最大公约数和最小公倍数练习题

  • 格式:doc
  • 大小:93.00 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大公因数与最小公倍数

考点分析

最大公因数和最小公倍数的性质。

(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。

(2)两个数的最大公因数的因数,都是这两个数的公因数,

(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

典型例题

例1、有三根铁丝,一根长18米,一根长24米,一根长30米。现在要把它们截成同样长的小段。每段最长可以有几米一共可以截成多少段

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花

例4、公共汽车站有三路汽车通往不同的地方。第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。三路汽车在同一时间发车以后,最少过多少分钟再同时发车

例5、某厂加工一种零件要经过三道工序。第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。要使流水线能正常生产,各道工序每小时至少安排几个工人最合理

例6、有一批机器零件。每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。这些零件总数在300至400之间。这批零件共有多少个

例7、公路上一排电线杆,共25根。每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动

例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少

【模拟试题】

1、24的因数共有多少个36的因数共有多少个24和36的公因数是哪几个其中最大的一个是

2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米(长和宽都是素数)

3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。

4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少

5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。

6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板

7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米一共可以截成多少段

8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。

9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个

10、有A、B两个两位数,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少

11、有一个长方体的木头,长米,宽米,厚米。如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少

12、有一个两位数,除50余2,除63余3,除73余1。求这个两位数是多少

最大公因数和最小公倍数练习题

一. 填空题。

1. a b

和的最大公因数是(),最小公倍数是和都是自然数,如果a b

÷=10,a b

()。

2. 甲=⨯⨯

235,乙=⨯⨯

237,甲和乙的最大公因数是()×()=(),甲和乙的最小公倍数是()×()×()×()=()。

3. 所有自然数的公因数为()。

4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。

5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

6. 用一个数去除15和30,正好都能整除,这个数最大是()。子

*7. 两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

*8. 两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。**9. 某数除以3、5、7时都余1,这个数最小是()。

10. 根据下面的要求写出互质的两个数。

(1)两个质数()和()。

(2)连续两个自然数()和()。

(3)1和任何自然数()和()。

(4)两个合数()和()。

(5)奇数和奇数()和()。

(6)奇数和偶数()和()。

二. 判断题。

1. 互质的两个数必定都是质数。()

2. 两个不同的奇数一定是互质数。()

3. 最小的质数是所有偶数的最大公约数。()

4. 有公约数1的两个数,一定是互质数。()

5. a是质数,b也是质数,a b m

⨯=,m一定是质数。()

三. 直接说出每组数的最大公约数和最小公倍数。

26和13()13和6()4和6()

5和9()29和87()30和15()

13、26和52 ()2、3和7()

四. 求下面每组数的最大公因数和最小公倍数。(三个数的只求最小公倍数)

45和60 36和60

27和72 76和80

42、105和56 24、36和48

**五. 动脑筋,想一想:

学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品

【试题答案】

1、24的因数共有多少个36的因数共有多少个24和36的公因数是哪几个其中最大的一个是

答:24的因数共有8个,36的因数共有9个,24和36的公因数是1、2、3、4、6、12。其中最大的一个是12。

2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米(长和宽都是素数)