28
初始类别参数的选定
初始类别参数是指:基准类别集群中心(数学期 望)以及集群分布的协方差矩阵。因为无论采用 何种判别函数,都要预先确定其初始类别的参量。 以下为几种常用的方法:
29
1、像素光谱特征的比较法
首先,在遥感图像中定义一个抽样集,它可以是整幅 图像的所有像素,但通常是按一定间隔抽样的像素;
15
欧几里德距离就是两点之间的直线距离。这是我们用的最多因 而也是最为熟悉的一种距离。与我们习惯用的距离一致。欧氏 距离的表达式为:
2. 欧几里德距离
n
2
di x k
x kj M ij
j1
欧氏距离中各特征参数也是等权的。 以上两种距离都称为明可夫斯基(Minkowski)距离(以下 简称明氏距离),使用明氏距离应该注意以下问题:
式中:Pwi 为先验概率,也就是在被分类的图像中类别wi出现的 概率。PX wi 为似然概率,它表示在 wi这一类中出现像元X的
概率。只要有一个已知的训练区域,用这些已知类别的像元做
统计就可以求出平均值及方差、协方差等特征参数,从而可以
求出总体的先验概率。在不知道的情况下,也可以认为所有的Pwi
为相同。Pwi X 为后验概率。PX 表示不管什么类别出现的概率:
31
初始类别参数的选定
19
3、最大似然监督分类
最大似然法是经典的分类方法,已在宽波段遥感图像分类
中普遍采用。它主要根据相似的光谱性质和属于某类的概率最
大的假设来指定每个像元的类别。MLC法最大优点是能快速指定
被分类像元到若干类之中的一类中去 。
从概率统计分析,要想判别某位置的向量属于哪一个类别,
判别函数要从条件概率 Pwi X i 1 , 2 , 3 , 来, m决定,