spss教程相关分析与回归模型的建立与分析
- 格式:pdf
- 大小:687.24 KB
- 文档页数:23
相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进行相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元及多元回归模型的计算与检验。
(3) 学会回归模型的散点图与样本方程图形。
(4) 学会对所计算结果进行统计分析说明。
(5) 要求试验前,了解回归分析的如下内容。
♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验(t -检验);回归方程显著性检验(F -检验)。
二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度。
用来测度简单线性相关关系的系数是Pearson 简单相关系数。
2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。
回归分析是研究两个变量或多个变量之间因果关系的统计方法。
其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。
回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。
线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进行检验。
如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。
回归模型的检验包括一级检验和二级检验。
一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。
数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。
在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。
本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。
一、相关分析相关分析是一种用于确定变量之间关系的统计方法。
SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。
在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。
下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。
1. 打开SPSS软件并导入数据。
可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备相关分析的变量。
选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。
在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。
3. 进行相关分析。
点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。
4. 解读相关分析结果。
SPSS会给出相关系数的值以及显著性水平。
相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。
显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。
二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。
SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。
下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。
1. 打开SPSS软件并导入数据。
同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备回归分析的变量。
第三章相关分析与回归模型的建立与分析相关分析和回归分析是统计分析方法中最重要内容之一,是多元统计分析方法的基础。
相关分析和回归分析主要用于研究和分析变量之间的相关关系,在变量之间寻求合适的函数关系式,特别是线性表达式。
◆本章主要内容:1、对变量之间的相关关系进行分析(Correlate)。
其中包括简单相关分析(Bivariate)和偏相关分析(Partial)。
2、建立因变量和自变量之间回归模型(Regression),其中包括线性回归分析(Linear)和曲线估计(Curve Estimation)。
◆数据条件:参与分析的变量数据是数值型变量或有序变量。
§3.1 相关分析在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图3.1所示。
图3.1Correlate 相关分析菜单§3.1.1 简单相关分析两个变量之间的相关关系称简单相关关系。
有两种方法可以反映简单相关关系。
一是通过散点图直观地显示变量之间关系,二是通过相关系数准确地反映两变量的关系程度。
§3.1.1.1 散点图SPSS软件的绘图命令集中在Graphs菜单。
下面通过例题来介绍具体操作方法。
例1:数据库SY-8中的变量X表示山东省人均国内生产总值,Y表示山东省城镇居民的消费额(资料来源:山东省2003年统计年鉴),现画出散点图来观察两个变量的关联程度。
具体操作步骤如下:首先打开数据SY-8,然后单击Graphs Scatter,打开Scatter plot散点图对话框,如图3.2所示。
然后选择需要的散点图,图中的四个选项依次是:Simple 简单散点图Matrix 矩阵散点图Overlay 重叠散点图3-D 三维散点图图3.2 散点图对话框如果只考虑两个变量,可选择简单的散点图Simple,然后点击Define,打开Simple Scatterplot 对话框,如图3.3所示。
相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。
SPSS多元线性回归分析教程多元线性回归是一种广泛应用于统计分析和预测的方法,它可以用于处理多个自变量和一个因变量之间的关系。
SPSS是一种流行的统计软件,提供了强大的多元线性回归分析功能。
以下是一个关于如何使用SPSS进行多元线性回归分析的教程。
本文将涵盖数据准备、模型建立、结果解读等内容。
第一步是数据的准备。
首先,打开SPSS软件并导入所需的数据文件。
数据文件可以是Excel、CSV等格式。
导入数据后,确保数据的变量类型正确,如将分类变量设置为标称变量,数值变量设置为数值变量。
还可以对数据进行必要的数据清洗和变换,如删除缺失值、处理离群值等。
数据准备完成后,可以开始建立多元线性回归模型。
打开“回归”菜单,选择“线性”选项。
然后,将因变量和自变量添加到模型中。
可以一次添加多个自变量,并选择不同的方法来指定自变量的顺序,如逐步回归或全部因素回归。
此外,还可以添加交互项和多项式项,以处理可能存在的非线性关系。
在建立好模型后,点击“统计”按钮可以进行更多的统计分析。
可以选择输出相关系数矩阵、残差分析、变量的显著性检验等。
此外,还可以进行回归方程的诊断,以检查模型是否符合多元线性回归的假设。
完成模型设置后,点击“确定”按钮运行回归分析。
SPSS将输出多个结果表,包括回归系数、显著性检验、模型拟合度和预测结果等。
对于每个自变量,回归系数表示自变量单位变化对因变量的影响;显著性检验则用于判断自变量是否对因变量有显著影响;模型拟合度则表示模型的解释力如何。
在解读结果时,需要关注以下几个方面。
首先,回归系数的正负号表示因变量随自变量的增加而增加或减少。
其次,显著性检验结果应该关注到p值,当p值小于显著性水平(如0.05)时,可以认为自变量对因变量有显著影响。
最后,要关注模型拟合度的指标,如R方值、调整R方值和残差分析。
如果模型结果不满足多元线性回归的假设,可以尝试进行模型修正。
可以尝试剔除不显著的自变量、添加其他自变量、转换自变量或因变量等方法来改善模型的拟合度。
数据统计分析软件SPSS的应用相关分析与回归分析一、本文概述随着信息技术的快速发展和大数据时代的来临,数据统计分析在各个领域的应用越来越广泛。
SPSS作为一款功能强大的数据统计分析软件,其在社会科学、商业分析、医学统计等多个领域具有广泛的应用。
本文将深入探讨SPSS在相关分析与回归分析中的应用,帮助读者更好地理解和应用这一强大的工具。
本文将简要介绍SPSS软件的基本功能和特点,使读者对其有一个初步的了解。
随后,文章将重点介绍相关分析的概念、类型及其在SPSS中的实现方法,包括皮尔逊相关系数、斯皮尔曼秩相关系数等。
文章还将详细阐述回归分析的基本原理、类型及其在SPSS中的操作步骤,如线性回归分析、逻辑回归分析等。
通过本文的学习,读者将能够掌握SPSS在相关分析与回归分析中的基本应用,提高数据处理和分析的能力,为实际工作和研究提供有力支持。
文章还将提供一些实际案例,以帮助读者更好地理解和应用所学知识,提高实际操作能力。
二、SPSS软件基础SPSS,全称为Statistical Package for the Social Sciences,即“社会科学统计软件包”,是一款广泛应用于社会科学领域的数据统计分析软件。
它提供了丰富的数据分析工具,包括描述性统计、推论性统计、探索性数据分析、回归分析、因子分析、聚类分析等,能够帮助研究者轻松处理和分析数据,挖掘数据背后的深层次信息。
在使用SPSS之前,用户需要对其基本界面和常用功能有所了解。
SPSS界面友好,主要分为菜单栏、工具栏、数据视图和变量视图等部分。
菜单栏包含了大多数统计分析功能的命令,如“分析”“描述统计”“因子分析”等。
工具栏则提供了一些常用的统计分析工具的快捷方式。
数据视图是用户输入和编辑数据的地方,而变量视图则用于定义变量的属性,如变量名、变量类型、宽度、小数位数等。
在SPSS中,数据分析的核心步骤通常包括数据准备、数据分析、结果解释和报告生成。