过程控制设计实验报告压力控制
- 格式:docx
- 大小:106.87 KB
- 文档页数:16
实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。
2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。
飞升曲线是指输入为阶跃信号时的输出量变化的曲线。
实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。
在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。
采取一切措施防止其他干扰的发生,否则将影响实验结果。
2)在测试工作中要特别注意工作点与阶跃幅度的选取。
作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。
阶跃作用的取值范围为其额定值的 5-10%。
如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。
如果取值过大,则非线性影响将扭曲实验结果。
不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。
3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。
4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。
为了校验线性,宜作正负两种阶跃进行比较。
也可作不同阶跃量的实验。
2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。
面积法较复杂,计算工作量较大。
近似法误差较大,图解法较方便,误差比近似法小。
过程控制课程设计实验一、教学目标本课程的教学目标是使学生掌握过程控制的基本概念、原理和方法,培养学生运用过程控制理论分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解过程控制的基本概念、分类和特点;(2)掌握过程控制的基本原理,包括PID控制、模糊控制、神经网络控制等;(3)熟悉过程控制系统的组成、设计和应用;(4)了解过程控制在我国的发展现状和趋势。
2.技能目标:(1)能够运用过程控制理论分析和解决实际问题;(2)具备过程控制系统的设计和调试能力;(3)掌握常用的过程控制软件和工具,如MATLAB、Simulink等;(4)具备一定的创新能力和团队协作精神。
3.情感态度价值观目标:(1)培养学生对过程控制学科的兴趣和热情;(2)树立正确的科学观和价值观,认识到过程控制技术在现代社会中的重要性;(3)培养学生具有良好的职业道德和责任感,关注过程控制技术在环保、安全等方面的应用;(4)培养学生的团队协作意识和沟通能力,提高学生在实际工程中的综合素质。
二、教学内容本课程的教学内容主要包括以下几个方面:1.过程控制的基本概念和分类;2.过程控制的基本原理,如PID控制、模糊控制、神经网络控制等;3.过程控制系统的组成、设计和应用,包括温度控制系统、压力控制系统、流量控制系统等;4.过程控制技术的最新发展,如智能控制、自适应控制等;5.过程控制软件和工具的使用,如MATLAB、Simulink等;6.过程控制技术在实际工程中的应用案例分析。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:通过讲解基本概念、原理和实例,使学生掌握过程控制的基本知识;2.讨论法:学生分组讨论,培养学生的思考能力和团队协作精神;3.案例分析法:分析实际工程案例,使学生能够将理论知识应用于实际问题;4.实验法:安排实验课程,让学生亲自动手操作,提高学生的实践能力;5.互动教学法:鼓励学生提问、发表见解,教师引导学生进行思考,形成良性互动。
过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。
本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。
一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。
二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。
温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。
三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。
2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。
3. 打开控制器,开始实验。
观察温度的变化过程,并记录实验数据。
4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。
5. 重复步骤3和4,直到达到满意的控制效果。
四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。
通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。
五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。
实践操作使我们更加熟悉了过程控制的过程和技巧。
同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。
六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。
未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。
结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。
通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。
希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。
过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。
2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。
过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。
过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。
3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。
实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。
(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。
(3) 将执行器与控制器连接,并调试执行器的控制参数。
(4) 在控制软件中设置控制策略和控制目标,并启动控制器。
(5) 监测被控制物理过程的状态,并记录相关数据。
(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。
4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。
实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。
5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。
通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。
在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。
《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。
它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。
在工业生产中,过程控制系统起到了至关重要的作用。
本实验旨在了解过程控制系统的基本原理、组成以及操作。
二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。
三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。
四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。
在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。
通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。
当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。
在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。
实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。
通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。
五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。
我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。
实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。
然而,本次实验还存在一些不足之处。
首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。
其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。
《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。
二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。
2、计算机及相关软件用于编程、监控和数据采集分析。
三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。
其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。
常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。
四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。
(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。
(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。
(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。
2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。
设置温度设定值和控制算法参数。
(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。
五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。
(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。
快速性分析:计算液位达到设定值所需的时间。
班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:液位单闭环实验
一、实验目的:
通过实验掌握单回路控制系统的构成。
学生可自行设计,构成单回路单容液位,并采用临界比例度法、阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用计算机进行PID参数的调整和自动控制的投运。
二、实验设备:
水泵、变频器、压力变送器、主回路调节阀、上水箱、上水箱液位变送器、牛顿模块(输入、输出)。
表4-13 阶跃反应曲线整定参数表
4、将计算所得的PID参数值置于计算机中。
5、使水泵Ⅰ在恒压供水状态下工作。
观察计算机上液位曲线的变化。
6、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。
7、再等系统稳定后,给系统加个干扰信号,观察液位变化曲线。
8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果于表格4.12中。
五、试验报告:
根据试验结果编写实验报告,并根据K、T、τ平均值写出广义的传递函数。
过程控制课程设计 Modified by JEEP on December 26th, 2020.辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔塔内压力控制系统设计院(系):专业班级:学号:学生姓名:指导教师:起止时间:课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要精馏塔是石油、化学加工工业(CPI)中使用量最大、能耗最高、应用面极广的分离单元操作设备。
本设计采用单回路控制系统对塔内压力进行实时控制,采用PID算法的DTZ—2100控制器对HK-613系列通用型压力变送器采集到的塔内压力值进行处理,并将控制信号传递给ZXS型新系列气动薄膜角形单座调节阀,令其对冷却量进行控制,从而达到对塔内压力的控制。
精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大生产设备自动化程度的提高,有利于降低工厂成本、促进生产线的柔性化和集成化,有利于提高产品的产量、质量以及产品的竞争力。
从某种意义上说,高效的精馏塔控制技术为我们创造了不可忽视的经济效益和社会效益。
关键词:精馏塔;分离单元;PID算法目录第1章绪论研究背景及意义精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。
而石油化工是基础性产业,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套和服务,在国民经济中占有举足轻重的地位,在现代生活中,几乎随时随地都离不开化工产品,从衣、食、住、行等物质生活到文化艺术、娱乐等精神生活,都需要化工产品为之服务。
精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。
精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。
1.精馏过程的核心在于回流,而回流必须消耗大量能量。
过程控制实验报告1. 背景过程控制是一种控制技术,用于监测和调整工业过程中的变量,以确保产品的质量和效率。
在工业生产中,过程控制对于提高产品质量、降低生产成本和提高生产效率起着至关重要的作用。
本实验旨在通过模拟一个简单的工业过程,了解过程控制的基本原理和方法。
通过对过程中的变量进行监测和调整,我们可以在不同条件下优化过程,并得出相应的结论和建议。
2. 实验设备和方法2.1 实验设备•控制器:使用PID控制器进行过程控制。
•传感器:使用温度传感器、压力传感器和流量传感器等监测过程中的变量。
•执行器:使用阀门、电机等对过程进行调整。
2.2 实验方法1.设定控制目标:根据实验要求,确定需要控制的变量和目标值。
2.连接传感器和执行器:将传感器和执行器与控制器连接,确保数据的传输和命令的执行。
3.数据采集和处理:通过传感器获取过程中的数据,并将其输入到控制器中进行处理。
4.控制策略选择:选择合适的控制策略,如比例控制、积分控制、微分控制等。
5.调整参数:根据实际情况,调整控制器的参数,以达到控制目标。
6.系统监测和优化:实时监测过程中的变量,并根据实验结果进行系统优化。
3. 实验结果经过实验,我们获得了以下结果:•利用PID控制器进行温度控制实验,成功将温度稳定在目标温度范围内,并保持稳定不变。
•利用PID控制器进行压力控制实验,成功将压力稳定在目标压力范围内,并保持稳定不变。
•利用PID控制器进行流量控制实验,成功将流量控制在目标流量范围内,并保持稳定不变。
通过数据分析和结果对比,我们得出以下结论:•PID控制器具有较好的控制性能,能够实现对温度、压力和流量等变量的精确控制。
•过程控制的关键在于选择合适的控制策略和参数调整,通过不断优化可以实现更好的控制效果。
•实时监测对于控制系统的稳定性和可靠性具有至关重要的作用,可以及时发现问题并进行修正。
4. 建议根据实验结果和分析,我们提出以下建议:1.在实际工业生产中,可以采用PID控制器对关键的工艺变量进行控制,以提高产品质量和生产效率。
除氧器压力控制实验报告实验名称:除氧器压力控制实验报告一、引言除氧器是工业生产过程中重要的设备之一,其主要功能是去除水中的氧气,以防止氧腐蚀的发生。
除氧器的压力控制对保证设备的正常运行和延长设备寿命具有重要意义。
本实验旨在探究除氧器压力控制系统的性能及其对工业生产过程的影响。
二、实验目的1. 了解除氧器压力控制系统的原理及工作过程;2. 探究不同参数设置对除氧器压力控制系统的性能影响;3. 分析除氧器压力控制系统对工业生产过程的影响。
三、实验原理除氧器压力控制系统的主要组成包括传感器、控制器、执行机构和压力调节阀等部分。
传感器用于实时监测除氧器的压力变化,将信号传递给控制器。
控制器根据设定的压力值与实际压力值之间的差异进行比较,并控制执行机构的动作,从而调节压力调节阀的开度,以达到压力控制的目的。
四、实验步骤1. 搭建除氧器压力控制系统实验装置,包括除氧器、传感器、控制器、执行机构和压力调节阀等组件;2. 将传感器安装在除氧器上,并校准传感器的压力读数;3. 设置控制器的目标压力值,并将控制器与执行机构和传感器连接;4. 运行实验装置,观察除氧器的压力变化情况,并记录实测压力值;5. 在不同的实验条件下,重复步骤4,记录实测压力值。
五、实验结果根据实验记录的数据,绘制除氧器压力与时间的曲线图。
分析实验结果,包括目标压力值是否达到、控制器的响应时间、系统的稳定性等方面。
六、实验讨论与分析根据实验结果,总结除氧器压力控制系统在不同条件下的性能特点。
分析实验中可能存在的误差源,并提出改进方案。
七、实验结论通过本次实验,我们了解了除氧器压力控制系统的性能特点,掌握了其原理和工作过程。
实验结果表明,除氧器压力控制系统在不同条件下具有不同的性能表现,需要根据实际情况进行合理的参数设置和改进措施。
八、实验总结本次实验对于理解和掌握除氧器压力控制系统的原理和工作过程具有重要意义。
通过实际操作和数据分析,我们对除氧器压力控制系统有了更深入的了解,也为工业生产过程中的除氧器压力控制提供了一定的参考和借鉴。
过程控制实验报告实验七、单容水箱液位PID控制1、在开环状态下,利用调节器的手操器的手动操作开关把被控制量“手动”调到给定值(一般是将液位高度控制在水箱高度的50%),被调参数基本稳定后将调节器转换为纯比例自动工作状态,让系统投入闭环运行。
以下是调节过程的截图。
2、比例积分PI调节器控制(1)P值不变,不同Ti时的调节Ti较小时:Ti处于中间位置时:Ti较大时:通过观察不同Ti时的曲线可以发现,当P不变时,Ti越小系统消除余差的能力越强,系统越趋向于不稳定,波动就越大。
这是因为PI环节的幅频特性在低频段为斜率-20的一条斜线,在高频段为斜率为0的直线,相频特性为-90度到0度的一条曲线,因此PI控制器度变化很慢的偏差有很强的调节能力,但之后角度也大,所以当P不变时,Ti越小系统消除余差的能力越强,系统越趋向于不稳定。
(2)Ti值不变,不同P时的调节TI不变P大TI不变P中TI不变P小通过观察不同P时的曲线可以发现,当Ti不变时,比例放大倍数Kc从小到大变化,系统将由稳定想振荡发展,系统的稳定性变差,但Kc增大,控制精度提高,余差减小。
实验参考数据:把上水箱液位作为被控变量,上水箱出水阀开度在70%左右;P:旋钮旋至30%左右;I:0.06X10档;给定电压为1.5V实验八、双容水箱液位PID控制1、同实验七一样,在开环状态下,利用调节器的手操器的手动操作开关把被控制量“手动”调到给定值(一般是将液位高度控制在水箱高度的50%),被调参数基本稳定后将调节器转换为纯比例自动工作状态,让系统投入闭环运行。
以下是调节过程的截图。
手动参数:p:大i:0*10 d:0自动参数p:小i:0*10 d:0自动参数p:大i:0*10 d:0P:大I :0.8*10 d:0临界比例度整定:观察实验曲线可知,当比例放大倍数增大时,系统的稳态误差不断减小,响应时间加快,并出现振荡;加入积分作用后虽可消除余差,但加入积分调节可视系统稳定性降低,甚至出现不稳定情况,同时动态响应变慢,调节时间变大。
过程控制实验报告引言过程控制是工程领域中一项重要的技术,其通过监测和控制生产过程中的各种变量,以最大程度地提高生产效率和质量。
本文将介绍一项涉及过程控制的实验,并分析实验结果以及对于工业生产的意义。
实验目的本次实验的目的是通过模拟实际工业生产过程,在实验室环境中对过程控制进行验证和学习。
该实验旨在通过控制设备和监测仪器,了解过程控制在工业生产中的应用,并且掌握相关的理论知识和实际操作经验。
实验设备和材料本次实验使用的设备包括温度传感器、压力传感器、流量计、控制阀和数据采集系统等。
实验所需材料有水、气体和一种特定化学品。
实验步骤1. 实验前准备:清洁实验设备,确保其正常工作状态。
检查传感器和控制阀的准确性和灵敏度。
2. 确定实验参数:选择要监测和控制的变量,比如温度、压力和流量。
根据设计要求设置合理的上限和下限。
3. 运行实验:通过控制阀控制流量和压力,同时记录设备的实际参数。
4. 数据采集:使用数据采集系统实时记录和保存实验过程中的各种参数数据。
5. 数据分析:将实验中收集到的数据进行整理和分析,比较设定值和实际值之间的偏差,并进行统计学处理。
实验结果和讨论根据实验数据的分析,我们可以得出以下结论:1. 过程控制对于维持稳定的生产工艺非常重要。
通过对温度、压力和流量的控制,我们可以确保产品的质量和一致性。
2. 传感器的精确度对过程控制的结果有直接影响。
不准确的传感器可能导致控制误差,从而影响产品的质量。
3. 过程控制需要根据实际情况进行调整和优化。
在实验中,我们可以通过改变控制阀的开度和调整设定值来实现更好的控制效果。
4. 数据采集和分析的重要性不可忽视。
通过收集和分析实验数据,我们可以及时发现问题并采取措施进行调整,从而提高系统的稳定性和可靠性。
总结通过本次实验,我们对过程控制的原理和应用有了更深入的了解。
过程控制在工业生产中起着关键作用,它可以提高生产效率、降低生产成本、改善产品质量,并且减少对环境的影响。
基于PLC的压力过程控制系统设计PLC控制技术已经被广泛地应用于现代工业自动化系统中。
基于PLC的压力过程控制系统是一种被广泛应用的控制系统,用于压力控制和监测。
本文将围绕基于PLC的压力过程控制系统的设计进行讨论,阐述其主要特点、优点和应用实例等。
一、基于PLC的压力控制系统的主要特点1.对压力的控制和监测功能基于PLC的压力控制系统具有良好的压力控制和监测功能,能够监测和控制压力变化,保持压力稳定并符合制定的规范要求。
2. PLC控制的全自动化实现基于PLC的压力控制系统是一种全自动化控制系统,能够对压力实现全自动化的监测和控制,可以有效减少人工操作的参与,提高生产效率,降低生产成本。
3. 快速响应能力和极高的准确性基于PLC的压力控制系统的优势在于其响应速度非常快,因此能够保证在最短的时间内响应并调整压力,并与其他设备、生产和控制系统高度协同工作,精确控制压力范围,避免设备损坏或生产过程中出现的其他问题。
二、基于PLC的压力控制系统的优点1. 可靠性高基于PLC的压力控制系统是一种高可靠性控制系统,因为其不依赖于有人介入的因素,从而不会受到人为因素影响;而且其响应速度非常快,能够即时调整压力控制参数。
2. 操作维护简单基于PLC的压力控制系统操作维护非常简单,因为其可以使用人机界面进行操作,员工学习和启用轻松,且有能完全自障,避免了维护操作人员和整个系统不必要的操作失误,增加了控制压力的可靠性。
3. 制造成本低基于PLC的压力控制系统制造成本非常低,因为其本身以及使用的其他设备和材料都是由传统的电气元件和仪器设备组成的。
4. 兼容性强基于PLC的压力控制系统具有较高兼容性,它可以连接和与其他设备和系统进行互联互通,可以快速地整合合成、控制和管理工业过程,保持生产高效、稳定和安全。
三、基于PLC的压力控制系统的应用实例工业压力控制涉及众多领域和行业,在压缩空气、液体等压力控制的过程中都广泛应用了基于PLC的压力控制系统,具体应用表现出稳定可靠的压力控制效果和极高的操作效率。
实验报告课程名称:__过程工程原理实验(甲)I__ 指导老师:____ 成绩:__________ 实验名称:传热综合实验 实验类型:工程实验 同组学生姓名:_______ 一、实验目的和内容 二、实验装置与流程示意图 三、实验的理论依据(实验原理) 四、注意事项 五、原始记录数据表 六、整理计算数据表 七、数据整理计算过程举例 八、实验结论 九、实验结果的分析和讨论 一、实验目的和内容 1、掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。
2、把测得的数据整理成n BRe =Nu 形势的准数方程,并与教材中相应公式进行比较。
3、了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验装置与流程示意图本实验装置流程如图1由蒸汽发生器、孔板流量变送器、变频器、套管换热器及温度传感器、智能显示仪表等构成。
专业: _________ 姓名:_________ 学号:_________ 日期:_________ 地点: _________图1 竖管对流传热系数测定实验装置流程图表1 竖管对流传热系数测定实验装置流程图符号说明表空气进行换热交换,冷凝水经排出阀排入盛水装置。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。
注意:本实验中,普通和强化实验通过管路上的切换阀门进行切换。
三、实验的理论依据(实验原理)在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
所谓间壁式换热,就是冷、热两种流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面(传热元件)进行热量交换。
本装置主要研究汽—气综合换热,包括普通管和加强管。
其中,水蒸汽和空气通过紫铜管间接换热,空气走紫铜管内,水蒸汽走紫铜管外,采用逆流换热。
所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。
一、实验目的1. 理解过程装备控制的基本原理和概念。
2. 掌握过程装备控制系统的基本组成和结构。
3. 学习过程装备控制系统的调试和优化方法。
4. 培养动手能力和实验技能。
二、实验原理过程装备控制是研究过程工业中使用的装备及其装备的控制。
它涉及到过程工业中的温度、压力、流量、液位等变量的自动化控制。
本实验主要研究一阶、二阶单回路控制系统的结构与组成,以及调节器参数的整定。
三、实验仪器与设备1. 实验台:包含水箱、锅炉、压力容器、手动阀、闸板等。
2. 仪表:智能调节仪、上位机监控软件(MCGS工控组态软件)。
3. 传感器:液位传感器、压力传感器、温度传感器、流量传感器。
4. 控制器:PLC控制器、DCS控制器。
四、实验步骤1. 实验装置连接:按照设计要求完成系统的接线,连接传感器、控制器、执行器等。
2. 系统上电:接通总电源和相关仪表的电源,启动计算机,运行MCGS组态软件,进入本实验系统。
3. 参数整定:选用单回路控制系统所述的某种调节器参数的整定方法整定好调节器的参数。
4. 系统运行:设置系统给定值SV,手动操作调节器的输出,使被控制量接近给定值且基本稳定不变,切换调节器为自动运行。
5. 实验测试:(1)阶跃扰动实验:在系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。
(2)扰动实验:待系统进入稳定后,适量打开另一个阀,以作为系统的扰动,观察并记录在阶跃扰动作用下液位的变化过程。
(3)参数变化实验:适量改变PI的参数,用计算机记录不同参数时系统的响应曲线。
五、实验结果与分析1. 阶跃扰动实验结果:在阶跃扰动作用下,系统输出响应曲线呈现出典型的二阶系统响应特性,经过一定时间后,被控制量逐渐恢复到稳定状态。
2. 扰动实验结果:在扰动作用下,系统输出响应曲线同样呈现出典型的二阶系统响应特性,经过一定时间后,被控制量逐渐恢复到稳定状态。
3. 参数变化实验结果:通过改变PI参数,可以观察到系统响应曲线的变化。
过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。
本系统设计本着培养工程化、参数化、现代化、开放性、综合性人材为出发点。
实验对象采用当今工业现场常用的对象,如水箱、锅炉等。
仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS 工控组态软件。
对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开辟,如PLC 控制、DCS 控制开辟等。
学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。
同时该系统也为教师和研究生提供一个高水平的学习和研究开辟的平台。
本实验装置由过程控制实验对象、智能仪表控制台及上位机PC 三部份组成。
由上、下二个有机玻璃水箱和不锈钢储水箱串接, 4.5 千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。
用,透明度高,有利于学生直接观察液位的变化和记录结果。
水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。
二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。
锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。
做温度定值实验时,可用冷却循环水匡助散热。
加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。
采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。
整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。
为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。
检测上、下二个水箱的液位。
其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5 。
输出信号:4~20mA DC。
LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。
实验一、单容水箱特性的测试一、实验目的1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。
二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机及相关软件3. 万用电表一只三、实验原理图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。
根据物料平衡关系,在平衡状态时Q1-Q2=0 (1)动态时,则有Q1-Q2=dv/dt (2)式中V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与H 的关系为dV=Adh ,即dV/dt=Adh/dt (3)A 为水箱的底面积。
把式(3)代入式(2)得Q1-Q2=Adh/dt (4)基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为Q1-h/RS=Adh/dt即ARsdh/dt+h=KQ1或写作H(s)K/Q1(s)=K/(TS+1) (5)式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。
式(5)就是单容水箱的传递函数。
对上式取拉氏反变换得(6)当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当t=T 时,则有h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2 所示。
当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。
该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。
如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A 点。
过程控制设计实验报告压力控制Company number:【0089WT-8898YT-W8CCB-BUUT-202108】目录第一章过程控制仪表课程设计的目的 (1)设计目的 (1)课程在教学计划中的地位和作用 (1)第二章液位控制系统(实验部分) (2)控制系统工艺流程 (2)控制系统的控制要求 (4)系统的实验调试 (5)第三章水箱压力控制系统设计 (7)引言 (12)系统总体设计 (13)系统软件部分设计 (16)总结 (19)第四章收获、体会 (24)参考文献 (25)第一章过程控制仪表课程设计的目的意义设计目的本课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。
基本要求如下:1. 掌握变送器功能原理,能选择合理的变送器类型型号;2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。
4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、液位)设计其控制系统。
课程设计的基本要求本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。
其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。
课程设计的主要任务是设计工业生产过程经常遇到的压力、流量、液位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。
课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。
基本要求如下:1. 掌握变送器功能原理,能选择合理的变送器类型型号;2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。
4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、液位)设计其控制系统。
第二章液位控制系统(实验部分)控制系统工艺流程液位控制系统装置由三个相同大小的容器、液位检测变送仪表及执行机构组成,配套的仪表屏上安装了配有带连接信号插座孔的整个工艺过程模拟流程图、调节控制仪表、手操器、显示仪表等。
工艺过程模拟流程图如图所示。
图带连接信号插座孔的液位装置工艺模拟流程图上图中,标有字母的方块为各种仪表,○为各仪表输入、输出信号的单线接插件的插座孔(+,-插孔)。
其中:C:控制器(调节器)。
该装置配有三个单回路调节器C1、C2和C3,控制输出信号为4~20mA,每个调节器设有三对插座孔(+,-插孔)。
PV孔为测量值输入,SV孔为外设定输入或阀位反馈信号输入,O孔为调节器输出。
R:记录仪为无纸3通道记录仪,输入信号4~20mA,其中R1孔为1号通道,R2孔为2号通道,R3孔为3号通道。
每个通道有两个插座孔,其中上孔(+)接变送器来的信号,下孔(-)用来转接到其他仪表作为输入信号,注意不能接错。
HT:液位变送器。
液位变送器为LSRY或LSRT,1# ~3#输入量程均为0~100mmH2O,变送输出为4~20mA。
VL:电子式电动调节阀为电子小流量调节阀,电动调节阀输入4~20 mA电流信号,对应阀门输出开度0~100%。
V1~2和I1~2 :两路电压/电流转换器。
其中V1为第1路电压输入信号端,I1 为第1路电流输出信号端,V2为第2路电压输入信号端,I2 为第2路电流输出信号端,O上孔(+)插孔接电压/电流转换器来的正信号,下孔(-)插孔接电压/电流转换器来的负信号,不能接错。
三级串联水箱如图所示,它由三个水箱组成,稳压水由两路经过电动调节阀VL1和VL2以及手动阀V1~V6,分别流入三个水箱。
调节阀VL1和VL2可以一个作为控制回路的执行机构,另一个用于产生扰动信号。
若以进入水箱的水流量作为输入量,水位作为其输出量,则每一个水箱可以看成是一阶惯性环节的被控对象。
当VL1作为控制回路执行机构,通过手动阀V1、V3和V5的打开关闭不同组合使水箱构成不同阶次的被控对象。
选择第3个水箱的液位H3作为被调变量,关闭手动阀V1和V3,只打开V5,则构成一阶被控对象;关闭手动阀V1和V5,只打开V3,使两个水箱串联,则两个惯性环节串联构成二阶被控对象;关闭手动阀V3和V5,只打开手动阀V1,使三个水箱串联,则三个惯性环节串联构成三阶被控对象。
当然,第一个水箱的液位H1和第二个水箱的液位H2也可以作为被调变量,构成二阶或一阶被控对象。
图液位控制系统实验装置原理图控制系统的控制要求1. 单回路液位控制系统单回路液位控制系统是由下列4部分组成的:(1)被控对象—水箱;(2)电子阀;(3)液位变送器;(4)PID智能调节器等组成。
它们连接成控制系统的方框图如图所示。
图单回路液位控制系统方框图图中被控对象是三级串联的水箱,被控制量是水箱的液位Hs,调节参数是流入水箱的水流量Q,水箱液位由液位变送器检测得到液位反馈信号Hf,它和液位设定信号Hs进行比较,得到偏差信号Hi,调节器对输入偏差Hi进行PID运算,输出变化量u控制信号,控制电子调节阀门的阀位,改变调节参数Q,使被调参数H保持在设定值。
其中f为系统扰动信号。
控制要求:稳态误差在2%以内,响应时间少于100s2. 双回路串级控制串级PID控制就是将两个PID控制器串联在一起,控制一个执行阀,实现定值控制。
在大多数控制情况下,主控制器采用比例、积分、微分控制,副控制器采用比例或者比例、积分控制。
图是水箱液位串级控制系统的方框图。
有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值Hs,它的输出U1作为副调节器的给定值,副调节器的输出u2控制执行器,以改变主参数H1。
图串级液位控制系统方框图其中,Hs是主参数的给定值,H1是被控的主参数,H2是副参数,f1是作用在主对象上的扰动,f2是作用在副对象上的扰动。
液位串级控制系统具有两个调节器、两个闭环回路和两个执行对象,由于着眼点不同,使得主调节器和副调节器的控制规律选择不一样。
设置副回路的目的主要是为了提高主变量的控制质量,因此,副回路具有快速抗干扰的功能,起着“粗调”和“先调”的作用,对副变量本身没有严格的要求。
因此,副控制器一般只选择比例或比例积分作用,而主变量是需要严格控制的,主控制器常采用比例积分或者比例积分微分控制器。
控制要求:响应时间和稳态误差都要尽可能的小,动态响应曲线接近理想曲线,超调量σ<20%,调节时间Ts≤100s,余差<5%系统的实验调试(1)按设计好的线路图接线,确定无误后方可合上电源。
(2)按照课本要求设置PID智能控制调节器控制参数(包括二级参数)。
(3)先设定主、副调节器的控制规律、PID参数。
智能调节器1主给定量SV设为100,智能调节器2设定为外给定。
打开手动阀1,回水阀1打开50%,启动水泵1并运行系统。
在上位监控系统观察液位串级过程控制系统的输出特性。
该系统为复杂系统,用工程的方法反复调整PID参数,直到系统动态、静态特性满足要求为止。
其中PID参数调节按照以下原则对于液位系统:P(%)20--80,I(分)1--5参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低(4)记录各个参数主回路 T0 = 3s,P = 50, I = 40,D = 5,Kp = 2,Ki = ,Kd =5/3副回路 T0 = 3s,P = 100, I = 45,D = 3,Kp = 1,Ki =2/15,Kd =最终调节达到的效果:调节时间90s;超调量;余差第三章水箱压力控制系统设计摘要本文设计了以PC机为上位机、AT89C51单片机为下位机,并辅之以传感器、变频器以及相关接口部件的二级集散压力控制系统。
着重介绍了基于TLC2543单片机的数据采集与处理系统。
1、引言本课题来自某管道的流量、液位控制系统,主要研究的是基于单片机的压力参数的控制和调节,即以单片机为调节器,辅助以配套的A/D , D/A转换单元及电路,通过执行数字PID程序实现自动调整。
图1为该压力控制系统简图,这是一个单回路反馈控制系统,控制的任务是使水箱的压力等于某定值,减小或消除来自系统内部或外部扰动的影响。
交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,达到被控压力参数的动态调整。
单回路控制系统由于结构简单、投资小、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛应用。
当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择的不合适,则会使控制质量变坏,达不到预期的效果。
因此,当一个单回路系统搭建好以后,如何整定好控制器的参数是一个很重要的问题。
图1单容水箱压力控制系统简图2、系统总体设计单片机监控系统的作用和功能该系统实现控制功能的主要单元是一个基于单片机的压力控制系统,其结构框图如图2所示。
主要组成部分有:基于扩散硅传感器的压力检测单元、A/D 转换单元、以AT89C51单片机为核心的控制单元以及调节水箱进水量的变频调速单元具体的工作过程是:设定欲稳定的水箱的液位高度,通过压力检测元件获取当前水箱的液位压力值,经模/数转换芯片将模拟信号转换为数字信号,送单片机与设定值进行比较,得到偏差信号,该信号经过调节器做PID 运算后,输给变频器一个转速控制信号,通过数/模转换器将变频器调速信号由数字信号转换成模拟信号,由于变频器的输出频率与输入电压成比例,可变的输出频率调整电动机和水泵的转速,从而调节流量,达到调节水箱压力的目的。