分块矩阵在高等代数中的应用
- 格式:doc
- 大小:591.00 KB
- 文档页数:16
阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。
矩阵的分块及应用武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。
分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。
分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。
讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。
通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。
关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。
I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it isvery important for linear algebra. The paper discussed the concept of the partition matrix and the operation of the partition matrix and the property of the partition matrix and the block-elementary matrix. Then it summarized some applications of the partition matrix. Those applications were relative to the rank of matrix and inverse matrix and determinant and positive definite matrix and positive semi-definite matrix etc. By quoting a number of examples we could get that its convenientto solve many problems about calculation and provement by using block matrices. Key words: partitioned matrices; elementary transformation; caculate; inverse matrix; prove。
分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
中国科教创新导刊中国科教创新导刊I 2008N O .30C hi na Educa t i on I nnov at i on H er al d 教育教学方法1分块矩阵的性质定义1:分块矩阵的初等行(列)变换是指下列三种变换:Ⅰ、调换分块矩阵的i ,j 两行(列),记作〔i ,j 〕。
Ⅱ、用一个可逆矩阵P 左(右)乘分块矩阵的第i 行(列),记作〔i (P)〕。
Ⅲ、用一个可逆矩阵P 左(右)乘分块矩阵的第i 行(列)后加到第j 行(列),记作〔i (P)+j 〕。
性质1:分块矩阵是可逆的,且逆矩阵为分块初等矩阵。
性质2:分块单位矩阵(即单位矩阵经分块后得到的分块矩阵)经过一次分块矩阵的初等行(列)变换所得到的矩阵仍为分块初等矩阵。
2分块矩阵在求逆矩阵时的重要应用定理1:设A 、B 、C 分别是m ×m,n ×n ,n ×m 矩阵,A 、B均可逆,则=。
证明:由=两边求逆:即=例1:求下式的逆矩阵:E=。
解:将E 分解成E=其中:求得:分块矩阵在解题中的灵活应用胡香兰(南昌师范高等专科学校自然科学系南昌330029)摘要:从分块矩阵的性质出发,说明分块矩阵在高等代数解题中有着重要作用,结合逆矩阵及非齐次线性方程组的求解予以具体说明。
关键词:分块矩阵逆矩阵初等变换非齐次方程组中图分类号:G 633文献标识码:A 文章编号:1673-9795(2008)10(c)-0088-013分块矩阵在非齐次线性方程组求解时的重要应用定义2:如果E 是一个n 阶非奇异阵E=(e i j ),i .j =1,2,3,……n,将E 进行分块,E=,其中A ,B ,C ,D 分别是p ×p,q ×q,q ×p,p ×q 矩阵,p+q=n,若B是非奇异阵,那么一定可以找到一个上三角分块阵F=,使得FE=,其中G=A-DB -1C ,且G 是非异阵。
分块矩阵及其运用摘要分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。
对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。
有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。
本文先介绍了分块矩阵的概念、运算,几类特殊的分块矩阵,讨论了分块矩阵的初等变换,接着介绍了分块初等矩阵及其性质,最后分类举例说明了分块矩阵在高等代数中的一些应用,包括在在行列式计算中的应用,在证明矩阵秩的问题中的应用,在矩阵求逆问题中的应用,在解线性方程组问题中的应用,在线性相关性及矩阵分解中的应用,在特征值问题中的应用,在相似与合同问题中的应用以及在其他问题中的应用等。
大量的例体现了矩阵分块法的基本思想,说明了应用分块矩阵可以使高等代数中的很多计算与证明问题简单化,所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。
关键词矩阵分块矩阵初等变换应用Block Matrix and its ApplicationAbstract:Matrix is an important concept in high algebra,it's often used to deal with high order matrix and it's an instrument of math in many fields.Dividing matrix in a proper way can turn the operation of high order matrix into the operation of a low order matrix.At the same time,it makes the structure of the original matrix look simple and clear,so it can simplify the steps of the operation a lot or bring the convenience for the theory derivation of matrix.A lot of math problems solved or proved by using block matrix appears concise.At the beginning,this paper introduces the concepts and operations of block matrix and some special kinds of block matrix,then,it discusses the elementary transformation of block matrix and introduces the elementary block matrix and it's natures.At last,it explains the use of block matrix in high algebra by making examples in several kinds,including the use in the calculation of determinant,the testify of the problem of the rank of matrix,the answer of the inverse of matrix,the answer of system of linear equations,the linear correlation and the dividing of matrix,the problem of the eigenvalue,the similar matrix and Contract matrix and so on.A lot of example shows the basic theory of block matrix,It shows that using block matrix can make the calculation and the testify in high algebra easier.It is necessary that we must learn and analyse and grasp the skill of block matrix which is an important concept in high algebra.Key words: matrix block matrix elementary transformation application目录1前言 (1)2分块矩阵 (1)2.1分块矩阵的定义 (1)2.2分块矩阵的运算 (2)2.2.1加法 (2)2.2.2数乘 (2)2.2.3乘法 (2)2.2.4转置 (4)2.3两种特殊的分块矩阵 (4)2.3.1分块对角矩阵 (4)2.3.2分块上(下)三角形矩阵 (5)2.4两种常见的分块方法 (6)2.5分块矩阵的初等变换 (7)2.6分块初等矩阵及其性质 (7)3分块矩阵的应用 (8)3.1在行列式计算中的应用 (9)3.2在证明矩阵秩的问题中的应用 (17)3.3在逆矩阵问题中的应用 (25)3.3.1解线性方程组法 (26)3.3.2初等变换法 (27)3.3.3三角分解法 (29)3.4在解线性方程组问题中的应用 (30)3.4.1齐次线性方程组 (30)3.4.2非齐次线性方程组 (31)3.5在线性相关性及矩阵分解中的应用 (34)3.5.1关于矩阵列(行)向量的线性相关性 (34)3.5.2矩阵的分解 (34)3.6在特征值问题中的应用 (35)3.7分块矩阵在相似问题中的应用 (37)3.8分块矩阵在合同问题中的应用 (38)3.9分块矩阵在矩阵分解中的应用 (40)3.10分块矩阵的其他应用 (41)4结束语 (42)参考文献 (43)致谢 (44)1 前言矩阵作为重要的数学工具之一,有极其实用的价值。
分块矩阵的应用相关例题分块矩阵是为了简化矩阵的运算而产生的一种工具,在处理高阶矩阵的时候,可以将大矩阵看成是由一些小矩阵组成的,这就将矩阵中的元素由数扩展为矩阵,在运算时,把这些小矩阵当作数来处理,这就是分块矩阵的运算。
分块矩阵的运算在形式上和数字矩阵完全一样,在本文中不再叙述。
本文主要列举了分块矩阵在高等代数课程中的若干应用。
分为三章,第一章讲了分块矩阵在化简运算方面的应用,包括对矩阵乘法新的理解和Gramer 法则的证明。
第二章讲了分块矩阵的思想在证明一些经典定理中的应用,主要证明了Cayley-Hamilton 定理和齐次线性方程组解的结构定理。
第三章列举了一些运用分块矩阵的例题。
关键词:高等代数;分块矩阵;化简运算。
1.1 例题1.1.1 例题1:给定n m ⨯矩阵A ,试求出下面矩阵方程的通解:''A X X A =.解:设矩阵A 的秩为r .已知存在n 阶非异方阵P 和m 阶非异方阵Q ,使得000rEPAQ ⎛⎫=Λ= ⎪⎝⎭. 由此可知11A P Q --=Λ,所以1111()''P Q X X P Q ----Λ=Λ,即1111(')'(')'Q P X X P Q ----Λ=Λ.等式两边左乘以'Q ,再右乘以Q ,于是等式变成111'()'''(()')'P XQ Q X P P XQ ---Λ=Λ=Λ.利用矩阵的分块,将n m ⨯矩阵1()'P XQ -和Λ同法分块,即记111212122()'Y Y P XQ Y Y -⎛⎫= ⎪⎝⎭,于是有 1112112121221222''00''0000rr Y Y Y Y EE Y Y Y Y ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 因此 11111212'0'000Y Y Y Y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即120Y =,1111'Y Y =.所以11121220()'YP XQ Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.这证明了所求的n m ⨯矩阵X 可表为11121220'Y X P Q Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.反之,任意上面形式的n m ⨯矩阵X ,只要r 阶方阵适合条件1111'Y Y =,则''A X X A =.故求出了矩阵方程''A X X A =的通解.1.1.2 例题2:设,A B 分别为数域F 上的m 阶方阵和n 阶方阵,C 为数域F 上秩为r 的m n ⨯阶矩阵,其中m n >且AC CB =.证明:A 与B 至少有r 个公共特征值,且1>若A 与B 的特征多项式互素,则0C =.2>若C 为列满秩矩阵,则B 的特征值全部为A 的特征值. 证明:首先对特殊的C 进行证明,假设000rI C ⎛⎫= ⎪⎝⎭,11122122A A A A A ⎛⎫= ⎪⎝⎭,11122122B B B B B ⎛⎫= ⎪⎝⎭, 则 112100A AC A ⎛⎫= ⎪⎝⎭,111200B B CB ⎛⎫=⎪⎝⎭. 由AC CB =得1111A B =,210A =,120B =.显然,A 和B 至少有r 个相同的特征值.现在来证明一般情形.因为C 的秩等于r ,不妨设000rE C P Q ⎛⎫=⎪⎝⎭,其中P 是m 阶可逆矩阵,Q 是n 阶可逆矩阵,则000000rrEE AC AP Q CB P QB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.于是 11000000rr EE P AP QBQ --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 由前面的证明,1P AP -和1QBQ -至少有r 个相同的特征值,因此A 和B 至少有r 个相同的特征值.1>A 与B 的特征多项式互素,说明A 与B 有零个公共特征值,则矩阵C 秩为零,所以0C =.2>若C 为列满秩矩阵,即C 的秩为n ,则A 与B 至少有n 个公共特征值,又因为B 是n 阶方阵,故B 的特征值全部为A 的特征值.1.1.3 例题3:令A ,B ,C 为数域F 上的n 阶方阵,A 可逆,并且0i CB CA B ==,1,2,,i n =.证明:A B C A ⎛⎫⎪⎝⎭可逆,并求其逆矩阵.证明:先证()()r C r B n +=的情形.设()r C r =,我们知道存在n 阶可逆矩阵P 和Q ,使得 000rEPCQ ⎛⎫= ⎪⎝⎭,1112112122B B Q BP B B --⎛⎫= ⎪⎝⎭,111212122A A Q AQ A A -⎛⎫= ⎪⎝⎭, 其中矩阵分块方式都遵照PCQ 的形式. 由条件0i CB CA B ==,1,2,,i n =.及分块矩阵运算可知110B =,120B =.()()122122122221220i A B B A A B B ==,1,2,,1i n =-. (7)则可记 11121212221221000000**0**r A A A B Q A A B B Q M C A P E P --⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, 其中1****PAP -⎛⎫= ⎪⎝⎭.由于11()()r Q BP r B n r --==-和式(7)知,()2122B B 中存在()()n r n r -⨯-可逆矩阵022B 使得012220A B =,则120A =.所以11122det()det()det()0Q AQ A A -=⋅≠,则11A 可逆.于是我们可以对M 左乘初等行变换矩阵1P ,使得1112122212211100000000**0**A A B Q A A B B Q PM P C A P P --⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, (8) 故 1121det()det()det()det()0PM Q AQ PAP A --=⋅=≠, 这就说明det 0A B C A ⎛⎫≠ ⎪⎝⎭,A B C A ⎛⎫⎪⎝⎭可逆得证.由于以上对A B C A ⎛⎫ ⎪⎝⎭的操作都是可逆的,并且上三角可逆矩阵0a b c ⎛⎫⎪⎝⎭的逆矩阵是11110a a bc c ----⎛⎫- ⎪⎝⎭,则可以求出A B C A ⎛⎫⎪⎝⎭的逆矩阵,对之后讨论的情形,求逆矩阵方式都类似,不再赘述.我们还是把重点放在证明上. 下面证()()r C r B n +<的情形.易知()0r C =或()0r B =时结论一定成立,设()0r C r =>,()0r B s =>. 我们先从简单情形入手,令3n =,1r =,1s =,这时1112212221221000**0**a A A A B B M E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 可对其进行初等行变换消去()2122B B 的一行并对M 进行初等列变换让33b 为可逆量(此时即非零量)11121313233100000**0**00**a A M b b b E ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,即111213222321133331000****0**00**a a a a a a M a b E ⎛⎫⎪⎪ ⎪=⎪⎪ ⎪⎝⎭,其中*代表无关紧要的量.由条件式(7)计算后可知130a =,12230a a =,1222230a a a =.若120a =,则110a ≠,经初等行变换可消去1E ,得类似式(8)的11222321233330000000****00**00**a a a a M a b ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,随即得证.若230a =,则330a ≠,经初等列变换消去()2122B B 的最后一行,得到1112222123310000000**0000**00**a a a a M a E ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,类似之前的讨论也可证明结论成立.到此3n ≤时结论成立.以上讨论是从求C 的等价标准型的角度出发,若从求B 的等价标准型开始,也能得到以上结论,也就是说C 和B 有某种“对称性”,所以我们只考虑()()r C r B ≤的情形.再证一下4n =的情形,则需要考虑的有两种情况:()()1r C r B ==或()1r C =,()2r B =.()()1r C r B ==时,对M 进行类似之前的处理后得111222214414410000*****0**00**a A A Ab M a E ⨯⨯⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 其中m n A ⨯代表矩阵A 中的m n ⨯小矩阵. 由条件式(7)计算后可知12210A A ⨯⨯=,1222210i A A A ⨯⨯⨯=,1,2i =. (9)若120A ⨯=或210A ⨯=,则对应的11a 可逆或33a 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,1221()()1r A r A ⨯⨯==,对1M 中12A ⨯所在的列进行初等列变换,对21A ⨯所在的行进行初等行变换,得111222233334442441000000*******0**00**a a a a a ab M a E ⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 由条件式(9)得230a =,22330a a =,2232330a a a =,则220a =或330a =,对应的进行初等行变换或列变换可以消去12a 或34a ,进而可消去1E 或44b ,进而可证结论成立.()1r C =,()2r B =时, 对M 进行类似之前的处理后得1112221222122100000****0**00**a a a A B M A E ⨯⨯⨯⎛⎫ ⎪⎪⎪= ⎪⎪ ⎪⎝⎭,由条件式(7)知12120a A ⨯=,由此说明120a =或120A ⨯=,则类似之前讨论,可证结论成立.最后证一般情形,处理后的()()()()()()()000000**00**rrr n r s n r s n r s n r s sn r rs n r s ss s n r s ss sr rA A A A AA AB B M B E ⨯----⨯----⨯-⨯⨯--⨯--⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭, 其中ss B 是可逆矩阵. 由条件式(7)可得()()()()()()0i r n r s n r s s r n r s n r s n r s n r s s A A A A A ⨯----⨯⨯----⨯----⨯==,1,2,,2i n =-. (10)若()0r n r s A ⨯--=或()0n r s s A --⨯=,则对应的rr A 可逆或ss A 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,我们可以继续对()()()(),,r n r s n r s n r s n r s s A A A ⨯----⨯----⨯仿照矩阵,,C A B 的形式进行分块,经过适当处理后可得到()()n r s n r s A --⨯--中类似式(10)的条件式,并重复上述判别,若能消去()r n r s A ⨯--或()n r s s A --⨯中对应的类似“r E ”或“ss B ”的矩阵,则能消去r E 或ss B ,进而证明结论.不行的话就对新得到的条件式中的相应矩阵再分块…,由于n 是有限数,如此进行下去,最终能得到条件0LN =,而其中一定有一个矩阵是一阶的,也就是一定有0L =或0M =,再经过适当行变换列变换可使M 变成类似式(8)的矩阵,从而结论得证.。
本科生毕业论文(设计)册学院数学与信息科学学院专业数学与应用数学班级 07级C班学生常会敏指导教师刘稳河北师范大学本科毕业论文(设计)任务书论文(设计)题目:分块矩阵的应用学院:数学与信息科学学院专业:数学与应用数学学班级: 07级C班学生姓名:常会敏学号: 2007010656 指导教师:刘稳职称:1、论文(设计)研究目标及主要任务分块矩阵在高等代数中具有很重要的应用,本文旨在总结分块矩阵在代数学中的几个重要的应用,体会分块矩阵的应用技巧,恰当利用分块矩阵可使问题变得简单而明了。
本文的主要任务是通过大量理论和具体的例子总结出分块矩阵在证明有关矩阵的秩、求解矩阵方程以及求矩阵的最小多项式,判断矩阵是否相似三方面发挥出的巨大作用。
2、论文(设计)的主要内容①分块矩阵证明有关矩阵的秩②求解矩阵方程③求矩阵的最小多项式,判断矩阵是否相似3、论文(设计)的基础条件及研究路线在复数域上,关于分块矩阵及其初等变换的研究已经有深刻的结果,关于分块矩阵的应用也有不少的文章提及,可见分块矩阵的应用之广泛,因此要想将其应用全部总结出来是不可能的。
正式基于这样一种情况,本文分别就分块矩阵在证明有关矩阵的秩、求解矩阵方程以及求矩阵的最小多项式,判断矩阵是否相似三方面做一详细总结,展示分块矩阵的应用技巧,从而开拓思维,培养创新能力。
4、主要参考文献[1]王萼芳,石生明.高等代数(第三版)[M].北京:高等教育出版社,2003:181~320.[2]丘维声.高等教育学习指导用书[M].北京:清华大学出版社,2005:213~238.[3]陈公宁.矩阵理论与应用[M].北京:北京科学出版社,2007:1~25.[4]张焕玲,刘爱奎.利用分块矩阵法求解矩阵方程的一种简单方法[J].山东工业大学学报,2000,Vol.30(3):268~273.[5]钱吉林.高等代数题解精粹(修订版)[M].北京:中央民族大学出版社,2002:189.[6]徐天保.分块矩阵的应用[J].安庆师范学院学报(自然科学版),2010,Vol.16(2):105~108.[7]王卿文,杨家骐.用矩阵的初等行变换解矩阵方程A X=B[J].数学通报,1993:m n ns m s16~25.[8]A.J.M.SPENCER & R.S.RIVELIN .Further Results in the Theory of Matrix Polynomials [J].Brown University Providence ,1959:214 ~230.5、计划进度指导教师:刘稳 2010 年 11 月日教研室主任: 2010 年 11 月日河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院学院数学与应用数学专业 2011 届河北师范大学本科生毕业论文(设计)文献综述河北师范大学本科生毕业论文(设计)翻译文章本科生毕业论文设计题目分块矩阵的应用作者姓名常会敏指导教师刘稳所在学院数学与信息科学学院专业(系)数学与应用数学班级(届) 2011届完成日期 2011 年 5 月日目录中文摘要、关键词 (1)1、分块矩阵的定义及运算法则 (1)1.1定义矩阵的分块 (1)1.2分块矩阵的运算法则 (1)2、利用分块矩阵证明有关矩阵的秩 (4)2.1证明关于矩阵乘积的秩的定理 (4)2.2证明有关矩阵秩的等式 (5)2.3证明Sylvester不等式 (6)2.4证明Sylvester公式 (7)3、利用分块矩阵求解矩阵方程 (8)3.1解矩阵方程A X=B的原理 (8)m n ns m s3.2求解矩阵方程 (9)4、分块矩阵在其它方面的应用 (10)4.1求矩阵的最小多项式 (10)4.2判断两矩阵是否相似 (12)5、总结 (13)参考文献 (13)英文摘要、关键词 (14)分块矩阵的应用数学与信息科学学院 数学与应用数学专业指导教师 刘稳 作者 常会敏中文摘要:矩阵是代数特别是线性代数中一个极其重要的应用广泛的概念,而矩阵的分块则是在处理级数较高的矩阵时常用的方法。
分块矩阵的应用引言矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,那么有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生.矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比方,从行列式的性质出发,可以推导出分块矩阵的假设干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,那么可求得A B AD BC C D =-;分块矩阵也可以在求解线性方程组应用.本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.1 分块矩阵的定义及相关运算性质1.1分块矩阵的定义矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.定义1设A 是一个m n ⨯矩阵,假设用假设干横线条将它分成r 块,再用假设干纵线条将它分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 表示的是一个矩阵.1.2分块矩阵的相关运算性质 1.2.1加法设()ij m n A a ⨯=()ij m n B b ⨯=,用同样的方法对,A B 进行分块()ij r sA A ⨯=,()ij r sB B ⨯=,其中ij A ,ij B 的级数相同,那么 ()ij ij r s A B A B ⨯+=+. 1.2.2数乘设是任()(),ij ij m n r s A a A k ⨯⨯==为任意数,定义分块矩阵()ij r s A A ⨯=与k 的数乘为()ij r skA kA ⨯=1.2.3乘法设()(),ij ij s n n m A a B b ⨯⨯==分块为()(),ij ij r l l r A A B B ⨯⨯==,其中ij A 是i j s n ⨯矩阵,ij B 是i j n m ⨯矩阵,定义分块矩阵()ij r l A A ⨯=和()ij l r B B ⨯=的乘积为()1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、1.2.4转置设()ij s n A a ⨯=分块为()ij r s A A ⨯=,定义分块矩阵()ij r s A A ⨯=的转置为()ji s rA A ⨯''=1.2.5分块矩阵的初等变换分块矩阵A 的以下三种变换称为初等行变换: (1) 对调A 的两行(用i j r r ↔表示对调i 、j 两行);(2) 用一个可逆阵K 左乘A 的某一行的所有子矩阵(用i K r ⨯表示用K 左乘第i 行); (3) 将A 的某一行的所有子矩阵左乘一个矩阵K 再加到另一行的对应子矩阵上去(i j r K r +⨯表示将第j 行左乘K 再加到第i 行).将上述定义中的“行〞换成“列〞,“左乘〞换成“右乘〞, 即得分块矩阵的初等列变换的定义, 分块矩阵的初等行变换和初等列变换统称为初等变换.2 分块矩阵的应用2.1用分块矩阵解决行列式的问题利用矩阵分块的方法求行列式的值是行列式求值的常用方法之一, 但通常所用的?高等代数?教材中对能够用矩阵分块法求值的行列式要求较为严格, 多数为形式较特殊的行列式.下面给出了一个应用范围较为广泛的行列式的分块矩阵求值方法.引理2.1([3])假设A 为k 阶方阵,B 为r 阶方阵,C 为r k ⨯矩阵, 那么有A ABC B= 在上述引理中,要求子块当中有一个为零矩阵, 更一般的有如下的结论. 定理2.2([3])假设n 阶方阵P 可分为A B P CD ⎡⎤=⎢⎥⎣⎦其中A 为r 阶方阵, B 为()r n r ⨯-矩阵, C 为()n r r -⨯矩阵, D 为()n r -阶方阵, 那么有〔1〕当A 为可逆矩时1P A D CA B -=-; 〔2〕当D 为可逆矩阵时1P D A BD C -=-.在进行行列式的求值运算时, 假设能找到符合本定理条件要求的矩阵分块方法, 就可应用定理的结论进行行列式的计算, 现举例说明如下:例2.3 计算行列式 013c ...0 (00)...0.........0...nb b b ac P ac a c =其中10,123...c i n ≠=.解 设 0()A c =,()...B b b b =,()...TC a a a =130...00...0,0,1,2,,.........00 (i)n c c D c i n c ⎡⎤⎢⎥⎢⎥=≠=⋅⋅⋅⎢⎥⎢⎥⎣⎦ 那么D 为可逆矩阵,由定理1的结论〔2〕知1A BP D A BD C C D-==- , 将 1111210...00...0.........00...n c c D c ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦及,A B C D ,,代入得 1111212...((...))n n P c c c a ab c c c ---=-+++.例2.4 矩阵()ij ai j P a bi j =⎧==⎨≠⎩当时当时,求行列式P 的值.解:行列式P 的主对角线元素为a ,其余元素为b ,因此: 〔1〕当a b =时,由行列式的性质知P =0;〔2〕当a b ≠时,从第一行开始,将行列式的前行减去后行得...000 (00).........000......a b b a a b b a P a b b abbbb a ----=--,令...000...000.........,, 000 000...0a b b a a b b a A B a b b a o a b b a --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦()()...,,C b b b b D a ==由定理2.2可知 1P A D CA B -=-,而 ()1n A a b -=- ,()011,,,>a b i jA i j --⎧-≤⎪=⎨⎪⎩计算结果得 ()()()()()()111+1n n P a b a n b a b a n b --=---=--.假设定理中的矩阵A 和D 均为可逆矩阵时,定理的两个结论均成立,可以利用公式11D A BD C A D CA B---=-进行转换求行列式的值,举例说明如下.推论2.5 假设,,,A B C D 均为n 阶方阵,且A 可逆,AC CA =,那么 ABT AD CB C D==-. 例2.6 计算行列式 1111122310250121T -=.解 对T 进行分块A B T C D ⎡⎤=⎢⎥⎣⎦, 其中 11111025,,,,12230121A B C D ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ 显然A 可逆,且AC CA =,所以T AD CB =-,而 4667AD ⎡⎤=⎢⎥⎣⎦,1123CB ⎡⎤=⎢⎥-⎣⎦ 所以, 3510410T ==. 定理2.7 假设,A B 均为n 阶方阵,那么A BA B A B B A =+-.. 例2.8 计算行列式 1234234134124123T =.解 对矩阵T 进行分块A B T C D ⎡⎤=⎢⎥⎣⎦, 其中 1234,,2341A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦由于 4664A B ⎡⎤+=⎢⎥⎣⎦ ,22,22A B --⎡⎤-=⎢⎥-⎣⎦ 所以 (20)(8)160T A B A B =+-=-⨯-=. 2.2 分块矩阵在解线性方程组中的应用例2.9设n 个未知数m 个方程的线性方程组为11112211211222221122...............n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 〔1〕 记()ij m n A a ⨯=,()12X=,,...,Tn x x x 〔其中T 表示矩阵的转置〕, ()12,,...,Tm B b b b = ,那么方程〔1〕的矩阵形式为 AX B =.把方程〔1〕的矩阵形式改写成如下分块矩阵的形式111211212222AA XB A A X B ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中 111111........................r r rr a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111121........................r n rr rn a a A a a ++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,()11112A A A =,111211........................r r r m mr a a A a a ++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111221........................r r r n mr mn a a A a a ++++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,()22122A A A =,()112...Tr X x x x =,()212...Tr r n X x x x ++=,()112...T r B b b b =,()212...Tr r m B b b b ++=,方程组〔1〕有解时,我们解方程组〔1〕时总是把〔1〕化成简单的同解方程组,从而求出其解.定理2.10. 设方程组〔1〕有解且()()11,r A r n r A r =≤=,那么方程组()1112A A X B =与AX B =同解.例2.11.方程组1112132223243132333441424344212212330x x x x x x x x x x x x x x ++=⎧⎪--=⎪⎨+++=-⎪⎪+++=⎩ 〔2〕 求此方程组的解并证明此方程组和方程组111213222324212x x x x x x ++=⎧⎨--=⎩ 〔3〕 同解.解:令1210011111212331A ⎡⎤⎢⎥--⎢⎥=⎢⎥⎢⎥⎣⎦,11121210()0111A A ⎡⎤=⎢⎥--⎣⎦,其中 111201A ⎡⎤=⎢⎥⎣⎦,121011A ⎡⎤=⎢⎥--⎣⎦,1210B ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,112B ⎡⎤=⎢⎥⎣⎦,121011210112101011120111201112112110111200000233100111200000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 所以此方程组的齐次线性方程组的解为1232111001c c --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,又3200-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是方程组的一个特解,所以此方程组的解为 12323112100010c c ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,由上可知()2r A =并且11()2r A =,所以由定理3可证方程组〔2〕和〔3〕同解. 2.3分块矩阵在相似问题中的应用定理2.12.如果方阵~A B ,方阵~C D ,那么00~00A B C D ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 证明 因为方阵~A B ,方阵~C D ,所以 110000000000E A XE X Y C E Y E --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11110000000000A XB X X AXC YD Y Y CY ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ , 而 1110000E XY E ---⎧⎫⎡⎤⎡⎤⎪⎪⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭1100E Y --⎡⎤⎢⎥⎣⎦1100X E --⎡⎤=⎢⎥⎣⎦0000XE E Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 所以 00~00A B C D ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 2.4用分块矩阵证明矩阵秩的问题定理2.13.设0A M C B ⎡⎤=⎢⎥⎣⎦,A 为m n ⨯矩阵,B 为k l ⨯矩阵, 那么有()()()r M r A r B ≥+,且0C =时,()()()0A r M r r A r B C B ⎡⎤==+⎢⎥⎣⎦ 证明 设A 在初等变换下的标准形为1000rE D ⎡⎤=⎢⎥⎣⎦,()r r A =, 又设B 在初等变换下的标准形为 2000sED ⎡⎤=⎢⎥⎣⎦,()s r B =, 那么,对M 前m 行前n 列作初等变换,对它的后k 行后l 列也作初等变换可把M 化为11120D C M D ⎡⎤=⎢⎥⎣⎦,现在利用1D 左上角的1经列初等变换消去1C 位置中的非零元;再用2D 左上角的1经行初等变换消去它上面1C 处的非零元素,于是把1M 再化作220000000000000r s E C M E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 那么有 ()()()()()()122r M r M r M r s r C r s r A r B ===++≥+=+.利用这个定理及初等变换可证明一些秩的不等式.例2.14. 设A 为m n ⨯矩阵,B 为n l ⨯矩阵,假设0AB =,那么()()r A r B n +≤. 证明 因为()()00000000n n n n A AB A r A r B r r r r r n E B E B E B E B ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=≤====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦, 所以 ()()r A r B n +≤.例2.15. 设A 、B 都是n 阶矩阵,求证:()()()r AB A B r A r B ++≤+.证明:因为 0A AB A B B ++⎡⎤⎢⎥⎣⎦(2)(1)E -⨯+−−−−→0A AB A B +⎡⎤⎢⎥⎣⎦(1)()(2)B E ⨯--+−−−−−→00A B ⎡⎤⎢⎥⎣⎦, 所以 0E E E -⎡⎤⎢⎥⎣⎦0E B E E --⎡⎤⎢⎥⎣⎦00A B ⎡⎤=⎢⎥⎣⎦, 又0E E E -⎡⎤⎢⎥⎣⎦,0E B E E --⎡⎤⎢⎥⎣⎦都可逆, 所以 000A AB A B A r r B B ++⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 而 ()0A AB A B r r AB A B B ++⎡⎤≥++⎢⎥⎣⎦ 又 ()()00A r r A r B B ⎡⎤=+⎢⎥⎣⎦, 所以 ()()()r AB A B r A r B ++≤+. 2.5 用分块矩阵求逆矩阵的问题分块矩阵是高等代数中的一个重要的工具,在求解高阶矩阵问题中的应用尤为广泛.求矩阵的逆矩阵可以用伴随矩阵或初等变换的方法来解决,而此类方法对于级数较高的矩阵运算量较大,对某些矩阵可以适当分块后再进行运算,可起到事半功倍的作用.定理2.16. 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得 AB BA I == 那么矩阵称为可逆矩阵,而B 称为A 的逆矩阵.假设,A B 都可逆,那么 100A B -⎡⎤⎢⎥⎣⎦1100A B --⎡⎤=⎢⎥⎣⎦10A C B -⎡⎤⎢⎥⎣⎦11110A A CB B ----⎡⎤-=⎢⎥⎣⎦,10A C B -⎡⎤⎢⎥⎣⎦11110A B CAB ----⎡⎤=⎢⎥-⎣⎦, 1111110000kk n k n k E A B E A B A CA E C D E D -------⎡⎤⎡⎤-⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦其中1D 1D CA B -=-.以下举些例子具体说明分块矩阵在矩阵求逆中的具体应用.例2.17. 矩阵1200210000120025A ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,求1A -. 解:可以将矩阵A 分成四块12A 00A A ⎡⎤=⎢⎥⎣⎦,其中1A 1221⎡⎤=⎢⎥-⎣⎦,2A 1225-⎡⎤=⎢⎥-⎣⎦,根据分块矩阵的性质,1A -111200A A --⎡⎤=⎢⎥⎣⎦,而1A ,2A 为二级矩阵,其逆矩阵易求出,分别为 11A -12552155⎡⎤⎢⎥=⎢⎥-⎣⎦,12A -5221--⎡⎤=⎢⎥--⎣⎦, 所以 1A -12005521005500520021⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥--⎢⎥--⎣⎦ 2.6 分块矩阵在矩阵的特征值问题中的应用在高等代数中,矩阵的特征值问题是一项非常重要的内容,特征值对于线性变换的研究具有根本的重要性.而我们在求一些阶数较高和较复杂的矩阵特征值时,经常会用矩阵的分块去解决,这样可以使问题的解决更简明.定理2.18. 设A 为n 阶矩阵,λ是一个数,如方程AX X λ=,存在非零解向量,那么称λ为A 的一个特征值,相应的非零解向量X 称为与特征值λ对应的特征向量.定理2.19.设A 为n 阶矩阵,含有未知量λ的矩阵I A λ-称为A 的特征矩阵,其行列式I A λ-为λ的n 次多项式,称为A 的特征多项式0I A λ-=称为A 的特征方程,λ是矩阵A 的一个特征值,那么一定是0I A λ-=的根,因此又称为特征根.假设λ是0I A λ-=的i n 重根,那么λ称为A 的i n 重特征值.引理2.20.设A 为n 阶矩阵,那么A 为幂等矩阵的充要条件()()r A E r A n -+=,这里E 为n 阶单位矩阵,()r A 表示A 的秩.引理2.21.幂等矩阵()1112A A X B = 与000rE ⎡⎤⎢⎥⎣⎦ 或000r E ⎡⎤⎢⎥⎣⎦相似,其中()r r A =. 例2.22. 设12,,A A A 均为n 阶方阵,且12A A A =+,()()(),1,2i i r A r r A r i ===,求证:假设212,A A r r r ==+,那么12,,A A A 的特征值为1或0,且1的个数和它们的秩相等.证明:〔1〕当A 可逆时,即()r A n =,因为2A A =,所以A E =, 又 12r r r =+,12E A A =+, 由得()()()12r A r A r A n =+=,由引理2.20得到211A A =.同理222A A =,所以1A ,2A 是幂等矩阵,由引理2.21得10~00rEA ⎡⎤⎢⎥⎣⎦,200~0r A E ⎡⎤⎢⎥⎣⎦, 12,,A A A 和E ,000rE⎡⎤⎢⎥⎣⎦,000r E ⎡⎤⎢⎥⎣⎦有相同的特征根,所以12,,A A A 的特征值为1或0,且特征值1的个数和它们的秩相等.〔2〕当()0r A =时,即0A =,结论显然成立.〔3〕设0r n <<,即A 为非零由布可逆矩阵,又因为2A A =,故存在可逆矩阵P 使11112P AP P A P P A P ---=+,()r r A =,令 000rE⎡⎤⎢⎥⎣⎦1112111221222122A A B B A A B B ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦这里 ()1ij P AP A -= ()121111ij r P A P B E A B -=⇒=+, 所以 ()()()()()1111111111=r r A B r A r B r A r B r +≤+≤+=, 从而 ()()()()()1111111112=r r A B r A r B r A r A r +≤+≤+=, 又因为 ()()()11121100r A r A A B -≥-≥, r , 从而 ()()111r A r A =,()211r A B =,这样1111Er A B =+,且()1111r A B r +=,由定理2.18的证明可知,存在可逆矩阵Q ,使11110Q=00r E Q A -⎡⎤⎢⎥⎣⎦ ,211100Q=0r Q B E -⎡⎤⎢⎥⎣⎦, 111112n-n-n-n-00000000000rr r r r E Q QQ Q P A P P A P E E E E ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11111112111221222122n-n-n-n-00000000r r r r A A B B Q Q Q Q A A B B E E E E ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11111112111221222122Q A Q Q A Q B Q Q B A Q A B QB ----⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦,设 1111122122Q A Q Q A A Q A --⎡⎤⎢⎥⎣⎦1121111222000r E C C G G A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 又因为11211111222000r E C r C r G G A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以21120,0G G ==, 设 211111112r 212122*********W Q B QQ B E W B QB Z Z B --⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦, 同上可得110Z =,110W = ,故111121120,0,0,0C G W Z ====,又1111112212222000000r E Q A Q Q A A Q A A --⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦, 从而220A =,同理 211111221220000000r Q B QQ B E B QB --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,100n r Q T P E --⎡⎤=⎢⎥⎣⎦,故有1210000,000rrET AT E-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12111200000000,00000000rrET AT T A T E--⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,综上所述,结论成立.小结本文通过例题对分块矩阵在证明和计算中两方面的应用进行了总结分析,在证明方面涉及了矩阵秩的相关问题和矩阵列行向量线性相关性问题,在证明线性相关问题上,利用分块矩阵的解可以很清晰动的描述线性方程组的解和相关内容,对一些具体的解与矩阵行列相关性之间的关系做出了总结;在分块矩阵计算方面我们主要解决了求逆矩阵与高级行列式的问题.通过本文的表达充分表达了分块矩阵在代数计算和证明方面的优越,也给出了分块矩阵在线性代数中所具有的重要地位,当然在分块矩阵的应用的表达中,本文并不是对所有的证明和计算都进行讨论,所以在应用的完整性上有待改进,并可以继续进行探讨和研究.参考文献[1] 蓝以中.高等代数简明教程[M].北京:北京大学出版社,2007:141-149.[2] 杜之韩,刘丽,吴曦.线性代数[M].成都:西南财经大学出版社,2003:61-68.[3] 郝玉琴.利用矩阵的分块法解线性方程组[J].唐山师专学报,1999(5):37-38.[4] 王萼芳.线性代数学习指导[M].北京:清华大学出版社,2021:104-108.[5] 祁秋菊.分块矩阵的相关应用[J].科技信息,2021:1-4.[6] 孔庆兰.分块矩阵的应用[J].枣庄学院报,2006〔5〕:24-25.[7] 王秀芳.分块矩阵的应用讨论[J].连云港师范高等专科学校学报,2021〔3〕:98-99.[8] 严坤妹.分块矩阵的应用[J].福建播送电视大学学报,2006〔59〕:71-73.[9] 张敏.分块矩阵的应用[J].吉林师范大学学报,2003〔1〕:118-120.[10] 周兴建.分块矩阵及其应用[J].科技资讯,2007〔35〕:126-126.[11] 陈晓兰,杨子胥.分块矩阵的一些应用[J].德州师专学报,1995〔4〕:1-14.[12] 钱钶.用分块矩阵证明矩阵秩的假设干定理[J].景德镇高专学报,1995〔4〕:11-14.[13] 徐常青,杜先能.高等代数方法与应用[M].合肥:安徽大学出版社,2002:66-67.[14] 林瑾瑜.分块矩阵的假设干性质及其在行列式计算中的应用[J].广东播送电视大学学报,2006,15(2):109-112.[15] 张敏.分块矩阵的应用[J].吉林师范大学学报〔自然科学版〕,2003,1(1):120.[16] 刘力.分块矩阵在证明矩阵秩的性质上的应用[J].沧州师范专科学校学报,2006,22(4):40-41.[17] 李玉梅.分块矩阵的几个重要应用[J].怀化师专学报,2000,19(4):77-78.。
浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。
解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。
关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。
1.预备知识:1.1分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,一子块为元素的形式上的矩阵成为分块矩阵。
1.2分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A A A ⎛⎫ ⎪⎪⎪⎝⎭,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A BA B ++⎛⎫⎪⎪ ⎪++⎝⎭1.2.2分块矩阵与数的乘法:A=1111n m mn A A A A ⎛⎫ ⎪ ⎪⎪⎝⎭,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪=⎪⎪⎝⎭,则1111T T t TT T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭2. 分块矩阵的性质及应用:2.1 分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =,由此性质可知,若i A ≠0(1,2i s =)则A 0≠,并有11110s A A A ---⎛⎫ ⎪=⎪ ⎪⎝⎭例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫=⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CA E C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CA E -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫= ⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T -解:由10mn A B E BD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CCD -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C T D C A BD C D -------⎛⎫-= ⎪--⎝⎭10m n E BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,111212122212s s m m ms b b b b b b B b b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭令12,,,m B B B 表示B的行向量(即对B进行分块)12,,,n C C C 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++的第j 的分量都等于1mik kj k a b =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=即矩阵AB 的行向量组12,,,n C C C 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A 表示A 的列向量,12,,,s D D D 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12m b b b b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,11121112n m m mnm a a a b B a a a b ⎛⎫ ⎪=⎪ ⎪⎝⎭,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪ ⎪ ⎪⎪⎝⎭X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n ααα 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭b =,即1122n n x x x b ααα+++=,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n nnn n n n n nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。
本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用Title: Block Matrix Of Application in AdvancedAlgebra学号 0508060357姓名邹维喜学院数信学院专业数学与应用数学指导教师甘爱萍完成时间 2008.4.15分块矩阵在高等代数中的应用【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。
作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题.【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式Block Matrix in Advanced Algebra Application【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem.【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant目录1引言 (1)2 矩阵的分块 (1)2.1 矩阵分块的概念 (2)2.2 分块矩阵的运算 (2)2.3 分块矩阵的初等变换 (3)3 分块矩阵在高等代数中的应用 (3)3.1 利用分块矩阵算矩阵的乘积 (3)3.2 利用分块矩阵求逆矩阵 (4)3.3 利用分块矩阵求高阶行列式 (5)4 总结 (6)谢辞..........................................7. 参考文献 (7)1 引言高等代数是数学类专业的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力、开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造性能力等起到重要作用。
矩阵的分块不仅是高等代数中一个非常重要的内容,而且也是高等代数的很多分支研究问题的工具,它贯穿了整个高等代数的内容。
而我们在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,这样可以使问题的解决更简明。
分块矩阵作为处理矩阵的一种重要的方法,在学习矩阵的分块之后,我们不仅仅只会矩阵的分块,还要学会更深层的问题,要学会观察,联想,猜想。
学会用矩阵的分块去解决在高等代数中遇到的问题,比如说用矩阵的分块去求高阶行列式,求一个矩阵的逆矩阵,求矩阵的特征值等一些问题。
矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于学生理解和掌握,而且能开拓学生的思维,提高学生灵活应用知识解决问题的能力。
下面主要介绍了分块矩阵的概念,分块矩阵的初等变换,还有就是分块矩阵在高等代数中的几个应用。
所介绍的几个应用将对我们今后学习高等代数有重要作用。
2 矩阵的分块2.1 矩阵分块的概念将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。
为了说明这个方法,我们来看以下的一个例子,在矩阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1011012100100001=⎥⎦⎤⎢⎣⎡E A E O 212中,E 2表示2级单位矩阵,而 A 1=⎥⎦⎤⎢⎣⎡-1121, O=⎥⎦⎤⎢⎣⎡0000 这就是我们所说的矩阵的分块。
2.2 分块矩阵的运算在前面我们学过矩阵的运算,一般来说矩阵的运算是矩阵的加法,乘法。
矩阵的加法就是矩阵对应的元素相加,矩阵相乘就是前面矩阵的第i 行和后面的 矩阵的第j 列的对应元素乘积的和。
分块矩阵的运算法则也是一样的 ,只不过分块矩阵的每个小矩阵代替矩阵中的每个元素了。
以下举两个例子。
分块矩阵P=⎥⎦⎤⎢⎣⎡D C B A ,Q=⎥⎦⎤⎢⎣⎡N M F E (对应的每个小矩阵的行数和列数相等),则P+Q=⎥⎦⎤⎢⎣⎡++++N D MC F B E A ,PQ=⎥⎦⎤⎢⎣⎡++++DN CF DM CE BN AF BMAE在运算的时候我们要注意相加的矩阵必须有相同的行数和列数 ,在乘法中第二个矩阵的行数与第一个矩阵的列数相等,且第一个矩阵列的分法与第二个矩阵行的分法完全一致。
2.3 分块矩阵的初等变换分块矩阵不仅可以像普通矩阵一样做运算,而且可以对它们做初等变换。
为了对分块矩阵作更深一步的了解,我们对分块矩阵的初等变换作简单的介绍,效仿矩阵的初等变换,分块矩阵也可以做以下三种变换,称为分块矩阵的初等变换,也可以称为广义变换:(1) 互换两行(列)的位置;(2) 某一行(列)左乘(右乘)一个矩阵 P ;(3) 把某一行(列)左乘(右乘)以矩阵P 加到另一行(列)去;可以看出,与初等矩阵和初等变换的关系一样,用初等矩阵去乘分块矩阵只要分块乘法能够进行,左乘就相当与对它做相应的广义初等行变换,右乘相当于做相应的广义初等列变换。
分块乘法和矩阵的初等变换有效的结合是矩阵的运算中一种极为重要的手段,灵活并巧妙的用这种手段会使某些矩阵问题较为容易的得到解决。
3 分块矩阵在高等代数中的应用3.1 利用分块矩阵来算矩阵的乘积上面我们介绍到了分块矩阵的运算,我们这里所说的用分块矩阵来算矩阵 的乘积,其实是跟矩阵的乘法是一样的,下面就举几个例子来说明下这种方法。
A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1011012100100001=⎥⎦⎤⎢⎣⎡E A E O 212 (其中E 2=⎪⎪⎭⎫ ⎝⎛1001,A 1=⎪⎪⎭⎫⎝⎛-1121,O=⎪⎪⎭⎫ ⎝⎛0000) B=⎪⎪⎪⎪⎪⎭⎫⎝⎛---0211140110212301=⎪⎪⎭⎫ ⎝⎛F E D C (其中C=⎪⎪⎭⎫ ⎝⎛-2101,D=⎪⎪⎭⎫ ⎝⎛1023,E=⎪⎪⎭⎫⎝⎛--1101 F=⎪⎪⎭⎫⎝⎛0214 ) AB=⎪⎪⎭⎫⎝⎛E A E O 212 ⎪⎪⎭⎫ ⎝⎛F ED C =⎪⎪⎭⎫⎝⎛++F D E C D C A A 11其中 E C A +1=⎪⎪⎭⎫ ⎝⎛-1121⎪⎪⎭⎫ ⎝⎛-2101+⎪⎪⎭⎫ ⎝⎛--1101=⎪⎪⎭⎫⎝⎛--1142 F D A +1=⎪⎪⎭⎫ ⎝⎛-1121⎪⎪⎭⎫⎝⎛1023+⎪⎪⎭⎫ ⎝⎛0214 =⎪⎪⎭⎫⎝⎛3511 所以AB=⎪⎪⎪⎪⎪⎭⎫⎝⎛---3511114210212301从上面的例子可以看出利用分块矩阵算矩阵的乘积可以在一定程度上简化题目,减少我们的运算量。
不难看出,上面计算出的结果和直接按四级矩阵乘积的定义所得的结果是一样的。
3.2 利用分块矩阵求逆矩阵在求一个矩阵的逆矩阵时,一般的我们可以通过求其的伴随矩阵和矩阵,行列式来求。
但对一些矩阵。
如果我们对其进行适当的分块,并利用一定的结论可以使问题更加轻松的得到解决。
以下给出两个常用的结论:设Ai(i=1,2,3 ,s )都是可逆矩阵,则有(1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-A A A s000000211=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---A AA s 100001000121(2)⎥⎦⎤⎢⎣⎡-00211A A =⎥⎥⎦⎤⎢⎢⎣⎡--011012A A(3)⎥⎦⎤⎢⎣⎡-C B A 01=⎥⎥⎦⎤⎢⎢⎣⎡-----C A C A B 11110 前两个结论我们不证明了,下面我们来证明一下第三个结论,由矩阵的初等变换以及初等矩阵的概念我们知道了求逆矩阵的一种方法,利用分块矩阵的初等变换我们可以证明以上第三个结论,下面我们来证明。
证明:⎥⎦⎤⎢⎣⎡C B A 0 ⇔⎥⎦⎤⎢⎣⎡1001 对上式两边进行初等变换得:⎥⎦⎤⎢⎣⎡C A 00⇔⎥⎦⎤⎢⎣⎡-1011A B ⎥⎦⎤⎢⎣⎡C 001⇔⎥⎥⎦⎤⎢⎢⎣⎡--1011A A B ⎥⎦⎤⎢⎣⎡1001⇔⎥⎥⎦⎤⎢⎢⎣⎡-----C A CA B 1111所以 ⎥⎦⎤⎢⎣⎡C B A 0=⎥⎥⎦⎤⎢⎢⎣⎡-----C A C A B 1111以上两个结论在利用分块矩阵求逆矩阵时经常用到,下面举几个例子来说明用分块矩阵来求逆矩阵。
例 1. 求矩阵 S=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--3111522100110012 的逆矩阵解:把矩阵S 分块得A=⎥⎦⎤⎢⎣⎡1112,B=⎥⎦⎤⎢⎣⎡3152,C=⎥⎦⎤⎢⎣⎡--1121A 1-=⎥⎦⎤⎢⎣⎡--2111,B 1-=⎥⎦⎤⎢⎣⎡--2153,A BC 11---=⎥⎦⎤⎢⎣⎡--1173019所以 S 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------2111753301900210011由于该部分比较简单,我们不再详述,但从上述例题可以看出,利用分块矩阵求逆矩阵,方法比较简单,计算时,若能把分块矩阵的性质和定理的结论综合在一起,会使适用范围更广。
3.3 分块矩阵在求高阶行列式的应用行列式是高等代数的一个重要组成部分,在高等代数中我们常常遇到 些计算高阶行列式的问题,如果我们直接去计算的话,计算量不仅很大,而且很容易出错。