的两个函数f与g,瑕点同为x=a,在任何[u,b]ì(a,b]上都可积,且满足则当, bg(x)a((成为则有:(ii)当f(x) ≥1,且p≥1时,af(x) d x发散.推论3设f定义于(a,b],a为其瑕点,且在任何[u,b]ì(a,b]上可积. 如果则有: limx→a +(x- a)p f(x) =λ,∫ ∫x278第十一章反常积分b(i )当0<p <1,0≤λ<+∞时af(x)d x 收敛;b(ii)当p ≥1,0<λ≤+∞时a例1判别下列瑕积分的收敛性:f(x)d x 发散.1∫) ln x d x ;2∫)0 x2x1ln xd x.解本例两个瑕积分的被积函数在各自的积分区间上分别保持同号———ln x在(0,1]上恒为负, x 在(1,2]上恒为正———所以它们的瑕积分收敛与绝xln x2(i)x →0+x1-α· 1+x =1,根据定理11.6推论3,当0<p =1-α<1,即α>0且λ=1时,瑕积分I(α)收1∫ §3瑕积分的性质与收敛判别279敛;当p =1-α≥1,即α≤0且λ=1时,I(α)发散.(ii)再讨论J(α),它是无穷积分.由于α-1lim x →+∞ x 2-α·x1+x= lim x →+∞ x 1+x =1,根据定理11.2推论3,当p =2-α>1,即α<1且λ=1时,J(α)收敛;而当p =2-α≤1,即α≥1且λ=1时,J(α)发散.1.2.3.4.5.x)d x=π62/6.(1∫) =-πln20 2(2∫)θsin θd θ=2πln2. 01-cos θπ1∫2∫ 280 第十一章反常积分总练习题1.证明下列等式:1 p-1 +∞-p (1∫) x d x=∫x d x,p>0;0x+1 1 x+1+∞ p-1 +∞-p (2∫) x d x=∫xd x,0<p<1.0 x+1 0 x+12.证明下列不等式:(1)π<∫d x <π;22 (2)1 20 1-1 e 1-x 4 +∞ < 0 2 e -x d x<1+1. 2e3.计算下列反常积分的值:4.5.(2)若6.(也收敛.(2+∞ a●。
《高等数学教程》第十一章 重积分 习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1. (1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或2122122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2. (1)42(,)x dx f x y dy ⎰⎰; (2)101(,)ydy f x y dx ⎰⎰;(3)1102(,)ydy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3. (1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4. (1)92; (2)21122e e -+.5. 335.6. (1)20(cos ,sin )bad f r r rdr πθθθ⎰⎰;(2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰;(3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7. (1)sec csc 4402(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰; (4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰.8. (1)434a π; 1. 9. (1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10. 4332a π.习题11-2(B)1. (1)12(,)yydy f x y dx -⎰⎰; (2)110(,)dy f x y dx ⎰;(3)1012111(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)0242(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2. (1)0; (2)430; (3)8)3(4)1sin1-. 3. (1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(3)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4. (1)38π; (2)52π.5. (1)2π; (2)49-(3)22π-; (4)414a ; (5)2π.6. (1)232a π; (2)22a ; (3)232π-.7. (1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8. 6π.习题11-3(A)1. (1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32; 3. 15(ln 2)28-; 4.21162π-; 5. (1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6. (1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7. (1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8. 4k R π习题11-3(B)1. (1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;2240sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2.222241()3x y x y f dz --+⎰;2224103r rd f dz πθ-⎰⎰,6π3.2020Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4. (1)835; (2)2845; (3)0; (4)559480R π. 5. 336π; 6. π; 7. 45π.习题11-4(A)1.2.1)6π.3. 22(2)R π-.4.320. 5. (1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6. (1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7. (1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8. (1)483a ; (2)27(0,0,)60a ; (3) 611245a .9. 649k R π.习题11-4(B)1. .2. 3535(,)4854.3. .4.44()32b a πρ-.5. 43512a π.6. 368105ρ. 7. (0,0,54a ).8.222(3)12a h a h π+. 9. 2432;327r R R π=.10. 2(lnx F G μ=;0y F =; z F Ga πμ=.11. 0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A 二、1.(1)()x f x -;2.(1,1)y y --;3.54π;4.41(1)2e --; 5.42211()4R a bπ+. 三、1.2409π-;2.314()33R π-; 3.0; 4.2503π;5. 2(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6. 42π-.7.212A . 8. 8π.9. 5144. 10. 以球心O 及0P 的连线作为x 轴正方向建立直角坐标系质心:(,0,0)4R-。
第十一章 反常积分习题课一 概念叙述 1.叙述()dx x f a⎰+∞收敛的定义.答:()dx x f a⎰+∞收敛⇔()()lim+∞→+∞=⎰⎰uaau f x dx f x dx 存在.⇔()lim0+∞→+∞=⎰uu f x dx .2.叙述()b af x dx ⎰(a 是暇点)收敛的定义.答:()ba f x dx ⎰收敛⇔()()lim +→=⎰⎰b buau a f x dx f x dx 存在.⇔0,0,εδ∀>∃>当δ<<+a u a ,有()()ε-<⎰⎰b buaf x dx f x dx .3. 叙述()dx x f a⎰+∞收敛的柯西准则.答:无穷积分()dx x f a⎰+∞收敛的柯西准则是:任给0ε>,存在0M >,只要12,u u M >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.4. 叙述()b af x dx ⎰(a 是暇点)收敛的柯西准则.答:瑕积分()dx x f ba ⎰(瑕点为a )收敛的充要条件是:任给0ε>,存在0δ>,只要()12,,u u a a ∈+δ,总有()()()2121b bu u u u f x dx f x dx f x dx -=<ε⎰⎰⎰.二 疑难问题1.试问⎰+∞adx x f )(收敛与0)(lim =+∞→x f x 有无联系?答:首先,0)(lim =+∞→x f x 肯定不是⎰+∞adx x f )(收敛的充分条件,例如01lim=+∞→x x ,但⎰+∞11dx x发散.那么0)(lim =+∞→x f x 是否是⎰+∞adx x f )(收敛的必要条件呢?也不是!例如⎰+∞12sin dx x ,⎰+∞12cos dx x ,⎰+∞14sin dxx x 都收敛,因为前两个无穷积分经换元2t x =得到⎰+∞12sin dx x 1+∞=⎰,21cos x dx +∞=⎰=dt tt ⎰+∞12cos ,则⎰+∞12sin dx x ,⎰+∞12cos dx x 是条件收敛,对于第三个无穷积分,经换元2t x =而得⎰+∞14sin dx x x =⎰+∞12sin 21dt t ,它也是条件收敛的. 从这三个无穷积分的收敛性可以看到,当x →+∞时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.注:若lim ()0x f x A →+∞=≠,则⎰+∞ax x f d )(发散.注:1)若⎰+∞ax x f d )(收敛,且lim ()x f x A →+∞=存在, 则定有0)(lim =+∞→x f x ;2)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上为单调,则0)(lim =+∞→x f x ;3)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上一致连续,则0)(lim =+∞→x f x ;4)若⎰+∞ax x f d )(收敛,且()d af x x +∞'⎰收敛,则0)(lim =+∞→x f x .证:1)设A x f x =+∞→)(lim .若0≠A (不妨设0A >),则由极限保号性,M a ∃>,当x M ≥时满足 于是有()()2MaAf x dx u M ≥+-⎰, 于是 而这与⎰+∞ax x f d )(收敛相矛盾,故0A =.2)不妨f 在[)+∞,a 上单调增,若f 在[)+∞,a 上无上界,则0A ∀>,M a ∃>,当x M ≥时,使A x f ≥)(.类似于1)的证明,推知⎰+∞+∞=a dx x f )(,矛盾.所以f 在[)+∞,a 上单调增而有上界,于是由单调有界定理知A x f x =+∞→)(lim 存在.依据已证得的命题1),0)(l i m =+∞→x f x .3)由f 在[)+∞,a 上一致连续,则0,0εδ∀>∃>,(设)δε≤[),,x x a '''∀∈+∞ x x δ'''-<只要时,就有()()2f x f x ε'''-<.又因⎰+∞adx x f )(收敛,故对上述,M a δ∃>,当12,x x M >时,有212()2x x f x dx δ<⎰.现对任何x M >,取12,x x M >,且使1221,.x x x x x δ<<-=此时由 便得(),.f x x M ε<>这就证得.0)(lim =+∞→x f x4)因为()d af x x +∞'⎰收敛,则()()()lim()d lim uau u f x x f u f a →+∞→+∞'=-⎰存在,于是()lim u f u →+∞存在,由1)得证.2.()af x dx +∞⎰收敛,与|()|af x dx +∞⎰收敛,2()af x dx +∞⎰收敛的关系?答:1)因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例,则|()|af x dx +∞⎰收敛()af x dx +∞⎰收敛.2)()af x dx +∞⎰2()af x dx +∞⎰收敛,例1+∞⎰条件收敛,但 21111sin 1cos 21cos 2222xx x dx dx dx dx x x x x+∞+∞+∞+∞-==-⎰⎰⎰⎰,112dx x +∞⎰发散,1cos 22x dx x+∞⎰发散,则21sin x dx x +∞⎰发散. 例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3)()af x dx +∞⎰收敛2()af x dx +∞⎰收敛,例 ()2441,10,1n n x n n f x n x n n ⎧≤<+⎪⎪=⎨⎪+≤<+⎪⎩,对ε∀,总存在1M >,使当n M >时,都有41221n n nn dx n ε+=<⎰. 故但对于()2f x ,例302sin x dx x+∞⎰绝对收敛,即302sin x dx x+∞⎰收敛,因为312sin x dx x+∞⎰绝对收敛,即312sin x dx x+∞⎰收敛,而1302sin x dx x⎰,0是暇点,取12p =,则3322sin lim lim 1ppx x x x x x xx++→→==,因为112p =<收敛. 因为2133330010sin 1cos 21cos 21cos 2222x x x x dx dx dx dx x x x x+∞+∞+∞---==+⎰⎰⎰⎰, 311cos 22xdx x +∞-⎰收敛.1301cos 22x dx x -⎰,0是暇点,取1p = ,则23300141cos 22lim lim 122p p x x xx x x x x ++→→-==, 因为1p =,则发散.例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3.()baf x dx ⎰(a 为瑕点)收敛,与|()|baf x dx ⎰收敛 ,2()baf x dx ⎰收敛的关系?答:1)|()|baf x dx ⎰收敛()baf x dx ⎰收敛.因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例. 2)()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛,()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛.反例1⎰收敛,但101dx x ⎰发散.3)若2()b af x dx ⎰(a 为瑕点)收敛,则|()|baf x dx ⎰(a 为瑕点)收敛.证 因()()212f x f x +≤,则由比较原则,可得|()|b a f x dx ⎰收敛,从而()b a f x dx ⎰收敛.3.下列说法对吗?1)因为sin xx 在0没有定义,则10sin x dx x⎰是瑕积分;2)因为ln 1xx -在1x =没有定义,则1x =是10ln 1x dx x-⎰的暇点.答:若被积函数f 在点a 的近旁是无界的,这时点a 称为f 的瑕点.1)错误,因为0sin lim 1x x x +→=,则s i n xx在0的近旁有界,因此不是瑕点,10sin x dx x ⎰是定积分.若()x f 在(]b a ,上连续,()A x f ax =+→lim (常数),则()⎰badx x f 可看成正常积分,事实上,定义()()(]⎩⎨⎧∈==.,,,,b a x x f a x A x F 知()x F 在[]b a ,上连续,即()⎰badxx F 存在,而()()()⎰⎰⎰-→-→++==ba ba b adx x F dx x f dx x f εεεε00lim lim ,由于()x F 在[]b a ,上连续,知变下限函数()()⎰-=ba dx x F G εε在[]a b -,0上连续,有()()()⎰==+→ba dx x F G G 0limεε,即()().⎰⎰=b a b a dx x F dx x f 故()⎰ba dx x f 可看成正常积分。
高数下册第11章复习题与答案第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散;(4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是(). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . + +??? ??+??? ??+43243434343. 3.在下列级数中,发散的是(). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件()满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C .极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是().A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是().A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n .(二). 求等比级数的和或和函数。
提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数1n n ∞=∑的和S = .(三). 判定正项级数的敛散性。
习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。
七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭L为开区间集,则H 是(0, 1 )的开复盖.2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间[],a b , 若,x S ∈则 x 必为S 的聚点.4.4. 若lim n n a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃=L , 则闭区间套定理成立.8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续.9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明: sin ()xf x x =在()0,+∞上一致连续.7. 证明:{}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 sup inf ,A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a bx A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤ 00,:b x x b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 lim ()xb f xc -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<KK KK 于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-<显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续.5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一. (2) 再证{}n x 上确界存在且等于聚点ξ.()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有nx ξ>, 取 00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续.7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}k n x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x >L 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列,故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂, 故[]0,x a b ∈. 一方面, 由于()f x 在0x 连续有0lim ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1.()()_________x e x dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C=-+⎰, 则()()___________.n fx =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =+>, 则2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x x x x +++=++---7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C=+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()x x A f x dx f x B f e dx f e C ''==+⎰⎰221..(1)(1)2C f dx f CD xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ).4sin 2.2cos 2.4sin 2.2cos 2A x B xC xD x --3.若21()(0),f x x x '=>则()f x =( ).2.ln A x CB x CC CD C +++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x xA xe dx deB dx d x x ==++21.arctan .cos 2sin 21C xdx dD xdx d xx ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x C B f x C C f x C D f x C ++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+8. 函数cos (0)ax a ≠的一个原函数是 ( )111.sin.sin .sin .sin A x B ax C axD axa aa-9. 若()21x f x dx x C=+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.arcsin ,1,arcsin x xC xe dx u x v eD xdx u v x--''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. arctanx ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6.7.221(1)(1)x dx x x ++-⎰. 8.11sin cos dxx x ++⎰9. 2(1)x xxedx e +⎰.10.2 答案:1. 1. 原式=ln(x x dx+-+⎰21ln(2x x =-ln(x x C =+.2. 2.原式211arctan 22x =221124x =212x C =3. dx dx =⎰(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=-7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x C x =-+++++ 211ln 121x Cx =-+++.8.tan22222121sin cos 211111x u dxdu x xu u u u u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰22sin 2()arcsin 2222a u a x u C C a =-+=-+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xadtt f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 221 9、下列关系中正确的有( )(A )dxe dx e x x⎰⎰≤1102(B )dxe dx e x x⎰⎰≥112(C )dxe dx e x x ⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)1e e ⎰ (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令(C)10tan x t =⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰2πxdx⎰2sin πxdx.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dx x f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x=⎰,则()1f x dx =⎰ ;12、0=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx3、dx x x x ⎰+-2232=()()⎰⎰⎰-+-=-21210111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅22cos πxdx ex=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x xx=2-πe则⎰⋅202cos πxdx e x =()251-πe7、⎰-⋅ππxdxxsin 4解:Θx x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ 9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x⎰+31arcsin dx x x=⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d tt ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx e e⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x xdx =()d t t ⎰-312581=13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx =20arctan 1xdx x x +=21ln 1ln 22x += 15、20π⎰20cos 2x dx π20cos cos 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈=L 外, 即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈L 可设 0121n n x a x x x b x +=≤<<<≤=L 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知()()()(),S T S T s T s T ''≤≥。
反常积分例题这里的题目来自裴礼文《数学分析中的典型问题与方法》。
广义积分就是我刚才讲的知识内容,华东师范大学第四版数学分析第十一章。
本文主要考虑广义积分的计算问题。
粗略而言,反常积分是正常积分和极限工具的结合,所以定积分的计算方法:牛顿-莱布尼茨公式,换元积分,分部积分这些方法都是适用的。
4.5.1 反常积分的计算1. 计算反常积分 I=\int_{-\infty}^{+\infty}|t-x|^{1/2}\frac{y}{(t-x)^2+y^2}dt.解本题中 t-x 的形式有堆砌之嫌,个人以为不妨直接命题I=2\int_0^{+\infty}\frac{\sqrt uy}{u^2+y^2}dt.关键的步骤,令 \sqrt{u/y}=v ,则 I=4\sqrt y\int_0^{+\infty}\frac{v^2}{1+v^4}dv=4\sqrt y J ,下面计算 J=\int_0^1\frac{1}{1+v^4}dv +\int_1^{+\infty}\frac{1}{1+v^4}dv=J_1+J_2 .令 w=1/v ,得J_1=\int_1^{+\infty}\frac{w^2}{1+w^4}dw ,从而J=\int_1^{+\infty}\frac{1+w^2}{1+w^4}dw=\int_1^{+\inft y}\frac{1}{(v-1/v)^2+2}d(v-1/v)=\frac{\pi}{2\sqrt2} ,代入得到 I=\sqrt{2y}\pi .2. 证明I=\int_0^{+\infty}f(ax+\frac{b}{x})dx=\frac{1}{a}\int_ 0^{+\infty}f(\sqrt{t^2+4ab})dt, a, b>0 .证明由 ax+b/x=\sqrt{t^2+4ab} ,我们令 t=ax-b/x ,则x=\frac{1}{2a}(t+\sqrt{t^2+4ab}),dx=\frac{1}{2a}(1+\frac{t}{\sqrt{t^2+4ab}})dt, 代入可得结论。
3.9 反常积分一、讨论下列反常积分是否收敛,若收敛,则求其值:1.411d x x +∞⎰ 解:原式3311111lim 3333x x x +∞→+∞⎡⎤⎛⎫==--= ⎪⎢⎥--⎣⎦⎝⎭,故反常积分收敛于13 2.20d x xe x -+∞⎰ 解:原式()2222001111e d()e lim 12222x x x x x e +∞+∞---→+∞⎡⎤=--=-=--=⎣⎦⎰ 故反常积分收敛于123.2d 445x x x +∞-∞++⎰ 分析:本题和下一题都属于有理函数的积分.一般而言,若其分母能因式分解,通常利用加项减项构造拆分或待定系数法拆分;若分母是不能因式分解的二次函数,则可构造成完全平方和形式转化为“2211k b d d ∆∆+∆+∆+∆⎰⎰”类型的积分,此题属于不能因式分解的类型 解:原式22221dd 1d 12(21)44421211122x x x x x x +∞+∞+∞-∞-∞-∞+===++++⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰ 121121211arctan lim arctan lim arctan 424224224x x x x x πππ+∞→+∞→-∞-∞+++⎡⎤⎡⎤⎛⎫⎛⎫==-=--= ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦ 故反常积分收敛于4π 4.21d (1)x x x +∞+⎰分析:此题属于分母能因式分解类型,可考虑加项减项构造拆分的方法 解:22221111111(1)(1)(1)1x x x x x x x x x x x x+-==-=-+++++ 原式2111111d ln ln(1)1x x x x x x x +∞+∞⎛⎫⎡⎤=-+=--++ ⎪⎢⎥+⎝⎭⎣⎦⎰11lim ln ln(1)(1ln 2)lim ln 1ln 21ln 2x x x x x x x →+∞→+∞+⎡⎤=--++--+=+-=-⎢⎥⎣⎦故反常积分收敛于1ln 2-二、找到下列反常积分的瑕点,并讨论其是否收敛?若收敛,则求其值: 1.10⎰解:瑕点1x =原式2211110111)122x --→==-=-=-=⎰⎰ 故反常积分收敛于12.20⎰解:瑕点1x =由于瑕点在积分区间中间,因此要先将积分区间分成两部分考虑2⎰12120101==-⎰⎰⎰⎰()(120111lim 22lim 4x x -+-+→→⎡⎡=-+=-+-=⎣⎣ 考研真题:21ln (1)x dx x +∞=+⎰( l n 2 ). 解:21111ln 1111ln ln (1)111x dx xd x dx x x x x x +∞+∞+∞+∞⎡⎤=-=-+⋅⎢⎥++++⎣⎦⎰⎰⎰ 111ln 11lim 0lim ln 1111x x x x x dx x x x x +∞+∞→+∞→+∞⎛⎫⎛⎫⎡⎤=--+-=-+ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦⎰1lim ln ln ln 212x x x →+∞=-=+。
第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim()d uaau f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d af x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x+→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时,()d lim ()d buaau bf x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x xx x ⎛⎫=-+ ⎪++⎝⎭⎰⎰ 11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6)1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1lim u u x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰,1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且 ()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则lim ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d aaak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x +∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()p f x x ≥,且1p ≤时, ()d a f x x+∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()a f x g x dx +∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaatf x x t f xg x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d af x x+∞⎰,2()d ag x x+∞⎰收敛,所以 ()()d a f x g x x+∞⎰收敛.又2 [()()]d af xg x x+∞+⎰2()d af x x +∞=⎰2()()d af xg x x +∞+⎰2()d ag x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x +∞⎰, ()d a h x x +∞⎰都收敛,则 ()d a g x x+∞⎰也收敛; 证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x+∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim ()d ua u h x x →+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d x x +∞⎰收敛, 故 3 1arctan d 1x xx x +∞+⎰收敛.(5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mn x x m n x +∞>+⎰.解:因为lim 11m n mn x x x x -→+∞⋅=+,所以当1n m -≤时,0d 1mn xx x +∞+⎰发散,当1n m ->时,0d 1mnx x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x ⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14F u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x x +∞⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 201d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()100g x x =+在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而d 100x x +∞+⎰发散,0d 100xxx +∞+⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2 ()()f x f x ≤, 又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0lim()d ux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbbaaak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x a f x c g x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且lim()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为 12 01d (1)x x -⎰发散,所以 22 01d (1)xx -⎰发散.(2) 32sin d xxx π⎰; 解:瑕点为0x =.因为2lim 1x x →=,而xπ⎰收敛,所以32sin d x xxπ⎰收敛.(3)1x⎰;解:瑕点为0,1x =.因为H 1111lim(1)lim 11x x x x x --→→→-==,而 1 01d 1x x -⎰发散,所以 1x ⎰发散.(4) 10ln d 1xx x -⎰;解:瑕点为1x =.而112H211112ln ln (1)lim(1)lim lim 012(1)x x x xx x x x xx ---→→→--⋅===--,又1x⎰收敛,所以 10ln d 1xx x -⎰收敛.(5) 130arctan d 1xx x -⎰; 解:瑕点为1x =.而3211arctan arctan lim(1)lim 1112x x x x x x x x π--→→-⋅==-++, 又 1 01d 1x x -⎰发散,所以 130arctan d 1xx x -⎰发散.(6)2 01cos d m xx x π-⎰;解:瑕点为0x =.而21cos 1lim 2m m x x x x +-→-⋅=,所以当21m -<,即3m <时21cos d m xx x π-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d mxx x π-⎰发散.(7)1011sin d x x x α⎰; 解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 1101d x x α-⎰发散,所以此时 1011sin d x x x α⎰发散; 当12α≤<时,1 011sin d x x x α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d xxx e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1 0ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是1212 02sin d nn n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sin d 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t t t t +--+∞→==++⎰⎰, 所以110 1d d ,011p px x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x t t =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以 10 0d d 11p px x x x x x --+∞+∞=++⎰⎰.2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2)201111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )axaxebx x e bx b +∞+∞--=⎰⎰1sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 20ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x x λ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而 22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以 1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛. 当1λ>时,因为sin 1bx xx λλ≤, 而 1 01d x x λ⎰收敛,所以当1λ>时,1 0sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t x t δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰. 故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x x a +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或的积分,这两类积分叫作,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有积分的那些性质与积分方法,如换元法、分部积分法以及等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.注:表明从大于0的方向趋于0,已经隐含了 .类似地,设函数在上连续,右端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.28 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.还有,设函数在上连续,左端点、右端点均为的瑕点,如果及均存在,其中为内的一个确定点,且与两者之间是独立变化的,就称存在或收敛,记作如果及中至少有一个不存在,则称不存在、不收敛或发散.对于区间端点、均为的瑕点的广义积分有存在和均存在. 和都存在.其中为内的一个确定点,且与两者之间是独立变化的,另外,设函数在上除一个内部点外连续,且内部点为的瑕点,如果和均存在,也即和都存在,其中与两者之间是独立变化的,就称存在或收敛,记作( 6.29 )如果及中至少有一个不存在,则称不存在、不收敛或发散.对于内部点为的瑕点的广义积分有存在和均存在.和都存在.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及广义牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开,参见例5与例6.在用广义的牛顿—莱布尼兹公式时,无界点处原函数应取极限.为方便起见,引入记号左端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为右端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为左端点、右端点均为瑕点时,广义的牛顿—莱布尼兹公式为(为内的一个确定点)()( 这里的值有时不必马上算出,可对抵掉. )仅内部点为瑕点时,广义的牛顿—莱布尼兹公式为注意:由于有限区间上的无界函数的广义积分常常会与常义积分混淆,因此求积分时,首先应判断积分区间上有无瑕点.有瑕点的,是广义积分;无瑕点的,是常义积分.若是广义积分,还要保证积分区间仅有一端是瑕点,中间没有瑕点.若不然,要将积分区间分段,使每一段区间仅有一端是瑕点,中间没有瑕点.。
第十一章 反常积分课后习题全解§1 反常积分概念1.讨论下列无穷积分是否收敛?若收敛,则求其值: (1)2.x xe dx +∞-⎰; (2)2x xe dx +∞--∞⎰;(3)0+∞⎰dx; (4) 20(1)dx x x +∞+⎰; (5)2445dxx x +∞-∞++⎰; (6) sin ;0x e xdx -+∞⎰(7)sin ;xe xdx +∞-∞⎰ (8)0+∞⎰解:(1)由于22211(1),lim 0022x u x u u u xe dx e xe dx ---→+∞=-=⎰⎰ 因此该无穷积分收敛,且值为12(2)由于222001(1),lim 02x u x u xe dx e xe dx u u ---→-∞=--=⎰⎰则222000x x x xe dx xe dx xe dx ---+∞+∞=+=-∞-∞⎰⎰⎰因此该无穷积分收敛,且值为0(3)由于2(1lim 2u u u →+∞==⎰⎰ 因此该无穷积分收敛,且值为2(4)由于221(ln ||),lim 1ln 211(1)1(1)u u u dx xdx x x x x x x →+∞=-+=-+++⎰⎰因此该无穷积分收敛,且值为1-ln2(5)22lim 004454454u u dx dx x x x x π→+∞+∞==++++⎰⎰因此该无穷积分收敛,且值为4π(6)由于11sin [1(sin cos )],lim sin 0022x ux u u u e xdx u u e e xdx ---→+∞=-+=⎰⎰ 因此该无穷积分收敛,且积分为12(7)1sin lim sin lim [1(sin cos )]02x x u u u e xdx e adx u u e →+∞→+∞+∞===-=∞⎰则0sin sin sin 0x x xe xdx e adx e xdx +∞+∞=+=∞-∞-∞⎰⎰⎰所以该无穷不收敛(8)由于ln |limu uuu →+∞=+=+∞⎰⎰所以该无穷积分分散2.讨论下列瑕积分是否收敛?若收敛,则求其值 (1)()p b dx a x a -⎰; (2)2101dxx -⎰;(3)2⎰; (4)1⎰;(5)1ln ;0xdx ⎰ (6);⎰(7)1⎰ (8)10(ln )p dxx x ⎰解:(1) 被积函数f(x)=1()px a -在(a,b )上连续,从而在任何[u,b]⊂(a,b)上可积,x=a 为其瑕点,依定义2求得lim ()()p pu a b b dx dxa u x a x a →+=--⎰⎰而1()111lim{()Pb a p p p pu a bdxu x a --<-∞≥→+=-⎰ 当P<1时,该遐积分收敛至1()1pb a p---;当P ≥1时,该瑕积分发散(2) 该积分函数f(x)=211x-在[0,1]上连续,从而在任何[0,u]⊂[0,1]上可积,x=1为其瑕点,依定义2求得221111lim lim [ln(1)ln(1)]00112u u u dx dx u u x x --→→==+--=+∞--⎰⎰因此该瑕积分发散(3) 被积函数[0,1]∪(1,2)上连续,x=1为其瑕点,依定义2得1111lim lim lim(22u u u u u ---→→→===-=⎰⎰⎰111222lim lim lim(221u u u +++→→→===-=⎰⎰⎰则21241=+=⎰⎰⎰,瑕积分收敛(4) 被积函数[0,1]上连续,从而在任何[0,u]⊂[0,1]上可积,x=1为其瑕点,依定义2得111lim lim(11u u u--→→===⎰⎰(5) 被积函数f(x)=lnx 在(0,1)上连续,从而在任何[u ,1]⊂(0,1)上可积,x=0为其瑕点,依定义2得0011ln lim ln lim[1(ln 1)]10u u xdx xdx u u u ++→→==---=-⎰⎰ 因此该瑕积分收敛至-1(6) 令2sin ,[0,],2x t t π=∈则22sin(1cos2)2t t dtππ==-=⎰⎰(7)令2sin,[0,],2x t tπ=∈则21220002dtπππ===⎰⎰⎰(8)被积分函数f(x)=1(ln)px x在(0,1)连续,x=0,1为其瑕点,因1111220001lim lim[(ln2)(ln)](ln)(ln)1p pp puu udx dxux x x x p+--→+→==--=∞-⎰⎰因此该瑕积分分散§2 无穷积分的性质与收敛判别(教材上册P275)1.证明定理11.2及其推论1解:(1)定理11.2的证明;由()g x dxa+∞⎰收敛,根据柯西准则,任给ε>0,存在G≥a,当21u u>>G时,总有21|()|uug x dxε<⎰2211|()|()||()|||()|u uu uf xg x f x dx g x dxε≤⇒≤<⎰⎰在由柯西准则,证得|()|f x dxa+∞⎰收敛(2)推论1的证明:(ī)|()|lim,()0()xf xC g xg x→+∞=>⇒取2cε=,存在M>0,当x>M时,有30()|()|()22c Cg x f x g x<<<<+∞3|()|(),2f x Cg x<由定理11。
第十一章 反常积分一、单选题(每题2分)1、广义积分dxx x ⎰∞+-1211=( )A 、0B 、2πC 、4πD 、发散2、广义积分dx x x ⎰∞+-+2221=( )A 、4lnB 、0C 、4ln 31D 、发散3、广义积分⎰+-20234x x dx=( )A 、3ln 1-B 、32ln21 C 、3ln D 、发散4、下列广义积分收敛的是( )A 、⎰∞+edx x xln B 、⎰∞+e x x dx ln C 、⎰∞+e x x dx 2)(ln D 、⎰∞+ex x dx21)(ln5、下列广义积分发散的是( )A 、⎰∞-0dxe xB 、⎰π2cos x dx C 、⎰-202x dx D 、⎰∞+-0dx e x6、下列积分中( )是收敛的A 、⎰∞+∞-xdx sin B 、⎰-222sin ππx dx C 、⎰∞+0dx e x D 、⎰-101x dx 7、下列广义积分发散的是( )A 、⎰-11sin x dx B 、⎰--1121x dx C 、⎰∞+-02dx xe x D 、⎰∞+22)(ln x x dx8、⎰=-10121dx e x x( )A 、e 1B 、11-eC 、e 1-D 、∞9、已知2sin 0π=⎰∞+dx x x ,则=⎰∞+dx x x x 0cos sin ( )A 、0B 、4πC 、 2πD 、π10、广义积分=+⎰∞+∞-dx x 211( )A 、0B 、2πC 、2π-D 、π11、下列积分中绝对收敛的是( )A 、dx x x ⎰∞+12sin B 、dx x x ⎰∞+1sin C 、dx x ⎰∞+12sin D 、dx x x ⎰∞+14sin12、已知广义积分dxx ⎰∞+∞-sin ,则下列答案中正确的是( )A 、因为()x f 在()+∞∞-,上是奇函数,所以0sin =⎰∞+∞-dx xB 、dxx ⎰∞+∞-sin =()()()[]0cos cos cos =∞--∞+-=∞-∞+-xC 、dx x ⎰∞+∞-sin =()0cos cos lim sin lim =+-=⎰-+∞→+∞→b b xdx bbb bD 、dxx ⎰∞+∞-sin 发散13、设广义积分dxe kb ⎰∞+-0收敛,则k ( )A 、0≥B 、0>C 、0<D 、0=答案:BCDCB DAABD ADB二、判断题(每题2分)1、当10<<λ时,无穷积分dx x x⎰∞+1cos λ条件收敛; ( ) 2、当10<<λ时,无穷积分dx x x ⎰∞+1sin λ绝对收敛; ( )3、若无穷积分()⎰∞+adxx f 收敛,而函数()x ϕ在[)+∞,a 单调有界,则无穷积分()()⎰∞+adxx x f ϕ收敛; ( )4、若()⎰∞+adxx f 收敛,则()0lim =+∞→x f x ; ( )5、若()x f 在[)+∞,a 无界,则()⎰∞+a dx x f 发散; ( )6、若()x f x +∞→lim 不存在,则()⎰∞+adxx f 发散; ( )7、若()x f 单调, ()⎰∞+a dx x f 收敛,则()0lim =+∞→x f x ; ( )8、若()⎰∞+a dx x f 收敛,则()⎰∞+adxx f 2收敛; ( )9、若()⎰∞+adx x f2,()⎰∞+adxx g 2收敛,则()()⎰∞+adxx g x f 收敛; ( )10、如果()⎰∞+adxx f 收敛,()x g 在[)+∞,a 上有界,则()()⎰∞+a dx x g x f 收敛;( )11、若()⎰∞+adxx f 收敛,()0lim =+∞→x f x ,则()⎰∞+adxx f 2收敛; ( )12、如果()⎰∞+adxx f 绝对收敛,()1lim =+∞→x g x ,则()()⎰∞+adxx g x f 收敛;( )答案:××× ××× ×三、填空题(每题2分)1、若无穷积分()⎰∞+a dx x f 收敛,则()=⎰∞++∞→dx x f pp lim;2、若无穷积分()⎰∞+adxx f 收敛,则a b >时,无穷积分()⎰∞+bdxx f ;3、设(]b a x ,∈∀,函数()0≥x f ,a 是其瑕点,且极限())0()(lim +∞≤≤=-+→d d x f a x ax λ,若+∞≤<≥d 0,1λ,则瑕积分()⎰ba dx x f ;4、设[)+∞∈∀,a x ,函数()0≥x f ,0>a ,且极限())0(lim +∞≤≤=+→d d x f x ax λ,若+∞<≤>d 0,1λ,则无穷积分()⎰∞+a dx x f ;5、若()⎰∞+adxx f 收敛,则无穷积分()⎰∞+adxx f ;6、当1>λ时,无穷积分dx x x ⎰∞+1cos λ ;7、当1≥p 时,瑕积分⎰10px dx ;8、若()⎰∞+adxx f 收敛,且存在极限()Ax f x =+∞→lim ,则=A ;9、=+⎰∞+12)1(x x dx ;=⎰∞+e x x dx 2ln ;10、设⎰∞-∞→=⎪⎭⎫ ⎝⎛+at axx dtte x x 1lim ,则常数=a ;11、如果广义积分dxx p ⎰∞++11收敛,则p ;12、如果广义积分dxx p ⎰-11发散,则p ;答案:1、0 2、收敛 3、发散 4、收敛 5、绝对收敛 6、绝对收敛7、发散 8、0 9、2ln 21;1 10、2 11、2-< 12、2≥四、计算题(每题5分)1、⎰∞+++0284x x dx解:⎰∞+++0284x x dx =)022arctan 21(lim 4)2(lim 02u x x dx u u u +=+++∞→+∞→⎰=8)42(21)422(arctan 21limππππ=-=-++∞→u u 2、dxx x 1sin 122⎰∞+π解:设x t 1=,则dt t dx 21-=,有dx x x 1sin 122⎰∞+π=120cos sin 02==-⎰ππt tdt3、⎰∞+-+222x x dx解:⎰∞+-+222x x dx =221ln 31lim )2111(31lim 2u x x dx x x u u u ⎪⎭⎫ ⎝⎛+-=+--+∞→+∞→⎰ =2ln 32)2ln 221ln lim (31=-+-+∞←u u u4、⎰1ln xdx解:⎰1ln xdx =()1)ln 1(lim 1ln lim ln lim 0100-=+--=-=+++→→→⎰εεεεεεεεx x x xdx5、⎰--1121x dx 解:⎰--1121x dx=⎰⎰-→+-→-+-++εεεε10200121lim 1lim x dx x dx=)1arcsin 10(arcsin lim 0εεε-++-+→xx))1arcsin()1arcsin((lim 0εεε-++--=+→=πππ=+226、()⎰--112x x dx 解:因为()C x C t t dtt x xx dx +--=+-=+-=---⎰⎰1arctan 2arctan 2121122所以()⎰--1012x x dx=01)1arctan 2(lim 1)2(lim 010εεεε---=--++→-→⎰x xx dx=2)4arctan lim (20ππεε=--+→7、⎰∞+++04211dx x x解:由 Cx x x x xx d dx x x x dx x x +-=+--=++=++⎰⎰⎰21arctan 212)1()1(111112222342得⎰∞+++04211dxx x =221arctan 21lim 11lim 20420πεεεε=-=++⎰++→+∞→→+∞→u x x dx x x uu u8、())0(ln >⎰∞+a x x dx ap解:1=p 时,+∞===+∞→∞++∞→⎰⎰a u x x x d x x dxu u a au ln ln lim ln ln lim ln1≠p 时,()()a u x p x xd x x dxpu uapu a p-+∞→+∞→∞+-==⎰⎰1)(ln 11limln ln limln=⎪⎩⎪⎨⎧<∞>--11)(ln 111p p a p p故当1>p 时,()⎰∞+apx x dx ln =()pa p --1ln 111≤p 时,()⎰∞+apx x dxln 发散;9、⎰2)ln(sin πdxx解:=I ⎰20)ln(sin πdx x =⎰+→20sin ln lim πεxdx ⎰+→=422sin ln lim 2πεεtdt t x=⎰+++→42)cos ln sin ln 2(ln lim 2πεεdtt t=⎰⎰++⋅4040cos ln 2sin ln 242ln 2πππtdttdt=⎰⎰+=++404022ln 2cos ln 2sin ln 22ln 2ππππIxdx xdx由此求得2ln 2π-=I10、⎰∞+-∈=0)(N n dx e x I x n n解:当0=n 时,⎰∞+-==001dx e I x当1≥n 时,dx x e n ux e dx x e I un x u nxu unxu n ⎰⎰--+∞→-+∞→-+∞→+-==010lim 0)(lim lim=⎰---+∞→=u n n x u nI dx x e n 011lim则 !12)1(0n I n n I n =⋅⋅-=Λ 五、证明题(每题5分)1、证明01ln 02=+⎰∞+dx x x证:令t x 1=,则 ⎰⎰⎰∞-∞+∞++-=⎪⎭⎫ ⎝⎛⋅+=+00222021ln 1111ln1ln dt t t dt t t t dx x x =⎰∞++-021ln dx x x则有01ln 02=+⎰∞+dx x x2、证明dxx x ⎰∞++01cos 收敛,且11cos 0≤+⎰∞+dx x x证:dx x x ⎰∞++01cos =dxx x x x ⎰∞+++∞++02)1(sin 01sin =dxx x⎰∞++02)1(sin又()22111sin x x x+≤+)(,而dxx ⎰∞++02)1(1收敛,所以dx x x ⎰∞++02)1(sin 收敛⇒dxx x ⎰∞++01cos 收敛而≤+=+⎰⎰∞+∞+02)1(sin 1cos dx x xdx xx1011)1(102=∞++-=+⎰∞+x dx x 3、证明:若()x f 在()+∞∞-,上连续,且()⎰∞+∞-dxx f 收敛,则对任何()+∞∞-∈,x ,有()()⎰∞-=x x f dt t f dx d , ()()⎰∞+-=x x f dt t f dx d ,证:,a ∀由条件()1J dx x f =⎰∞-,()⎰∞+=02J dx x f 都存在;再由()x f 连续可得()()()⎰⎰∞-=⎪⎭⎫ ⎝⎛+=x x a x f dt t f J dx d dt t f dx d ,1 ()()()⎰⎰∞+-=⎪⎭⎫ ⎝⎛+=x ax x f J dt t f dx d dt t f dx d ,24、 设()⎰∞+adxx f 收敛,证明:(1)若极限()x f x +∞→lim 存在,则()0lim =+∞→x f x(2)若()x f 在[)∞+a 上为单调函数,则()0lim =+∞→x f x证:(1)设()Ax f x =+∞→lim 。