为在事件 A 发生的条件下,
事件 B 发生的条件概率
2. 相互独立事件 (1) 对于事件 A , B, 若 A 的发生与 B 的发生互不影响, 则称 A , B 是相互独立 事件 . (2) 若 A 与 B 相互独立, 则 P( B| A)=P ( B ), P (AB )=P ( B| A)·P (A )=P (A)·P ( B ). (3) 若 A 与 B 相互独立, 则 A 与������ ,������与 B , ������与������ 也都相互独立. (4) 若 P (AB )=P (A) P( B ), 则 A 与 B 相互独立 .
“ 互斥事件” 与“ 相互独立事件” 的区别与联系 (1 ) “ 互斥” 与“ 相互独立” 都是描述的两个事件间的关系. (2)“ 互斥” 强调不可能同时发生, “ 相互独立” 强调一个事件的发生与 否对另一个事件发生的概率没有影响. (3 ) “ 互斥” 的两个事件可以“ 相互独立” , “ 相互独立” 的两个事件也可 以“ 互斥” .
1 5 7 2 6 12 1 2 1 6
3. 从 1, 2, 3, 4, 5 中任取 2个不同的数, 事件 A=“ 取到的 2个数之和为偶数” , 事件 B =“ 取到的 2个数均为偶数” , 则 P( B| A) 等于( ) A.
1 8
B.
1 4
C.
2 5
D.
1 2
【答案】B
2 C2 C2 2 +C 3 4 2 1 【解析】∵ P (A )= 2 = , P (AB )= 2= , C 5 10 C 5 10
1. 条件概率及其性质
条件概率的定义 设 A, B 为 两 个 事 件 ,且 P ( A) >0 , 称 P( B| A) =