弹塑性力学 第二章 应变与几何方程
- 格式:ppt
- 大小:885.50 KB
- 文档页数:50
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
弹性力学基本方程平衡微分方程:0⋅+=σ∇f指标符号写为,0ji j i f σ+=在直角坐标系中分量形式311121112332122221231323333123000f x x x f x x x f x x x σσσσσσσσσ⎧∂∂∂+++=⎪∂∂∂⎪⎪∂∂∂+++=⎨∂∂∂⎪⎪∂∂∂+++=⎪∂∂∂⎩在柱坐标系中分量形式1012010r r r rz r r zr z zr z rzz f r r z rf r r z r f r r z r θθθθθθθθτσσστθτσττθττστθ∂-∂∂⎧++++=⎪∂∂∂⎪∂∂∂⎪++++=⎨∂∂∂⎪∂∂∂⎪++++=⎪∂∂∂⎩在球坐标系中分量形式211cot 0sin 113cot 0sin 1132cot 0sin r r r r r r r r r r f r r r r r f rr r r r f r r r r r ϕθϕθθθϕθϕθθθθϕϕθϕϕϕθϕτσσσττσθθθϕτσστστθθθϕττσττθθθϕ∂--⎧∂∂+++++=⎪∂∂∂⎪⎪∂-∂∂⎪+++++=⎨∂∂∂⎪⎪∂∂∂+++++=⎪∂∂∂⎪⎩几何方程:1()2=+ε∇∇u u指标符号写为,,1()2ij i j j i u u ε=+在直角坐标系中分量形式1211221112113222223322333313331133131()21()21()2u u u x x x u u u x x x u u u x x x εεεεεεεεε⎧⎧∂∂∂==+=⎪⎪∂∂∂⎪⎪⎪⎪∂∂∂===+⎨⎨∂∂∂⎪⎪⎪⎪∂∂∂===+⎪⎪∂∂∂⎩⎩在柱坐标系中分量形式111r r z z zr u u v v r r r r v u v w r r z r w w u z r z θθθεγθεγθθεγ∂∂∂⎧⎧==+-⎪⎪∂∂∂⎪⎪∂∂∂⎪⎪=+=+⎨⎨∂∂∂⎪⎪∂∂∂⎪⎪==+⎪⎪∂∂∂⎩⎩在球坐标系中分量形式1111sin 11sin sin r rr r r r r r u u u u r r r r u u u u ctg u r r r r r u u ctg u u u u r r r r r r θθθϕθθθθϕϕϕϕϕϕθϕγεθθεγθθϕθθεγθϕθϕ⎧⎧∂∂∂=+-=⎪⎪∂∂∂⎪⎪⎪∂∂∂⎪=+=+-⎨⎨∂∂∂⎪⎪∂⎪⎪∂∂=++=+-⎪⎪∂∂∂⎩⎩应变协调方程:0⨯⨯=ε∇∇指标符号写为,0mjk nil ij kl e e ε=在直角坐标系中常用形式222112212222112222332322223223222331311221313223311112231123231232212312231233120001()21()21x x x x x x x x x x x x x x x x x x x x x x x x x x εεγεγεεγεγγεγγγεγε∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂=∂∂2331123312()2x x x x γγγ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪∂∂∂∂-++⎪∂∂∂∂⎩本构方程::=σεC指标符号写为ij ijkl klC σε=对各向同性弹性体的线弹性本构关系的指标符号写为2ij ij kk ijG σελεδ=+在直角坐标系中分量形式222x x yy z z xy xy yz yz zx zxG G G G G G σελθσελθσελθτγτγτγ=+⎧⎪=+⎪⎪=+⎪⎨=⎪⎪=⎪=⎪⎩边界条件:力边界条件指标形式写为 j i ijp νσ=在指标坐标系分量形式x yx zx xy y zy xz yz z X l m n Y l m n Z l m n στττστττσ⎧=++⎪⎪=++⎨⎪=++⎪⎩位移边界条件指标形式写为 i iu u =在直角坐标系分量形式112233u u u u u u ⎧=⎪⎪=⎨⎪=⎪⎩位移解法:L-N 方程及力边界条件指标形式,,,,,()0[()]i jj j ji i i j j i k k ij j iGu G u f G u u u X λλδν+++=++=在直角坐标系中分量形式212223()0()0()0(2)()()()(2)()()()(2)G u G f x G v G f y G w G f z u v u w uG l G m G n X x x y x z u v v w vG l G m G n Yy xy y z u w v w wG l G m G n Zz xz y z θλθλθλλθλθλθ⎧∂∇+++=⎪∂⎪∂⎪∇+++=⎨∂⎪⎪∂∇+++=⎪∂⎩⎧∂∂∂∂∂+++++=⎪∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=⎨∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=∂∂∂∂∂⎩⎪应力解法:B-M 方程指标形式2,,,,1()11ij ij i j j i ij k kf f f νσδνν∇+Θ=-+-+-平面问题本构方程平面应变平面应力平面应力(极坐标系)αβαβαβδλεεσkk G +=2, 平面应力→平面应变:21υ-→E E 、υυυ-→1xyxyx y y y x x G G G γτευυευυσευυευυσ=-+--=-+--=)1(21)1(2)1(21)1(2 xyxyx y y y x x G G Gγτυεευσυεευσ=+-=+-=)(12)(12 θθθθθγτυεευσυεευσr r r r r G G G=+-=+-=)(12)(12 0)()(==+=+=zx zx y x y x z ττεελσσυσ===zx zx z ττσ0=z σ 0==θττz zrαβαβαβδσυσυεkk EE -+=1 xyxy xy x y y y x x GE E τεγσυυσυεσυυσυε12)1(1)1(122==---=---= xyxy xy x y y y x x GEEτεγυσσευσσε12)(1)(1==-=-=θθθθθτγυσσευσσεr r r r r GE E1)(1)(1=-=-====zy zx z γγε)(==+-=zy zx y x z Eγγσσυε)(θσσυε+-=r z E0==θγγz z r协调方程:y x yx xy x y ∂∂∂=∂∂+∂∂γεε22222,0112112222222=∂∂-∂∂-∂∂+∂∂∂-∂∂+∂∂θγεεθγθεεθθθθr r r r r r r r r r r r r))(1()(,,2y y x x y x f f ++-=+∇νσσ,如x x V f ,-=,y y V f ,-=,引入Airy 应力函数:V yy x +=,φσ V xx y +=,φσ,xy xy,φτ-=→V 222)1(∇--=∇∇νφ;22222yx ∂∂+∂∂=∇,4422444222yy x x ∂∂+∂∂∂+∂∂=∇∇极坐标系:02101=++∂∂+∂∂=+-+∂∂+∂∂θθθθθθτθστσσθτσf rr r f r r r r r r r r rrv r v u r ru v r r u r r rr r θθθθθθγθεε-∂∂+∂∂=+∂∂=∂∂=11 ,⎪⎭⎫ ⎝⎛∂∂∂∂-=∂∂=∂∂+∂∂=θφτφσθφφσθθr r rr r r r r 1 ,1122222V222)1(∇--=∇∇νφ,22222211θ∂∂+∂∂+∂∂=∇r r r r,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛θθθθσττσθθθθσττσθθθcos sin sin cos cos sin sin cos r r ry xyxy x塑性力学基本公式:一维随动强化模型材料后继屈服限与先期拉(压)塑性应变的关系**p s ps h d h d σσεσσε+-=+=-+⎰⎰一维等向强化模型材料后继屈服限与先期拉(压)塑性应变的关系***||p s h d σσεσσ+-+=+=-⎰应力偏量的第二不变量22222222112222333311122331221'21'[()()()6()]6'3'ij ij ijij J S S J J S J σσσσσστττσσ==-+-+-+++∂=∂=应变偏量的第二不变量2222222211222233331112233121'213'[()()()()]624'3ij ijI e e I I εεεεεεγγγε==-+-+-+++=金属材料的屈服条件:Mises 屈服条件2()03'ij s J σσσσ-==其中Tresca 屈服条件max ()02sij στσ-=三维随动强化模型后继屈服条件(,)()0p p pij ij ij s ij ij K c d σσσεσεεΦ=--==⎰其中三维等向强化模型后继屈服条件41(,)()()0032p p p pij ij s ij ij K h d d d d σσσσεεεεΦ=-+==⋅≥⎰其中全量形式的应力-应变关系2()1()33ij kk ij ij kk ij K σεσεδεεδε=+-全量形式的应变-应力方程13()1()923ij kk ij ij kk ij K εσεσδσσδσ=+-σε-关系为**3,3(),33',122(1)'3s s ss G GE G G E EE G E E E σεεσσσσεενν⎧⋅<⎪⎪=⎨⎪+->⎪⎩==-+-增量形式的应变-应力方程(指标符号)()011ij ij kk ij ij d d d d S E ευσυσδλ⎡⎤=+-+⎣⎦增量形式的应力-应变方程(矩阵形式)0000T e e e ep T e D D d D d D d D ασσασεεσαασ⎛⎫=-= ⎪⎝⎭线性等向强化材料加载时的增量本构关系(指标符号)()()0020191114ij ij kk ij kl kl ij d d d S d S E h ευσυσδσσ⎡⎤=+-+⎣⎦线性等向强化材料加载时的增量本构关系(矩阵形式)()()000209114T e ep d F d d F d hεσασσασσσσ=+=。
应用弹塑性力学习题解答Revised on November 25, 2020应用弹塑性力学习题解答目录第二章习题答案设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。
解该平面的法线方向的方向余弦为而应力矢量的三个分量满足关系而法向分量满足关系最后结果为利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。
解求出后,可求出及,再利用关系可求得。
最终的结果为已知应力分量为,其特征方程为三次多项式,求。
如设法作变换,把该方程变为形式,求以及与的关系。
解求主方向的应力特征方程为式中:是三个应力不变量,并有公式代入已知量得为了使方程变为形式,可令代入,正好项被抵消,并可得关系代入数据得,,已知应力分量中,求三个主应力。
解在时容易求得三个应力不变量为,,特征方程变为求出三个根,如记,则三个主应力为记已知应力分量,是材料的屈服极限,求及主应力。
解先求平均应力,再求应力偏张量,,,,,。
由此求得然后求得,,解出然后按大小次序排列得到,,已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。
解特征方程为记,则其解为,,。
对应于的方向余弦,,应满足下列关系(a)(b)(c)由(a),(b)式,得,,代入(c)式,得,由此求得对,,代入得对,,代入得对,,代入得当时,证明成立。
解由,移项之得证得第三章习题答案取为弹性常数,,是用应变不变量表示应力不变量。
解:由,可得,由,得物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动矢量。
解:首先求出点的位移梯度张量将它分解成对称张量和反对称张量之和转动矢量的分量为,,该点处微单元体的转动角度为电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。
如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。