有理数加法教学设计
- 格式:doc
- 大小:96.50 KB
- 文档页数:10
《有理数加法》教案第一章:有理数加法概念引入1.1 教学目标(1)让学生了解有理数加法的概念;(2)让学生掌握有理数加法的基本法则;(3)培养学生运用有理数加法解决实际问题的能力。
1.2 教学内容1.2.1 有理数加法的定义引导学生通过数轴理解有理数加法的意义,即在数轴上,两个有理数相加,就是将它们的终点位置相连,得到一条新的射线。
1.2.2 有理数加法的基本法则讲解同号有理数相加、异号有理数相加、互为相反数的有理数相加、零的加法等基本法则。
1.3 教学活动1.3.1 课堂讲解通过数轴示例,讲解有理数加法的定义和基本法则。
1.3.2 学生练习布置练习题,让学生运用有理数加法的基本法则进行计算。
1.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法的理解和掌握程度。
第二章:有理数加法计算2.1 教学目标(1)让学生掌握有理数加法的计算方法;(2)培养学生运用有理数加法解决实际问题的能力。
2.2 教学内容2.2.1 有理数加法的计算方法讲解加法运算中的括号去除、正负号转换等计算技巧。
2.2.2 实际问题解决通过实际问题,让学生运用有理数加法计算方法进行求解。
2.3 教学活动2.3.1 课堂讲解讲解有理数加法的计算方法和实际问题解决方法。
2.3.2 学生练习布置练习题,让学生运用有理数加法计算方法进行计算。
2.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法计算方法的掌握程度。
第三章:有理数加法在实际问题中的应用3.1 教学目标(1)让学生学会将有理数加法应用于实际问题中;(2)培养学生运用有理数加法解决实际问题的能力。
3.2 教学内容3.2.1 实际问题引入通过生活实例,引入有理数加法在实际问题中的应用。
3.2.2 实际问题解决方法讲解将有理数加法应用于实际问题中的方法,如购物、长度测量等。
3.3 教学活动3.3.1 课堂讲解讲解有理数加法在实际问题中的应用方法和示例。
3.3.2 学生练习布置练习题,让学生运用有理数加法解决实际问题。
《有理数的加法》教案一、教学目标:1. 让学生理解有理数的加法概念,掌握有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点:1. 有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算。
三、教学难点:1. 有理数加法的运算规律。
2. 不同符号有理数加法的运算方法。
四、教学方法:1. 采用讲解法,讲解有理数加法的基本概念和运算方法。
2. 采用例题演示法,展示不同类型的有理数加法运算。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学内容:1. 有理数加法的概念:两个有理数相加的运算称为有理数加法。
2. 有理数加法的运算方法:(1)同号有理数相加:取相同符号,并把绝对值相加。
(2)异号有理数相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3. 练习题:(1)同号有理数相加:23 + 17 = 40(2)异号有理数相加:-5 + 7 = 2(3)混合运算:34 15 + 26 = 45六、教学步骤:1. 引入新课:讲解有理数加法的概念和意义。
2. 讲解有理数加法的运算方法,并通过例题展示。
3. 让学生进行练习,巩固所学知识。
4. 总结本节课的主要内容和知识点。
七、课后作业:1. 完成练习册上的相关题目。
2. 找一些实际问题,运用有理数加法解决。
八、教学反思:通过本节课的教学,学生应该能够掌握有理数加法的基本概念和运算方法,能够正确进行有理数的加法运算。
在教学过程中,要注意引导学生理解有理数加法的运算规律,并通过练习让学生熟练掌握。
要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评估学生对有理数加法的理解和掌握程度。
2. 观察学生在解决问题时的思路和方法,评估其应用能力和创新意识。
3. 收集学生反馈意见,了解教学方法的适用性和改进方向。
七、教学拓展:1. 引导学生探索有理数加法的运算规律,例如:a + (-a) = 0,a + b = b + a 等。
有理数的加法的教学设计(精选11篇)有理数的加法的教学设计第1篇《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。
重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。
最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。
)二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
有理数加法教案一、教学目标通过本课的学习,学生应能够: 1. 理解有理数加法的概念和规则; 2. 掌握有理数加法的计算方法; 3. 运用有理数加法解决实际问题。
二、教学重点和难点教学重点1.掌握有理数加法的概念和规则;2.运用有理数加法解决实际问题。
教学难点1.理解有理数加法的概念和规则;2.运用有理数加法解决实际问题。
三、教学准备1.教师准备:教学课件、黑板、粉笔、学生练习册、教学素材等;2.学生准备:课本、练习册、学习用具。
四、教学过程1. 导入(5分钟)教师可以通过提问的方式,复习上节课学习的知识点,引出本节课的主题:有理数加法。
让学生回顾加法的概念及运算规则。
2. 概念讲解(10分钟)教师通过示意图或实际物体,向学生介绍有理数加法的概念和基本规则,强调正、负数的加法运算。
3. 计算方法(20分钟)教师用简单的例子,详细介绍有理数加法的计算方法,包括同号数、异号数的加法原则,重点讲解进位和借位的运算。
4. 练习与巩固(15分钟)教师在黑板上出题,让学生上台做题演示,其他学生根据题目进行思考和解答。
教师要注意批评和表扬,鼓励学生积极参与课堂练习。
5. 拓展应用(15分钟)教师通过真实生活中的例子,引导学生将有理数加法应用到实际问题中。
例如,计算温度的变化、海拔的变化等等。
让学生理解有理数加法的实际应用场景。
6. 归纳总结(5分钟)教师带领学生总结有理数加法的规则和方法,并强调学生需要多加练习,熟练掌握有理数加法的运算。
五、课堂小结本节课主要介绍了有理数加法的概念、规则和计算方法。
通过练习和实际应用,帮助学生巩固加法的基本概念和运算技巧。
六、课后作业布置有理数加法的相关作业,要求学生掌握加法的基本规则和计算方法,并能够应用到实际生活中。
七、教学反思本节课的教学目标能够得到有效的实现,学生通过课堂练习和小组讨论,对有理数加法的概念和运算规则有了更深入的理解。
但在教学过程中,也发现个别学生在运算中存在较多错误,需要进一步加强巩固练习。
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
有理数的加法教案(优秀7篇)有理数的加法公开课教案篇一一、学情及学习内容分析“有理数的加法与减法”是基于规则为主的新授课型有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。
本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作------有理数减法算式-------有理数减法法则-------有理数减法的应用二、教学目标及教学重(难)点教学目标:1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动活动1:计算温差师:有理数加减3_百度文库生1:利用温度计的刻度直观得到算式5 + 3 = 8生2:利用日温差的定义可得到算式:5 -(-3)= 8师:比较两式,我们有什么发现吗?生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
《有理数加法》教案优秀11篇《有理数的加法》教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及定值与两个加数的符号及其定值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与定值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在较后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示例,其它的留给学生独立得出或合作完成。
《有理数的加法》教案【优秀4篇】《有理数的加法》教案篇一教学目标:1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:准确、熟练地进行加减混合运算教学过程一、课前预习1、有理数的加法法则是什么?2、有理数的减法法则是什么?3、有理数的加法有什么运算律?具体内容是什么?4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索根据有理数减法法则,有理数的加减混合运算可以统一为加法运算例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)____统一为加法= 26+(-42)____运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)=(-6)+(+13)+(-5)+(-3)+(+6)__统一加号=-6+13-5-3+6____省略加号=-6-5-3+13+6____-运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)例4、若a=-2,b=3,c=-4,求值(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 __ [ 数据代入时,注意括号的运用](2) (3)(4)例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?(2)这小组这一天共走了多少千米三、学习小结这节课你学会了哪几种运算?四、随堂练习A类1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)(3)(+ )-(- )+(- )-(+ )(4) -7.52+ -1.48(5)21-12+33+12-67 (6)-3.2+5.8-8.6+122 计算(1) 1+2-3-4+5+6-7-8++97+98-99-100(2) 66-12+11.3-7.4+8.1-2.5(6)-2.7-[3-(-0.6+1.3)]B类3. 计算(1) + + ++ (2) + + ++《有理数的加法》教案篇二教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
有理数的加法教案教案内容:一、教学目标:1. 了解有理数的概念和性质。
2. 掌握有理数的加法运算方法。
3. 能够运用有理数的加法规则解决实际问题。
二、教学重点:1. 有理数的概念和性质。
2. 有理数的加法规则和运算方法。
三、教学难点:1. 掌握有理数的加法运算方法。
2. 运用有理数的加法规则解决实际问题。
四、教学过程:1. 了解有理数的概念和性质:- 引导学生回顾整数和分数的概念,并引入有理数的定义。
- 解释有理数的性质:有理数可以相互比较大小;有理数有加法、减法、乘法和除法运算;有理数可以表示数轴上的点等。
2. 有理数的加法运算方法:- 提供几个有理数的加法算式,让学生观察规律。
- 解析有理数的加法规则:同号相加取同号,异号相加取绝对值较大的数的符号。
- 分步讲解有理数的加法运算方法,并通过练习巩固掌握。
3. 运用有理数的加法规则解决实际问题:- 给出一些实际问题,要求学生应用有理数的加法规则解决。
- 帮助学生分析问题、提取关键信息、设立方程,以及运用有理数加法运算方法解答问题。
五、课堂练习:1. 让学生自主练习有理数的加法运算,巩固所学知识。
2. 给出一些应用题,让学生灵活运用有理数的加法规则解决实际问题。
六、作业布置:布置一些相关的练习题,要求学生完成并提交。
七、课堂总结:1. 学生回顾所学内容,总结有理数的加法规则和运算方法。
2. 教师对学生的学习情况进行总结评价,并提出进一步的学习建议。
八、板书设计:无九、课后拓展:1. 学生继续自主完成有理数的加法练习题。
2. 学生独立思考有理数加法规则的应用,并写下自己的思考和总结。
人教版有理数的加法优秀教案及教学设计一、教学目标:知识与技能:使学生掌握有理数的加法运算方法,能够正确地进行有理数的加法计算。
过程与方法:通过实例分析,让学生经历有理数加法运算的探究过程,培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
二、教学重点与难点:重点:掌握有理数的加法运算方法。
难点:理解有理数加法运算的规律,能够灵活运用。
三、教学准备:教师准备:教材、多媒体教学设备、教案、PPT等。
学生准备:预习教材,了解有理数的加法概念。
四、教学过程:1. 导入新课:通过复习小学学过的加法运算,引出有理数的加法运算。
2. 探究有理数的加法运算:(1)让学生举例说明有理数的加法运算,教师引导学生总结规律。
(2)通过PPT展示有理数加法运算的步骤,让学生跟随PPT一起口算。
3. 讲解有理数加法运算的注意事项:(1)同号相加,绝对值相加,符号不变。
(2)异号相加,绝对值大的数减去绝对值小的数,符号取决于绝对值大的数的符号。
4. 练习巩固:让学生独立完成练习题,教师巡回指导,及时纠正错误。
五、课堂小结:六、教学拓展:1. 让学生思考:有理数的加法运算在实际生活中有哪些应用?2. 教师举例说明:购物时找回零钱、温度变化等。
3. 引导学生发现:有理数加法运算在生活中的重要性。
七、课后作业:1. 请学生完成教材后的练习题。
2. 教师布置一些有关有理数加法的实际问题,让学生解决。
八、教学反思:1. 教师要关注学生的学习情况,及时发现并解决学生在学习过程中遇到的问题。
2. 注重培养学生的逻辑思维能力和解决问题的能力。
3. 激发学生的学习兴趣,提高课堂参与度。
九、评价建议:1. 观察学生在课堂上的表现,了解学生对有理数加法运算的掌握程度。
2. 通过课后作业和练习题,评估学生对有理数加法运算的理解和应用能力。
3. 鼓励学生积极参与课堂讨论,培养学生的团队合作意识。
数学是学习和研究现代科学技术必不可少的基本⼯具。
⽆忧考整理了初⼀数学教学设计【三篇】,供⼤家参考。
有理数的加法(⼀)教学⽬标: 1、使学⽣在现实情境中理解有理数加法的意义2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进⾏加法运算。
[]3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则重点:异号两数相加的法则教学过程:⼆、讲授新课1、同号两数相加的法则问题:⼀个物体作左右⽅向的运动,我们规定向左为负,向右为正。
向右运动5m记作5m,向左运动5m记作-5m。
如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?学⽣回答:两次运动后物体从起点向右运动了8m。
写成算式就是5+3=8(m)教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?学⽣回答:两次运动后物体从起点向左运动了8m。
写成算式就是(-5)+(-3)=-8(m)师⽣共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个⽅向运动了多少⽶?学⽣回答:两次运动后物体从起点向右运动了2m。
写成算式就是5+(-3)=2(m)师⽣借此结论引导学⽣归纳异号两数相加的法则:异号两数相加,取绝对值较⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?学⽣回答:经过两次运动后,物体⼜回到了原点。
也就是物体运动了0m。
师⽣共同归纳出:互为相反数的两个数相加得零教师:你能⽤加法法则来解释这个法则吗?学⽣回答:可⽤异号两数相加的法则来解释。
⼀般地,还有⼀个数同0相加,仍得这个数。
三、巩固知识课本P18 例1,例2、课本P118 练习1、2题四、总结运算的关键:先分类,再按法则运算;运算的步骤:先确定符号,再计算绝对值。
有理数的加法教案1.有理数的加法教案(精选篇1)师:在小学里,同学们已经学过数的加、减、乘、除四则运算。
这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。
自从引进负数后,数的范围就扩大到整个有理数。
那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。
(教师板书课题:有理数的加法)请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。
(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)师:还有其他情况吗?生2:正数与零,负数与零,或者两个都是零师:同学们回答得很好。
现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?生3:向东走了8米师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。
(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何?生5:向西走了8米。
可以表示为:(-5)+(-3)=-8[教师板书](教师用投影仪显示图2)③向东走了5米,再向西走了3米,结果呢?生6:向东走了2米。
可以表示为:(+5)+(-3)=+2[教师板(教师用投影仪显示图3)④先向西走了5米,再向东走了3米,结果呢?生7:向西走了2米。
可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)⑤先向东走5米,再向西走5米,结果呢?生8:回到原地位置。
可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)⑥先向西走5米,再向东走5米,结果呢?生9:仍回到原地位置。
可以表示为:(-5)+(+5)=0[教师板书](教师用投影仪显示图6)师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。
有理数的加法教案优秀6篇有理数的加法教案篇一一、教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2.过程与方法通过观察,比较,归纳等得出有理数加法法则。
能运用有理数加法法则解决实际问题。
3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
关键:通过实例引入,循序渐进,加强法则的应用。
三、教学方法发现法、归纳法、与师生轰动紧密结合。
四、教材分析“有理数的加法”是人教版七年级数学上册一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。
章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。
这节课我们来研究两个有理数的加法。
两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。
若我们规定赢球为“正”,输球为“负”,打平为“0”。
比如,赢3球记为+3,输1球记为-1。
学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。
也就是(+3)+(+1)=+4。
《有理数加法》教案一、教学目标:1. 让学生理解有理数加法的概念,掌握有理数加法的基本运算方法。
2. 培养学生运用有理数加法解决实际问题的能力。
二、教学内容:1. 有理数加法的定义和法则。
2. 有理数加法的运算方法。
3. 有理数加法在实际问题中的应用。
三、教学重点与难点:1. 重点:有理数加法的概念和运算方法。
2. 难点:有理数加法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解有理数加法的定义、法则和运算方法。
2. 采用案例分析法,分析有理数加法在实际问题中的应用。
五、教学步骤:1. 引入:通过数轴讲解有理数加法的概念,引导学生理解有理数加法的意义。
2. 讲解:讲解有理数加法的法则,引导学生掌握有理数加法的运算方法。
3. 练习:布置练习题,让学生独立完成,检验学生对有理数加法的掌握程度。
4. 案例分析:分析实际问题中的有理数加法,让学生运用所学知识解决实际问题。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 通过课堂练习和课后作业,评估学生对有理数加法的理解和掌握程度。
2. 观察学生在解决问题时的思维过程,评估他们的逻辑思维和应用能力。
3. 收集学生的小组讨论意见,评估他们的合作和沟通能力。
七、教学资源:1. 教材或教辅资料,用于提供理论知识。
2. 数轴图示,用于直观展示有理数加法。
3. 实际问题案例,用于引导学生应用有理数加法解决问题。
4. 练习题库,用于巩固所学知识。
八、教学拓展:1. 邀请数学家或有理数加法领域的专家进行讲座,为学生提供更深入的视角。
2. 组织数学竞赛或挑战活动,激发学生对有理数加法的兴趣和竞争意识。
3. 引导学生探索有理数加法的数学历史背景,增加他们的数学文化素养。
九、教学安全:1. 在课堂上确保学生的行为安全,避免学生在操作有理数加法时发生意外。
2. 对于有理数加法的实际操作,教师应进行适当的指导和监督,确保学生的操作正确性。
3. 在教学过程中,教师应关注学生的心理健康,鼓励积极的学习态度,避免学生因解题困难而产生挫败感。
有理数加法数学教案
标题:有理数加法教学设计
一、教学目标
1. 知识与技能目标:掌握有理数加法的基本概念和运算法则。
2. 过程与方法目标:通过实际操作和探究活动,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和严谨的科学精神。
二、教学内容分析
1. 有理数加法的概念
2. 有理数加法的法则
3. 有理数加法的应用
三、教学重难点
1. 教学重点:理解并掌握有理数加法的法则。
2. 教学难点:运用有理数加法解决实际问题。
四、教学过程
1. 导入新课
通过生活中的实例引入有理数加法,让学生体验到数学与生活的紧密联系。
2. 新知探索
(1) 有理数加法的概念讲解
(2) 有理数加法的法则教授
(3) 通过实例演示有理数加法的计算过程
3. 实践应用
设计一些有理数加法的练习题,让学生进行练习,然后进行集体讲评。
4. 小结与反思
回顾本节课所学的内容,引导学生自我评价学习效果。
五、作业布置
设计一些有难度梯度的作业,既要有基本的计算题,也要有一些需要运用有理数加法解决的实际问题。
六、教学评价
采用形成性评价和终结性评价相结合的方式,全面评价学生的学习情况。
有理数的加法课程设计一、课程目标知识目标:1. 理解有理数的概念,掌握有理数的分类及表示方法;2. 掌握有理数加法的法则,能正确进行有理数的加法运算;3. 了解有理数加法在实际问题中的应用,能运用有理数加法解决简单问题。
技能目标:1. 能够运用有理数加法法则,准确完成有理数加法运算;2. 能够运用有理数加法解决实际问题,提高解决问题的能力;3. 能够运用数轴和算式互相转换,增强数感和符号意识。
情感态度价值观目标:1. 培养学生积极的学习态度,激发学生对数学学习的兴趣;2. 培养学生的团队合作意识,提高学生沟通与交流的能力;3. 培养学生严谨的学术态度,树立正确的价值观,认识到数学知识在实际生活中的重要性。
课程性质:本课程为七年级数学课程,以有理数加法为主题,结合实际问题,培养学生的运算能力和解决问题的能力。
学生特点:七年级学生具有一定的数学基础,但部分学生对有理数的理解不够深入,需要通过具体实例和操作活动加强理解。
教学要求:注重理论与实践相结合,通过启发式教学引导学生主动探究,提高学生的数学素养。
将课程目标分解为具体的学习成果,以便后续教学设计和评估。
二、教学内容1. 有理数的概念及分类- 有理数的定义- 有理数的分类(整数、分数)- 有理数的表示方法(数轴、文字、符号)2. 有理数加法法则- 同号有理数加法- 异号有理数加法- 加法的交换律和结合律3. 有理数加法运算- 线段图与有理数加法- 数轴上的有理数加法- 算式与数轴的结合运用4. 有理数加法的应用- 实际问题中的有理数加法- 解决简单的一步加减问题- 解决多步骤的混合运算问题教学大纲安排:第一课时:有理数的概念及分类,介绍有理数的定义、分类和表示方法。
第二课时:同号有理数加法,学习同号有理数加法法则,进行相关练习。
第三课时:异号有理数加法,学习异号有理数加法法则,进行相关练习。
第四课时:有理数加法的运算技巧,学习加法的交换律和结合律,提高运算速度。
《有理数的加法》教学设计教学目标知识与技能:掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
教学重点有理数加法法则及运用教学难点异号两数相加法则教具准备powerpoint课件课时安排1课时教学过程环教师活动学生活动设计意图节创设情境引入新课2010年6月11日至7月11日,第19届世界杯足球赛在南非举行。
来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。
(出示PPT2)(出示PPT3)小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。
积分相同时,净胜球多者为胜(把进球数记为正数,失球数记为负数,进球数与失球数的和叫做净胜球数)。
以B组为例,进入十六强的是阿根廷和韩国。
国家赛胜平负得分阿根廷33009韩国31114希腊31023尼日利亚30121(出示PPT4)再以A组为例,A组积分榜国家赛胜平负得分进球失球净胜球乌拉圭32107+40墨西哥31114+3-2南非31114+3-5学生看图表,思考问题。
利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣体会学习有理数运算的必要性。
法国30121+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。
你能列出计算各队净胜球数的算式吗?学生列出计算净胜球数的算式。
环节教师活动学生活动设计意图探索新知师:净胜球数的计算实际上涉及到有理数的加法。
今天我们就来研究有理数的加法运算(板书1:1.4有理数的加减----一、有理数的加法)。
探究一师:我们已经知道两个非负有理数相加的方法,现在数的范围扩大了,两个有理数相加,还有哪些情形呢?请举例说明。
根据学生的回答,归纳为以下三种:(板书2)(+)+(-);(-)+(-);(0)+(-)师:如何进行有理数的加法呢?我们先来看下面这个问题:(出示PPT5)一间0℃冷藏室连续两次改变温度:(1)第一次上升5℃,接着再上升3℃;(2)第一次下降5℃,接着再下降3℃;(3)第一次下降5℃,接着再上升3℃;(4)第一次下降3℃,接着再上升5℃。
师:每一种情形下,两次变化使温度共上升了多少摄氏度?(这里要结合前面有理数的学习,引导学生注意两次变化的结果“共”与“上升”等词语的含义,其学生讨论,相互补充。
学生思考、回答向学生渗透分类思想,体现数学的简洁美!从学生的生活经验出发,从学生已有的认知出发,将对新知的探索设置在学生的最近发展区,能有效激发学生兴趣.中“共”表示求和,最终温度的升、降要通过和的正、负来体现,从而问题是求两个有理数的和。
)师:我们规定,温度上升记作正,温度下降记作负,请同学们在数轴上表示连续两次温度的变化结果,写出算式。
(引导学生将温度的变化过程在数轴上表示出来,观察得出变化结果,进而列出加法算式)问题。
学生模仿已有的算式填表。
利用数轴直观演示,数形结合,让学生参与探索的过程,直观感受有理数的加法法则。
环节教师活动学生活动设计意图探索新知(出示PPT6)师:第一个算式是小学已学习过的,第二个算的两个加数都是负数,你能说说看是怎样计算的吗?(引导学生从和的符号以及和的绝对值两个方面分别说明自己的算法)待学生说明自己的算法理由后,可得出:1.同号两数相加,取与加数相同的符号,并把绝对值相加。
(板书3)(出示PPT7)师:第三和第四个算式是负数与正数相加,也可称为异号两数相加,你又是怎样计算学生阐述自己计算的方法。
渗透由特殊到一般的辩证唯物主义思想;鼓励学生用自己的语言描述法则,提高学生的概括能力和语言表达能力的?待学生说明自己的算法理由后,可得出:2.异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(板书4)应用新知师:同学们现在会计算这堂课刚开始时我们列出的算式了吗?哪两只队伍能进入十六强呢?(展示PPT8)师:现在请同学们两人为一组,互相出题考察对方,看谁出的题型多,看谁算得又快又好。
(要求学生说明算理,记录学生互相出的题目与答案,针对学生回答进行讲评,适时鼓励)学生解题。
学生之间互相出题,利用法则计算。
旨在调动学生的学习热情,以竞赛的形式激发学生的学习热情,同时巩固已学习是的法则。
环节教师活动学生活动设计意图探索新(出示PPT9)探究二(如学生在互相出题时已有类似算式,则因势引入)知师:以下算式你会计算吗?你能仿照探究一中“温度的变化”说明各式的实际意义吗?(-5)+(+5)= ————,(-5)+ 0 = ————。
由计算结果你能得出什么结论?(学生回答,教师板书5)异号两数相加,绝对值相等时和为0(即互为相反数两数之和为0)。
(可接在2的后面写,见板书设计!)(让学生观察结论2是否有需要完善的地方,待学生回答后教师在板书的基础上添加“当绝对值不等时”)3.一个数与零相加,仍得这个数。
师:以上三条结论就构成了有理数的加法法则:(板书已有,只需再带领学生复习一下即可!)1.同号两数相加,取与加数相同的符号,并把绝对值相加;2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。
3.一个数与零相加,仍得这个数。
学生观察、思考、讨论。
学生观察、思考、讨论,用自己的语言描述加法法则。
仿照探究一的模式解决问题完善有理数加法法则。
环节教师活动学生活动设计意图例题讲解巩固新知(出示PPT10)例1.计算:(1)(+7)+(+6);(2)(-5)+(-7);(3)()+;(4)(-10.5)+(+21.5);(5)(-7.5)+(+7.5);(6)(-3.5)+ 0 。
学生逐题解答,教师选择两题板书演示解题步骤。
(板书6)解:(2)原式=-(9+5)=-14(3)原式=-(-)=-教师小结:进行有理数加法,先要判断两个加数是同号还是异号,再根据两个加数符号的具体情况,选用相应的加法法则,确定和的符号以及和的绝对值。
学生观察教师的解题步骤,并按规范解题。
培养学生解题的规范性。
巩固练习(出示PPT11)练习1.比比谁的眼睛亮:下列各计算结果是对还是错?如果错误请指出错在哪里,并改正错误。
(1)(-4)+2=-6 ()(2)(-15)+16=1 ()(3)(-6)+(-1)=-5 ()(4)(-34)+(-27)=51 ()(5)(-9)+0=0 ()(6)(+60)+(-60)=120 ()(7)(-27)+36=-9 ()学生集体口答。
采用示错式教学,展示学生在运算中容易出现的错误,减少学生解题时出错。
环节教师活动学生活动设计意图巩固练习(出示PPT12)练习2.计算(1)(+ 3.5)+(+ 4.5);(2)()+();(3)()+();(4)()+();(5)100+(-100);(6)(-9.5)+ 0学生完成练习,同伴之间相互订正,教师对学生的板演进行评价。
学生做练习,两位学生板演(2)、(4)两题,全班同学口答其余四题。
通过练习让学生熟练运用有理数加法法则。
拓展练习(出示PPT13)练习3.下面的说法是否正确?如果不正确,请举例说明。
(若课堂时间不够,可作为课后思考题)(1)两个数的和一定比两个数中任何一个都大;(2)两个数的和是正数,这两个数一定是正数。
要求学生不仅能指出说法的正误,并能举出实例证明自己的结论。
学生思考判断并举反例说明。
开放性的题目让学生在探索的过程中进一步理解法则,体会有理数的加法与小学时加法的区别。
归纳小结师:通过本节课的学习,你学到了哪些数学知识?(出示PPT14)有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加;2.异号两数相加,当绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。
3.一个数与零相加,仍得这个数。
学生回答。
使学生对所学的知识有一个总体而深刻的认识。
作业布置1.习题1.4:1(必做题)(出示PPT15)2.你能将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图幻方的9个空格中,使得处于同一横行,同一竖列,同一斜对角线上的3个数相加都得0吗?(选做题)学生回家完成。
作业分层布置,照顾到全体学生;第二题是九宫格问题,数的范围扩大到有理数范围后就有一定的难度,激发学生挑战的意识。
板书设计:(板书1)§1.4有理数的加减一、有理数的加法(板书3、4、5)1.同号两数相加,取原来的符号,并把绝对值相加。
2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数之和为0)。
3.一个数与零相加,仍得这个数。
(板书6)例1.解:(2)原式=-(9+5)=-14(3)原式=-(-)=(板书2:用后可擦)(+)+(-);(-)+(-);(0)+(-)。