正余弦定理三角形形状判断
- 格式:doc
- 大小:142.91 KB
- 文档页数:5
正、余弦定理与三角形形状判断附答案一、使用正弦定理判断三角形性质的基本思路是将条件转化为边或角之间的关系,然后进一步判断。
二、使用余弦定理判断三角形性质的基本思路是关注特殊角的余弦值,将其转化为边与边之间的关系。
三、使用正弦和余弦定理综合判断三角形性质的基本思路是尽量统一边或角之间的关系,使得未知量的个数减少,从而可以得出结论。
常用的公式包括sinA=sin(π-A)=sin(B+C),以及正弦值的比可以直接化为边的比值。
1、已知在△ABC中,b=c•cosA,可以通过正弦定理得到a²+b²=c²,因此可以判断△ABC为直角三角形。
2、已知在△ABC中,角A、B均为锐角,且cosA>sinB,可以通过余弦定理得到cosA>cos(π/2-B),进一步得到A<π/2-B,因此可以判断△ABC为钝角三角形。
3、已知在△ABC中,b=a•sinC,c=a•cosB,可以通过正弦和余弦定理得到a²+b²=c²和b=c,因此可以判断△ABC为等腰直角三角形。
4、已知在△ABC中,2sinA•cosB=sinC,可以通过正弦和余弦定理得到2a•cosB=c和a=b,因此可以判断△ABC为等腰三角形。
5、已知在△ABC中,sinA=2sinB•cosC,sinA=sinB+sinC,可以通过正弦定理得到a=b+c/2,进一步得到a=2bc/(b²+c²),因此可以判断△ABC为等腰直角三角形。
6、已知在△ABC中,(a+b+c)(b+c-a)=3bc,sinA=2sinB•cosC,可以通过正弦和余弦定理得到a=b+c和a=b,因此可以判断△ABC为等边三角形。
已知在三角形ABC中,角B=60度,且b=ac。
根据余弦定理,cosB=b^2/(2ac),化简得到ac=a^2+c^2-b^2=a^2+c^2-ac,进一步化简得到(a-c)^2=0,因此a=c。
1.三角形的有关性质(1)在△ABC 中,内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况;(2)a +b>c ,a -b<c ;(3)在三角形中有:sin 2A =sin 2B ⇔A =B 或A+B =π2⇔三角形为等腰或直角三角形;cos2A=cos2B ⇔A =B ⇔三角形为等腰三角形; tan2A=tan2B ⇔A =B ⇔三角形为等腰三角形; (4) sin(A +B)=sin(π-C)=sin C ,cos(A +B)=cos(π-C)=-cos C ,tan(A +B)=tan(π-C)=-tan C ,sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2,cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. (5) 三角形中的边角关系:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大, 即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B.2.3.(1) ①S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别是边a ,b ,c 上的高);②S =12absin C =12bcsin A =12acsin B, 一般是已知哪一个角就使用哪一个公式;③S △ABC =s (s -a )(s -b )(s -c )(海伦公式). ④S △ABC =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径, R 是△ABC 外接圆半径),并可由此计算R 、r. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 4.解三角形常见问题(1)已知一边和两角解三角形; (2)已知两边及其中一边的对角解三角形; (3)已知两边及其夹角解三角形;(4)已知三边解三角形;(5)三角形形状的判定; (6)三角形的面积问题; (7)正弦、余弦定理的综合应用. 5.解三角形应注意的问题(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解. 6.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.7.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.用正弦定理有解的可分为以下情况,在△ABC 中,已知a ,b 和角A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =bsin A bsin A <a <ba ≥b a >b a ≤b 解的个数一解两解 一解一解无解8.利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角; 利用余弦定理判定三角形的形状?(以角A 为例)∵cos A 与b 2+c 2-a 2同号,∴当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.9.在解有关三角形的题目时,(1)要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制. 10.判定三角形形状的两种常用途径①通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断; ②利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出三条边之间的关系进行判断. 探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c.解 (1)由正弦定理a sin A =b sin B 得,sin A =32.∵a>b ,∴A>B ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsin Csin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.综上,A =60°,C =75°,c =6+22,或A =120°,C =15°,c =6-22. (2)∵B =60°,C =75°,∴A =45°.由正弦定理a sin A =b sin B =csin C,得b =a·sin B sin A =46,c =a·sin C sin A=43+4.∴b =46,c =43+4.1.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c.若b =2asin B ,则角A 的大小为________.2. (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.已知8b =5c ,C =2B ,则cos C 等于 ( )A.725B.-725C.±725D.2425(2) (2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.3.已知在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tanC =aba 2+b 2-c 2,则角C 为( )A.π6B.π4C.π3D.3π44.已知△ABC 的三边长为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A =( )A.π4B.π6C.2π3D.π125.(1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 6.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A.4 3 B.23 C. 3 D.327.(2013·辽宁)在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C +csin Bcos A =12b,且a >b,则∠B 等于 ( )A.π6B.π3C.2π3D.5π61.解析:由正弦定理得sin B =2sin Asin B ,∵sin B ≠0,∴sin A =12,∴A =30°或A =150°.2.解析 (1)由正弦定理b sin B =c sin C ,将8b =5c 及C =2B 代入得b sin B =85b sin 2B ,化简得1sin B =852sin Bcos B,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =asin B b =12,又a<b ,∴A<B ,∴A =π6.3.解析:由已知及余弦定理,得sinC cosC =ab 2abcosC ,所以sinC =12.因为C 为锐角,所以C =π6.4.解析:因为S △ABC =12bcsinA =14(b 2+c 2-a 2),所以sinA =b 2+c 2-a 22bc =cosA ,故A =π4.5.解析 (1)∵在△ABC 中,tan A =13,C =150°,∴A 为锐角,∴sin A =110.又∵BC =1.∴根据正弦定理得AB =BC·sin C sin A =102.(2)由b>a ,得B>A ,由a sin A =b sin B ,得sin B =bsin A a =25650×22=32,∵0°<B<180° ∴B =60°或B =120°.6.解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.7.解析 由条件得a b sin Bcos C +c b sin Bcos A =12,依正弦定理,得sin Acos C +sin Ccos A =12,∴sin(A +C)=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.【例2】不解三角形,判断下列三角形解的个数(1)5a =,4b =,120A =; (2)5a =,10b =,150A = ;(3)9a =,10b =,60A =; (4)18a =,24b =,44A =.解:(1)a b >,且A 为钝角,∴ ABC ∆有唯一解;(2)b a >,且A 为钝角,∴ ABC ∆有无解;(3)3sin 10532b A =⨯=,∴ sin b A a b <<,∴ ABC ∆有两解; (4)sin 24sin 4424sin 45122b A =<=,又1221824<<,故有两解.方法总结:已知三角形的两边和其中一边的对角,由正弦定理可以求出另一边的对角的正弦值,从而解出三角形,但这个三角形不一定有解.这类问题可以通过计算来判断,也可以通过画图用几何方法来判断.讨论时应注意两点: 一是其正弦值与“1”的大小关系,从而决定符合正弦值的角是否存在; 二是由此确定的角()0180有几个,它与已知角的和是否小于180.1.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A.1个 B.2个 C.3个 D.0个2.在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于 ( ) A.30° B.60° C.120° D.30°或150°3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A.有一解 B.有两解C.无解D.有解但解的个数不确定4.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( ) A. 23 B. 2 C.25.在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于( ) A.12π B.6π C.4π D.3π6.若==,则△ABC 是( )A.等边三角形B.直角三角形,且有一个角是30°C.等腰直角三角形D.等腰三角形,且有一个角是30°7.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( ) A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π4,3π4 D.⎝⎛⎭⎫π4,π3 8.在△ABC 中, 内角A, B, C 所对的边分别是a, b, c. 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (1) 求b 的值; (2) 求sin 23B π⎛⎫- ⎪⎝⎭的值.1.解析:选B ∵asin B =102,∴asin B<b =3<a =5,∴符合条件的三角形有2个.2.解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB<BC ,∴∠C<∠A ,故∠C =30°.3.解析:选C 由正弦定理得b sin B =c sin C ,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.【解析】选B.由A B 2=,则A B 2sin sin =,由正弦定理知Bb Aasin sin =,即A A A B A cos sin 232sin 3sin 3sin 1===, 所以cosA=23,所以A=6π,32π==A B ,所以2ππ=--=A B C ,所以431222=+=+=b a c ,c=2.5.【解题指南】本题先利用正弦定理BbA a sin sin =化简条件等式,注意条件“锐角三角形” . 【解析】选D.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. 6.解析:在△ABC 中,将a=2Rsin A,b=2Rsin B,c=2Rsin C,代入==得==,所以==1.所以tan B=tan C=1,所以B=C=45°.所以△ABC 是等腰直角三角形.故选C.7.[解析] 由条件知bsinA<a ,即22sinA<2,∴sinA<22,∵a<b ,∴A<B ,∴A 为锐角,∴0<A<π4.8.【解题指南】(1)根据正弦定理及sin 3sin b A c B =, a = 3求出a,c 的值,再由余弦定理求b 的值; (2)根据同角三角函数的基本关系式及二倍角公式求出cos 2B ,sin 2B ,再由两角差的正弦公式求值.【解析】(1) 在△ABC 中,由正弦定理得sin sin a b AB=,即sin sin b A a B =,又由sin 3sin b A c B =,可得,3a c =,又 a =3,故c=1,由2222cos ,b a c ac B =+-且2cos ,3B =可得 6.b =(2)由2cos 3B =,得5sin 3B =,进而得到21cos 22cos 1,9B B =-=-45sin 22sin cos .9B B B ==所以453sin 2sin 2cos cos 2sin .33318B B B +⎛⎫-=-= ⎪⎝⎭πππ 探究点二 余弦定理的应用例1.已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac.(1)求角B 的大小;(2)若c =3a,求tan A 的值.解(1)∵a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12.∵0<B<π,∴B =π3. (2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a. 由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A<π,∴sin A =1-cos 2A =2114,∴tan A =sin A cos A =35. 方法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a.由正弦定理,得sin B =7sin A.由(1)知,B =π3,∴sin A =2114.又b =7a>a ,∴B>A ,∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.方法三 ∵c =3a ,由正弦定理,得sin C =3sin A.∵B =π3,∴C =π-(A +B)=2π3-A ,∴sin(2π3-A)=3sin A ,∴sin 2π3cos A -cos 2π3sin A =3sin A ,∴32cos A +12sin A =3sin A ,∴5sin A =3cos A ,∴tan A =sin A cos A =35.1.(2013年高考北京卷)在△ABC 中,若a=2,b+c=7,cos B=-,则b= .2.已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是 .3.设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,则3sinA=5sinB,则角C= ( ) A.π3B.2π3C.3π4D.5π64.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a. 5.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b)2-c 2=4,且C =60°,则ab 的值为( ) A.43 B.8-43 C.1 D.236.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154 B.34C.31516D.11167.在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sinA -sinB)sinB ,则角C 等于( ) A.π6 B.π3 C.5π6 D.2π38. (2013·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若sin 2B +sin 2C -sin 2A +sinBsinC =0,则tanA 的值是( ) A.33 B .-33C. 3 D .- 3 9.(2013·安徽高考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c.若b +c =2a ,3sin A =5sin B ,则角C =________. 10.已知△ABC 中,AB =3,BC =1,sinC =3cosC ,则△ABC 的面积为( ) A.32 B.52 C. 75 D.1141.解析:在△ABC 中,由b 2=a 2+c 2-2accos B 及b+c=7知,b 2=4+(7-b)2-2×2×(7-b)×.整理得15b-60=0,∴b=4.2.解π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a3.解由题设条件可得5233573⎧=⎪+=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩a b b c a a b c b ,由余弦定理得222222257()()133cos 52223+-+-∠===-⨯b b b a b c C ab b,所以2π∠C =3。
正、余弦定理之判定三角形的形状一、运用正弦定理进行判断基本思路:运用正弦定理将条件全部转化为边(或角)之间的关系,进一步判断。
二、运用余弦定理进行判断基本思路:关注特殊角余弦值,往往向边与边之间的关系进行转化。
三、运用正、余弦定理综合判断基本思路:尽量统一边(或角)之间的关系,使3个未知量减少为2个未知量之间的关系往往可以导出结果;常用到sinA=sin(π-A)=sin(B+C);正弦值的比可以直接化为边的比值。
1、已知在△ABC 中,A c b cos ∙=,试判断△ABC 的性状。
2、已知在△ABC 中,角A 、B 均为锐角,且B A sin cos >,试判断△ABC 的形状。
3、已知在△ABC 中,C a b sin ∙=,且)2sin(B a c -∙=π,试判断△ABC 的形状。
4、已知在△ABC 中,C B A sin cos sin 2=∙,试判断△ABC 的性状。
5、已知在△ABC 中,C B A cos sin 2sin ∙=,且C B A 222sin sin sin +=,试判断△ABC 的性状。
6、已知在△ABC 中,3bc a)-c c)(b b (a =+++,且cosC 2sinB sinA ∙=,试判断△ABC 的性状。
7、已知在△ABC 中,︒=∠60B ,且ac b =2,试判断△ABC 的性状。
8、已知在△ABC 中,︒=∠60B ,且c a b +=2,试判断△ABC 的性状。
9、已知在△ABC 中,c C b B a A cos cos sin ==,试判断△ABC 的性状。
10、已知在△ABC 中,)sin()()sin()(2222B A b a B A b a -∙+=+∙-,试判断△ABC 的性状。
11、在△ABC 中,B a C B A c b a sin 3)sin sin )(sin (∙=-+++,且B a A b cos cos ∙=∙,试判断△ABC 的性状。
利用正、余弦定理判断三角形的形状(1)在ABC △中,分别为角 的对边),则ABC △的形状为A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形(2)已知ABC △的三个内角满足sin sin sin 511:13A B C =:::,则ABC △是 A .等腰三角形 B .锐角三角形 C .直角三角形D .钝角三角形(3)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,若2222b c a bc +=+,且cos 0C =,则△ABC 是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【参考答案】(1)A ;(2)D ;(3)D . 【试题解析】(1)∵2cos,22B a c c +=∴1cos ,22B a c c ++=∴cos ,a B c= ∴由余弦定理,得2222a c b aac c+-=,∴22222a c b a +-=,∴222.a b c += ∴ABC △为直角三角形.故选A.(2)由正弦定理可得::5:11:13a b c =,令5,11,13a t b t c t ===,则c 为最长的边,故角C 最大,由余弦定理可得22223cos 02110a b c C ab +-==-<,所以角C 为钝角,故ABC △是钝角三角形.故选D .(3)由余弦定理,可得222cos 222b c a A bc bc +-===,[来源:学,科,网] 所以45A =︒,又cos 0C =,所以90C =︒,所以△ABC 是等腰直角三角形.[来源:学&科&网Z&X&X&K] 故选D .【解题必备】判断三角形的形状有以下几种思路: ①转化为三角形的边来判断;②转化为角的三角函数(值)来判断. 可简记为“化角为边”、“化边为角”.1.在ABC △中, , ,则ABC △一定是 A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形2.在ABC △中,cos cos a bB A=,则ABC △一定是 A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形3.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos aB c=,则此三角形的形状为 A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰或直角三角形4.已知在ABC △中, ,则ABC △的形状是 A .锐角三角形 B .钝角三角形 C .等腰三角形 D .直角三角形1.【答案】D【解析】由余弦定理可知 , 而 , ,所以 ,[来源:学#科#网Z#X#X#K] 而 ,所以ABC △一定是等边三角形. 故选D . 2.【答案】D【解析】由正弦定理可知:sin sin a bA B=,[来源:学*科*网] 而已知cos cos a b B A =,所以cos sin cos sin B AA B=,[来源:学_科_网] 即sin cos sin cos sin 2sin 2A A B B A B ⋅=⋅⇒=,而,(0,π),A B ∈即2,2(0,2π)A B ∈, 所以22A B =或22πA B +=, 即A B =或π2A B +=, 所以ABC △是等腰三角形或直角三角形.故选D 3.【答案】B【解析】因为2cos a B c=,所以由正弦定理可得sin 2cos sin AB C =,即2sin cos sin C B A =,所以2sin cos sin cos cos sin C B B C B C =+, 因此sin cos sin cos C B B C =,所以tan tan C B =,所以B C =,即ABC △为等腰三角形.故选B. 4.【答案】D【解析】根据正弦定理,原式可变形为: , 所以,整理得 ,,即ABC △是直角三角形.故选D .。
正弦余弦定理判断三角形形状专题三角形是平面几何中最基本的图形之一,根据三个角或边的关系,我们可以判断三角形的形状。
在三角形的形状判断中,正弦余弦定理是一种常用的工具。
本文将以正弦余弦定理为基础,探讨如何判断三角形的形状,包括等边三角形、等腰三角形和直角三角形。
一、正弦余弦定理的基本概念在介绍如何判断三角形的形状之前,我们首先了解一下正弦余弦定理的基本概念。
正弦定理表达了三角形的边与其对应的角之间的关系,而余弦定理则描述了三角形的两条边和夹角的关系。
1. 正弦定理正弦定理可以表示为:在任意三角形ABC中,三边a、b、c与其对应的角A、B、C之间有以下关系:\[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]2. 余弦定理余弦定理可以表示为:在任意三角形ABC中,三边a、b、c与其对应的角A、B、C之间有以下关系:\[ c^2 = a^2 + b^2 - 2ab\cos C \]二、判断等边三角形等边三角形是指三条边的长度相等的三角形。
根据正弦余弦定理,我们可以得出以下结论:如果在三角形ABC中,有a=b=c,则该三角形为等边三角形。
三、判断等腰三角形等腰三角形是指两条边的长度相等的三角形。
根据正弦余弦定理,我们可以得出以下结论:1. 如果在三角形ABC中,有a=b,则该三角形为等腰三角形。
2. 如果在三角形ABC中,有b=c,则该三角形为等腰三角形。
3. 如果在三角形ABC中,有a=c,则该三角形为等腰三角形。
四、判断直角三角形直角三角形是指其中一个角为90度的三角形。
根据正弦余弦定理,我们可以得出以下结论:1. 如果在三角形ABC中,有$\sin A = 0$ 或 $\sin B = 0$ 或 $\sin C = 0$,则该三角形为直角三角形。
2. 如果在三角形ABC中,有$\cos A = 0$ 或 $\cos B = 0$ 或 $\cos C= 0$,则该三角形为直角三角形。
例1:已知△ABC 中,bsinB=csinC,且C B A 222sin sin sin +=,试判断三角形的形状.例2:在△ABC 中,若B= 60,2b=a+c,试判断△ABC 的形状.例3:在△ABC 中,已知22tan tan b a B A =,试判断△ABC 的形状. 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状;例6 例7的形例8 ) 例9△1、状。
所以三角形为锐角三角形。
3、在△ABC 中,已知sin sin B C =cos 22A试判断此三角形的类型.故此三角形是等腰三角形.4、(06陕西卷) 已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC→|AC →| =12,则△ABC 为( )A 、三边均不相等的三角形B 、直角三角形C 、等腰非等边三角形D 、等边三角形.为锐角判断此三角形的形状。
故此三角形是等腰直角三角形。
静安区校级模拟)若,则sinA+cosA=5.(2014春?禅城区期末)已知:在△ABC 中,,则此三角形为( ) A .直角三角形 B . 等腰直角三角形 C . 等腰三角形 D . 等腰或直角三角形 6.已知△ABC 满足,则△ABC 是( )7.(2014?马鞍山二模)已知非零向量与满足且=. 则△ABC为( )9.(2014?黄冈模拟)已知在△ABC中,向量与满足(+)?=0,且?=,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形10.(2014?奉贤区二模)三角形ABC中,设=,=,若?(+)<0,则三角形ABC的形状是().已知向量,则且,则成等差数列,,则,若金台区校级期末)双曲线和椭圆19.(2014?红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件20.(2014秋?德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形21.在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为.22.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.23.已知△ABC中,AB=,BC=1,tanC=,则AC等于.24.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.25.在△ABC中,已知c=2acosB,则△ABC的形状为.26.(2014春?常熟市校级期中)在△ABC中,若,则△ABC的形状是.27.(2014春?石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).28.(2013春?遵义期中)△ABC中,b=a,B=2A,则△ABC为三角形.29.(2013秋?沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为(填锐角三角形、直角三角形、钝角三角形.)30.(2014春?宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为三角形.,则利用平方差公式,由,推出解:由,得:,∴故,从而得到cosC=﹣﹣﹣<,=,即A=1+2sinAcosA=sinAcosA=(﹣﹣(,)>5.(2014春?禅城区期末)已知:在△ABC中,,则此三角形为()满足,则根据向量的加减运算法则,将已知化简得=+?,得?中,,∴=(﹣)+?=?+?即=+?,得?=0∴⊥7.(2014?马鞍山二模)已知非零向量与满足且=.则△ABC 为(),判断三角形是等腰三角形,通过求出等腰三角形的顶角,然后解:因为又因为abcosC==﹣<9.(2014?黄冈模拟)已知在△ABC中,向量与满足(+)?=0,且?=,则△ABC=0解:设是菱形,|?=||?|BAC=,,∴∠中,设=,,若(+依题意,可知+;利用向量的数量积即可判断三角形解:∵=,=∴=+=∵()<∴?<即||?||?cos||?|本题考查三角形的形状判断,=的应用是关键,考查转化思想与运算能力,属于中档题.11.(2015?温江区校级模拟)已知向量,则由数量积的坐标运算可得=解:由题意可得:(,()>又向量的夹角且,则2==,cosA=,又根据余弦定理得:cosA=∴=,13.(2014?咸阳三模)△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()+=2.又∵c+a+b=转化为以与解:∵=﹣,=﹣,c+a+b=c a(﹣c﹣(==(+c+b﹣((+=﹣(变形为:,即sin2B=sin2A,所以,所以cosA==,金台区校级期末)双曲线和椭圆双曲线和椭圆=1,“解:∵||?|“sin2A=A+B=cosC=>AB=,可知=2中,若中,利用正弦定理将=,=,?=.cosC=b=ab=a,B=2AsinB=sinAsin2A=sinAcosA=,A=,则B=,C=,为钝角三cosC=<。
如何正确判断三角形的形状正(余)弦定理是三角函数知识的重要组成部分,它揭示了三角形的边、角关系,是高考的热点之一。
利用正、余弦定理判断三角形的形状,是正、余弦定理应用的重要方面。
1 利用正弦定理判断三角形的形状1.1 在△ABC中,若a2tanB=b2tanA,判断△ABC的形状。
分析:正确使用正弦定理,将已知条件中的边化角后判断△ABC的形状。
解:在△ABC中,有正弦定理:===2Ra=2RsinA,b=2RsinB,∵a2tanB=b2tanA∴(2RsinA)2· =(2RsinB)2· 2sinA2cosA=2sinBcosBsin2A=sin2B,因为A、B为三角形的内角,∴2A=2B或2A=π-2BA=B或A+B=,所以△ABC为等腰三角形或直角三角形。
点评:本题利用正弦定理将已知条件转化成角的关系,利用诱导公式对条件进行化简、整理判断三角形的形状,同时注意角的关系有两种情况。
1.2 已知△ABC中,设=,=,=,则·=·=·判断△ABC的形状。
分析:要判断△ABC的形状,只需确定△ABC的三边或三角即可,此题解题的关键是建立向量的数量积与△ABC的边角关系。
解:如图所示:·=·得∵| |·||·cos(π-C)=| |·| |·cos(π-A), ∴| |·cosC=| |·cosA由正弦定理:a:c=sinA:sinC得sinAcosC=sinCcosA∴sin(A-C)=0,又∵-π<A-C<π ∴A-C=0即A=C,同理由·=·可得B=C,∴A=B=C即△ABC为正三角形。
点评:由===2Ra:b:c=sinA:sinB:sinC可以看出在题目中出现边的齐次式之比时,可以利用正弦定理将相应的边化为角。
2 利用余弦定理判断三角形的形状2.1 在△ABC中,若cos2=,试判断△ABC的形状。
第6讲 正弦定理和余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆的半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析因为a=4,b=5,c=6,所以cos A=b2+c2-a22bc=52+62-422×5×6=34,所以sin2Asin C=2sin A cos Asin C=2a cos Ac=2×4×346=1.题型一利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________;(2)(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b =6,c=3,则A=________.答案(1)1 (2)75°解析(1)因为sin B=12且B∈(0,π),所以B=π6或B=5π6,又C=π6,所以B=π6,A=π-B-C=2π3,又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.(2) 如图,由正弦定理,得3sin60°=6sin B,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析因为a=62b,A=2B,所以由正弦定理可得62bsin2B=bsin B,所以622sin B cos B=1sin B,所以cos B=64.2.(2018·和平区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=3 bc,且sin C=23sin B,则角A的大小为________.答案π6解析由sin C=23·sin B得c=23b.∴a2-b2=3bc=3·23b2,即a2=7b2.则cos A=b2+c2-a22bc=b2+12b2-7b243b2=32.又A∈(0,π).∴A=π6.3.如图,在△ABC中,B=45°,D是BC边上一点,AD=5,AC=7,DC=3,则AB=________.答案562解析在△ACD中,由余弦定理可得cos C=49+9-252×7×3=1114,则sin C=5314.在△ABC中,由正弦定理可得ABsin C=ACsin B,则AB=AC sin Csin B=7×531422=562.题型二利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=5t2+11t 2-13t 22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2) C.⎣⎢⎡⎭⎪⎫12,2D .(1,2]答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即 2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且 (a +b )2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得11 2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3.方法指导 1.两种主要方法1全部化为角的关系,用三角恒等变换及三角函数的性质解答.2全部化为边的关系,用因式分解、配方等方法变形.2.基本原则1若出现边的一次式一般采用正弦定理;2若出现边的二次式一般采用余弦定理.。
第6讲正弦定理和余弦定理[考纲]掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos Ab2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R ,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin Ccos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.(3)S =12r (a +b +c )(r 为△ABC 内切圆半径).辨 析 感 悟1.三角形中关系的判断(1)在△ABC 中,sin A >sin B 的充分不必要条件是A >B . ( ) (2)(教材练习改编)在△ABC 中,a =3,b =2,B =45°,则A =60°或120°.( )2.解三角形(3)在△ABC 中,a =3,b =5,sin A =13,则sin B =59. ( ) (4)(教材习题改编)在△ABC 中,a =5,c =4,cos A =916,则b =6. ( )3.三角形形状的判断(5)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形. ( ) (6)在△ABC 中,若b 2+c 2>a 2,则此三角形是锐角三角形. ( )[感悟·提升]1.一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ,如(1).2.判断三角形形状的两种途径 一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.考点一 利用正弦、余弦定理解三角形【例1】 (1)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于 ( ). A.π3 B.π4 C.π6 D.π12(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =42,B =45°,则sin C =______.规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【训练1】(1)在△ABC中,a=23,c=22,A=60°,则C=().A.30°B.45°C.45°或135°D.60°(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A =().A.30°B.60°C.120°D.150°考点二判断三角形的形状【例2】在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b-c)sin B+(2c-b)sinC.(1)求角A的大小;(2)若sin B+sin C=3,试判断△ABC的形状.规律方法解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A,B,C的范围对三角函数值的影响.【训练2】(1)在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC 是().A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,则△ABC的形状是().A.锐角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形考点三与三角形面积有关的问题【例3】△ABC的内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.规律方法在解决三角形问题中,面积公式S=12ab sin C=12bc sin A=12ac sin B最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.【训练3】在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a2=b2+c2-2bc cos A可以转化为sin2A=sin2B+sin2C-2sin B sin C cos A,利用这些变形可进行等式的化简与证明.解三角形问题【典例】(12分)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=79.(1)求a,c的值;(2)求sin(A-B)的值.[反思感悟] (1)在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.(2)在本题第(2)问中,不会判断角A为锐角,易造成求错cos A,导致sin(A-B)的结果出错.【自主体验】已知a,b,c分别为△ABC三个内角A,B,C的对边,c=3a sin C-c cos A.(1)求A;(2)若a=2,△ABC的面积为3,求b,c.基础巩固题组一、选择题1.在△ABC中,若a2-c2+b2=3ab,则C=().A.30°B.45°C.60°D.120°2.在△ABC中,A=60°,AB=2,且△ABC的面积为32,则BC的长为().A.32 B.3 C.2 3 D.23.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC的面积为().A.23+2 B.3+1 C.23-2 D.3-14.△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a=1,b=3,则c=().A.2 3 B.2 C. 2 D.15.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为().A.直角三角形B.锐角三角形C.钝角三角形D.不确定二、填空题6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=2,sin B+cos B=2,则角A的大小为________.7.在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=3ac,则角B的值为________.8.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=14,则sin B等于________.三、解答题9.在△ABC中,a,b,c分别是角A,B,C所对的边,且a=12c+b cos C.(1)求角B的大小;(2)若S△ABC=3,b=13,求a+c的值.10.在△ABC中,a=3,b=26,∠B=2∠A.(1)求cos A的值;(2)求c的值.能力提升题组一、选择题1.在锐角△ABC中,若BC=2,sin A=223,则AB→·AC→的最大值为().A.13 B.45C.1 D.32.在△ABC中,三边长a,b,c满足a3+b3=c3,那么△ABC的形状为().A.锐角三角形B.钝角三角形C.直角三角形D.以上均有可能二、填空题3.在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=13,则sin∠BAC=________.三、解答题4.在△ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足b cos C =(3a -c )cos B . (1)求cos B ;(2)若BC →·BA →=4,b =42,求边a ,c 的值.。
正余弦定理与解三角形(一).三角形中的各种关系设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . 1.角与角关系:A+B+C = π,由A =π-(B +C )可得:1)sinA =sin (B +C ),cosA =-cos (B +C ). 2)222C B A+-=π.有:2cos2sinC B A +=,2sin2cosC B A +=.2.边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b <c ,b -c < a ,c -a > b .3.边与角关系: 1)正弦定理R Cc Bb Aa 2sin sin sin ===变式有:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===; ③CB A c b a Cc Bb Aa sin sin sin sin sin sin ++++===;④C B A c b a sin :sin :sin ::=。
正弦定理可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2)余弦定理 c 2 = a 2+b 2-2bccosC ,b 2 = a 2+c 2-2accosB ,a 2 = b 2+c 2-2bccosA .常选用余弦定理鉴定三角形的形状.注:余弦定理是勾股定理的推广. 变式有:cosA=bcacb2222-+;cosB=cabac2222-+;cosC=abcba2222-+.余弦定理的应用:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.(3)已知三角形两边及其一边对角,可求其它的角和第三条边。
(见解三角形公式)判定定理(角边判别法): 1. 当a>bsinA 时①当b>a 且cosA>0(即A 为锐角)时,则有两解;②当b>a 且cosA<=0(即A 为直角或钝角)时,则有零解(即无解); ③当b=a 且cosA>0(即A 为锐角)时,则有一解;④当b=a 且cosA<=0(即A 为直角或钝角)时,则有零解(即无解); ⑤当b<a 时,则有一解2.当a=bsinA 时①当cosA>0(即A 为锐角)时,则有一解;②当cosA<=0(即A 为直角或钝角)时,则有零解(即无解); 3.当a<bsinA 时,则有零解(即无解);3)射影定理: a =b ·cosC +c ·cosB ,b =a ·cosC +c ·cosA ,c =a ·cosB +c ·cosA . (二)面积公式(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sinsin 222S ab C bc A ca B ===. (3)O A B S ∆=(三)已知a, b 和A, 用正弦定理求B 时的各种情况: ⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a题型练习例1 在△ABC 中,已知a =3,b =2,B =45°,求角A 、C 及边c .解:A 1=60° C 1=75° c 1=226+A 2=120° C 2=15° c 2=226-变式训练1 (1)A B C ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .14B .34C 4D 3解:B 提示:利用余弦定理(2)在△ABC 中,由已知条件解三角形,其中有两解的是 ( )A.0020,45,80b A C === B.030,28,60a c B === C.014,16,45a b A === D.012,15,120a c A ===解:C 提示:在斜三角形中,用正弦定理求角时,若已知小角求大角,则有两解;若已知大角求小角,则只有一解 (3)在△ABC 中,已知5cos 13A =,3sin 5B =,则cos C 的值为( )A1665B5665C 1665或5665D 1665-解:A 提示:在△ABC 中,由sin sin A B A B >⇔> 知角B 为锐角(4)若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .解:02a << 提示:由222(1)(2)3(1)(2)(3)a a a a a a +++>+⎧⎨+++<+⎩可得(5)在△ABC 中,060,1,sin sin sin A B C a b c A b S A B C++∠===++ 则= .解:34c =,由余弦定理可求得a =(6)在A B C ∆中,451a ,b c ,tan A tan B tan A tan B )=+=+=-,求sin A .7(7)已知在B b a C A c ABC 和求中,,,30,45,100===∆ (8)在C A a c B b ABC ,,1,60,30和求中,===∆ (9) C B b a A c ABC ,,2,45,60和求中,===∆例2 在A B C ∆中,已知22a tan Bb tan A =,试判断A B C ∆的形状.答案:等腰三角形或直角三角形变式训练2 在A B C ∆中,若20sin A sin B cos C -=,则A B C ∆必定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形 变式训练3 在A B C ∆中,若22a(b cos B c cos C )(b c )cos A -=-,试判断A B C ∆的形状。
三角形的余弦定理与正弦定理三角形是几何学中最基本的形状之一。
在研究三角形的性质和特征时,余弦定理和正弦定理起到了重要的作用。
它们是利用三角形的边长和角度之间的关系来解决各种三角形问题的工具。
本文将详细介绍三角形的余弦定理与正弦定理的定义、公式推导和应用。
一、余弦定理余弦定理是描述三角形边长与角度关系的定理。
对于任意三角形ABC,假设a、b、c分别表示BC、AC和AB的边长,而∠A、∠B和∠C分别表示三角形的内角A、B和C,则余弦定理可以表示为以下公式:c² = a² + b² - 2ab·cosCb² = a² + c² - 2ac·cosBa² = b² + c² - 2bc·cosA其中,cosA、cosB和cosC分别表示角A、B和C的余弦值。
推导过程:我们可以通过向三角形ABC引入高,再利用勾股定理和直角三角形的性质推导余弦定理。
设三角形ABC的高为h,起点为顶点A,终点为D,连接BD和CD,如图所示。
[图示]由于三角形ADC为直角三角形,根据勾股定理,我们可以得到:AC² = AD² + CD² ------ (1)在三角形ABD中,我们可以应用勾股定理得到:AB² = AD² + BD² ------ (2)注意到BD = BC - CD,将其代入式(2),我们可以得到:AB² = AD² + (BC - CD)²= AD² + BC² + CD² - 2BC·CD ------ (3)由于三角形ABC为平面图形,AD ⊥ BC,所以∠ADC = ∠C。
根据余弦定理,我们可以得到:CD² = AC² + AD² - 2AC·AD·cosC ------ (4)将式(1)代入式(4),我们可以得到:CD² = (AD² + CD²) + AD² - 2√(AD² + CD²)√AD·cosC= 2AD² + CD² - 2AD·CD·cosC将式(4)代入式(3),我们可以得到:AB² = 2AD² + BC² - 2BC·CD + 2AD² - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2AC·AD·cosC由于三角形为平面图形,所以CD = BC·cosA,代入上式得:AB² = 4AD² + BC² - 2BC²·cosA - 2AC·AD·cosC= 4AD² + BC² - 2BC²·cosA - 2AC²·cosC= 4AD² + BC² - 2AC²·cosC - 2BC²·cosA由几何性质可知,4AD² = c²,所以:c² = a² + b² - 2ab·cosC ------ (5)同理,可以推导出余弦定理的其他两个公式。
正余弦定理的专项题型题型1:利用正余弦定理判断三角形形状两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论. 例1.在中,a,b,c 分别表示三个内角A,B,C的对边,如果2222()sin()()sin()a b A B a b A B +-=-+ ,判断三角形的形状.例2.在△ABC 中,已知22tan tan a B b A =,试判断此三角形的形状。
【同类型强化】1.在∆ABC 中,若B b A a cos cos =,试判断∆ABC 的形状【同类型强化】2.(2010上海文数)若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC∆( )A .一定是锐角三角形.B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形【同类型强化】3.△ABC 中,2sinAcosB=sinC ,则此三角形的形状是 ( ) (A)等腰△ (B) 等腰或者直角△ (C)等腰直角△ (D)直角△题型2:利用正余弦定理求三角形的面积三角形一般由三个条件确定,比如已知三边a ,b ,c ,或两边a ,b 及夹角C ,可以将a ,b ,c 或a ,b ,C 作为解三角形的基本要素,根据已知条件,通过正弦定理、余弦定理、面积公式等利用解方程组等手段进行求解,必要时可考虑作辅助线,将所给条件置于同一三角形中.例3.在ABC ∆中,角A,B,C 所对的边分别为a,b,c 且满足(1)求△ABC 的面积;(2)若c =1,求a 的值.例4.(2010·辽宁营口检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足3sin A -cos A =0,cos B =45,b =2 3.(1)求sin C 的值;(2)求△ABC 的面积.例5.(2009·安徽)在△ABC 中,sin(C -A )=1,sin B = 13. (1)求sin A 的值;(2)设AC = 6,求△ABC 的面积.【同类型强化】1. 在ABC △中,已知角A 、B 、C 所对的边分别是a 、b 、c ,边72c =,且tan tan 3tan tan 3A B A B +=⋅-,又ABC △的面积为332,求a b +的值.【同类型强化】2. 在锐角三角形中,边a 、b 是方程22320x x -+=的两根,角A 、B 满足()2sin 30A B +-=,求角C 的度数,边c 的长度及ABC △的面积.【同类型强化】3.(2009湖北卷文)(本小题满分12分) 在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=(Ⅰ)确定角C 的大小(Ⅱ)若c =7,且△ABC 的面积为233,求a+b 的值。
利用正(余)弦定理判断三角形形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:A R a sin 2=,C ab c b a cos 2222=-+等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系.如:sin A =sin B ⇔A =B ;sin(A -B)=0⇔A =B ;sin 2A =sin 2B ⇔A =B 或A+B =2π等; 二是利用正弦定理、余弦定理化角为边,如bca cb A R a A 2cos ,2sin 222-+==等,通过代数恒等变换,求出三条边之间的关系进行判断.例:在△ABC 中,已知角A ,B ,C 所对的边分别是a,b,c ,若(a+b+c)(a+b-c)=3ab ,且2cos Asin B=sin C ,试判断△ABC 的形状.思路一:根据条件,判断三角形三边的关系,此时需要化角为边;思路二:可以把角和边巧妙地结合起来,同时考虑边之间的关系,角之间的关系. 方法一:由正弦定理得b c B C =sin sin ,∵2cos Asin B=sin C ,bc B C A 2sin 2sin cos ==∴, 由余弦定理的推论得bca cb A 2cos 222-+= ∴bc bc a c b 22222=-+, 化简得2222c a c b =-+,∴a=b ; 又∵(a+b+c)(a+b-c)=3ab ,∴ab c b a 3)(22=-+,化简得22234b c b =-,∴b=c ,∴a=b=c ,即△ABC 是等边三角形.方法二:∵A+B+C=π,∴sin C=sin(A+B),又2cos Asin B=sin C ,∴2cos Asin B=sin(A+B), ∴2cos Asin B=sin Acos B+cos Asin B ,∴sin Acos B-cos Asin B=0,∴sin(A-B)=0,∵A,B ∈(0,π),∴A-B ∈(-π,π), ∴A=B ,又∵(a+b+c)(a+b-c)=3ab ,∴ab c b a 3)(22=-+,即ab c b a =-+222,由余弦定理的推论得2122cos 222==-+=ab ab ab c b a C 又C ∈(0,π),3π=∴C ,又A=B ,∴△ABC 是等边三角形.规律总结:应用正弦定理进行判断或证明的方法:①判断三角形的形状实质是判断三角形的三边或三角具有怎样的关系;②利用正弦定理化边为角或化角为边,以实现边角的统一,便于寻找三边或三角具有的关系;③判断三角形的形状的常见结果有等腰三角形、等边三角形、直角三角形或等腰直角三 角形.针对性练习:1.在△ABC 中,若a 2tan B=b 2tan A ,试判断△ABC 的形状.【解析】法一:由正弦定理及已知,得sin 2A ·sin B cos B=sin 2B ·sin A cos A , 即sin Acos A=sin Bcos B ,∴sin 2A=sin 2B. ∵0<2A,2B<2π,2A+2B<2π;∴2A=2B 或2A=π-2B.即A=B 或A+B=2π. 所以,三角形ABC 是等腰三角形或直角三角形.法二:在得到sin 2A=sin 2B 后,也可以化为sin 2A-sin 2B=0, ∴2cos(A+B)sin(A-B)=0,∴cos(A+B)=0或sin(A-B)=0.∵0<A+B<π,且-π<A-B<π,∴A+B=2π或A-B=0, 即A+B=2π或A=B.∴△ABC 是等腰三角形或直角三角形. 2.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.【解析】方法一:由正弦定理,得2sin B=sin A+sin C.∵B =60°,∴A+C =120°,即A =120°-C ,代入上式,得2sin 60°=sin(120°-C)+sin C 展开,整理得: ∴sin(C+30°)=1,∴C+30°=90°,∴C =60°,故A =60°,∴△ABC 为正三角形.方法二:由余弦定理,得B ac c a b cos 2222-+=,∵B=60°, 2c a b +=, 60cos 2)2(222ac c a c a -+=+, 整理,得0)(2=-c a ,∴a=c. 从而a =b =c ,∴△ABC 为正三角形.。
1 / 1 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b AR a R R Cc B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin =========变形有:为外接圆的半径三角形的面积公式:A bcB acC ab S ABC sin 21sin 21sin 21===∆余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即ab c b a C ac b c a B bca cb A C ab b ac B ac c a b Abc c b a 2cos 2cos 2cos cos 2cos 2cos 2222222222222222222-+=-+=-+=-+=-+=-+=变形有: 判断三角形的形状:为锐角三角形,为直角角三角形为钝角三角形ABC b a c c a b c b a ABC c b a ABC c b a ∆+<+<+<∆+=∆+>222222222222222,,三角形中有:形为正三角形成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A CB AC B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+∆两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+cos()cos cos sin sin αβαβαβ-=+ ()cos cos cos sin sin αβαβαβ+=-()βαβαβαtan tan 1tan tan tan +-=- ()tan tan tan 1tan tan αβαβαβ++=- 二倍角公式: ααααββααααα22222tan 1tan 22tan 1cos 2sin 21sin cos 2cos cos sin 22sin -=-=-=-==半角公式:。
正余弦定理与三角形形状的判断
一、掌握基本原理
常用的定理或公式主要有以下几个: (1)在△ABC 中,A + B + C = π,
2
22C
B A -=+π, ()
C B A s i n s i n =+,()C B A cos cos -=+,
sin (A+B/2)=cos (C/2),2
cot 2tan
C B A =+ . (2)正余弦定理及其变式:
如a = 2R sin A ,b 2 + c 2-a 2 =2b c cos A ,这里, R 为三角形外接圆的半径. (限于篇幅,定理原文及其它相关变式请读者自己回忆并写出). (3)射影定理:a = b cos C + c cos B .(用余弦定理很容易证得,请读者作为练习自行证之)
二、弄清题目类型
1.目标明确型
例1 在△ABC 中,a 2+b 2=c 2+ab ,且sin A sin B =
4
3
,求证:△ABC 为等边三角形. 分析:由a 2+b 2=c 2+ab ,知,用余弦定理可求出C 角, 证明:由余弦定理,得c 2=a 2+b 2-2ab cos C . ∵a 2+b 2=c 2+ab , ∴ab -2ab cos C =0.
∴cos C =
21
,∴C =60° ∵sin A sin B =43,cos (A +B )=cos (180°-C )=cos120°=-2
1
,
cos (A +B )=cos A cos B -sin A sin B , ∴cos A cos B =
4
1. ∴cos (A -B )=cos A cos B +sin A sin B =1. ∵-π<A -B <π,∴A -B =0. ∴A =B =60°
∴△ABC 是等边三角形.
评注:这类题目往往由于目标明确,在利用正弦定理或余弦定理得出一些初步结论之后能够很快确定后续思路.尤其本题中首先得出了一个特殊角,加之sin A sin B =4
3
,则更容易联想到三角形内角和定理了.
2.模糊探索型
例2 判定满足下列条件的△ABC的形状:
解:(1)由已知及正弦定理得
因此△ABC是以∠C为顶角的等腰三角形或以∠C为直角的直角三角形.
因此△ABC为正三角形.
评注:这类题目,只要求判断三角形形状,并没有清晰的线索,往往需要我们根据已知条件去分析和探索,但一般说来,主要应用本文开头提到的相关知识就能够解决.值得一提的是,本题就解题思想而言与例1颇有异曲同工之处.
三、搞清一般规律
例3 在△ABC 中,若
22
tan tan b
a B A =,试判断△ABC 的形状. 解法一:由正弦定理,得 B A B A
A
A A
B B A 2s i n 2s i n s i n s i n c o s A c o s B s i n s i n c o s s i n c o s s i n 2
2
=∴==即:即B A B
A
A A A
B B A 2sin 2sin sin sin cosA cosB sin sin cos sin cos sin 2
2=∴==即: B A B A A
A 2sin 2sin sin sin cosA cos
B in in 22=∴=即:
∴2A = 2B 或 2A = 180︒ - 2B
即 A= B 或 A + B = 90︒
∴△ABC 为等腰或直角三角形.
解法二:由题设,有 222222
22222222sin cos cos sin b
a R
b b
c a c b ac b c a R a b a B A B A =⋅
-+-+⋅
⇒= 222222
22222222sin cos cos sin b
a R
b b
c a c b ac b c a R a b a B A B A =⋅
-+-+⋅
⇒= 化简:b 2(a 2 + c 2 - b 2) = a 2(b 2 + c 2 - a 2)
∴(a 2 -b 2)(a 2 + b 2 - c 2)=0 ∴a = b 或 a 2 + b 2 = c 2
∴△ABC 为等腰或直角三角形.
评注:与三角形形状相关的综合题往往所给条件中富含三角形的边角关系,本题的两种解法,实际上提供了两种技巧:解法一是把“边角关系”转化成了三角形三内角之间的关系,解法二则是把“边角关系”转化成了三角形三边之间的关系,充分体现了转化思想,
四、莫忘相关技巧
例4 在△ABC 中,若有
2
cos
2
cos
2
cos
c c
B b A a
=
=
,试判断△ABC 的形状? 解:设a=k ⋅sinA,,b=ksinB,c=ksinC
2cos
sin 2cos sin 2cos sin c C
k B B k A A k ⨯=⨯=⨯∴
2sin
2sin 2sin C B A ==∴ 而22220π<<B C A ,22220π<<B C A ,22220π<<B C A 222C
B A ==∴,从而,△AB
C 是正三角形.
评注:见比设k ,是常用技巧.其实,正弦定理中的2R 非常类似于这里的k .
例5 在△ABC 中,已知sin B ·sin C =cos 2
2
A
,试判断此三角形的类型
解:∵ sin B ·sin C =cos 2
2
A , ∴ sin
B ·sin
C =2
cos 1A
+
∴ 2sin B ·sin C =1+cos [180°-(B +C )]
将cos (B +C )=cos B cos C -
sin B sin C 代入上式得 cos B cos C +sin B sin C =1, ∴ cos (B -C )=1
又0<B ,C <π,∴-π<B -C <π ∴ B -C =0∴ B =C 故此三角形是等腰三角形
评注:学习正、余弦定理,不要忘记前面学过的相关知识,如本题中,利用“降幂扩角公式”把半角化成“单角”的过程起到了关键作用.
五、不要轻易下结论
例
6 在 中,已知
试判断△ABC
的形状.
证明:
,
即
直角三角形且
又
综上,△ABC为等腰直角三角形.
评注:许多结论中有时不见得只有一层答案,所以在得出初步结论来之后,一定要进一步思考一番,看已知条件是否全部用到了,看结论是否想全了.如本题中常常有许多同学在
得出“直角三角形且”之后便不再往下写,从而造成失误.除此而外,还
要注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别。