用不动点法求数列通项(1)
- 格式:doc
- 大小:287.00 KB
- 文档页数:4
用特征根法与不动点法求递推数列的通项公式特征根法和不动点法是两种常用的方法来求解递推数列的通项公式。
本文将从这两个角度详细介绍这两种求解方法,并举例说明其应用。
一、特征根法(Characteristic Root Method)特征根法是一种基于代数方法的求解递推数列通项公式的方法,它通过寻找递推关系式的特征根来获取通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
(2)设通项公式:假设递推数列的通项公式为Un=a^n。
(3)代入递推关系式:将通项公式Un=a^n代入递推关系式,得到方程Un=P(Un-1,Un-2,...,Un-k),其中P为k个变量的多项式函数。
(4)寻找特征根:解方程Un=0,得到特征根r1,r2,...,rk。
(5)确定通项公式:根据特征根,得到通项公式Un=C1*r1^n+C2*r2^n+...+Ck*rk^n,其中C1,C2,...,Ck为待定系数。
(6)确定待定系数:利用已知序列的初始条件,求解待定系数,得到最终的通项公式。
2.示例:求解递推数列Un=3Un-1-2Un-2,已知U0=1,U1=2(1)建立递推关系式:Un=3Un-1-2Un-2(2)设通项公式:Un=a^n。
(3)代入递推关系式:a^n=3a^(n-1)-2a^(n-2)。
(4)寻找特征根:解方程a^n=3a^(n-1)-2a^(n-2),得到特征根a=2,a=1(5)确定通项公式:Un=C1*2^n+C2*1^n。
(6)确定待定系数:利用初始条件U0=1,U1=2,得到方程组C1+C2=1,2C1+C2=2,解得C1=1,C2=0。
最终的通项公式为Un=2^n。
二、不动点法(Fixed Point Method)不动点法是一种基于迭代的求解递推数列通项公式的方法,它通过设定一个迭代公式,求解极限来获得通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2) b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。
求数列通项的不动点法2015年10月31日meiyun 数海拾贝求数列的通项的基本方法有累加法和累乘法,等差数列与等比数列的通项公式就分别由累加法与累乘法对应得到的.对于一般的递推公式,如果可以通过适当的代数变形转化成可以使用累加法与累乘法的递推形式,则问题就得到的解决,不动点法就提供了这样的一个转化的方向.先从一种简单的情形入手:例1 若,,,求.分析 是一个一次函数,对于正比例函数的情形我们可以通过累乘法转化(即等比数列),于是我们令与递推公式对照得到,从而得到可以累乘的形式事实上,这里的就是递推公式对应的函数的不动点,即的根.对于由递推公式给出的数列,我们称的解为此数列的不动点.若为数列的不动点,有,则而中有因式.从而递推公式可以整理为=2a 1=3−2a n +1a n n ∈N ∗a n f (x )=3x −2−λ=3(−λ),a n +1a n λ=1−1=3(−1).a n +1a n λf (x )=3x −2x =3x −2=f ()a n +1a n x =f (x )αα=f (α)−α=f ()−f (α),a n +1a n f ()−f (α)a n x −α=g ()−αa n +1−αa n a n的形式.若为常数或者与无关,则由累乘法问题已经得到解决.比如若递推公式为,(),则为常数,就是前面的情形.下面我们来看更复杂的情形,对于递推公式为如何求数列的通项公式,给出具体的递推公式为例:例2 若,,,求.解 考虑递推公式对应的不动点,令解得.于是有两边取倒数化简得记得到于是就转化成前面的讲过的情形了.事实上,如果递推公式对应的不动点有两个,则可以通过不动点得到g ()a n a n =p +q a n +1a n p ,q ∈R g ()a n =,p ,q ,r ,s ∈R ,a n +1p +q a n r +sa n =2a 1=a n +13+1a n +3a n n ∈N ∗a n x =,3x +1x +3x =±1+1=,a n +14(+1)a n +3a n =+⋅.1+1a n +114121+1a n =b n 1+1a n =+.b n +112b n 14两个式子两式两边分别相除得于是得到解得在本题中是与相关的式子,无法直接累加累乘,但求倒数后就可以进一步整理,找到转化的方向.若特征根有两个,通过两式相除可以直接将消去,得到一个等比数列.不管是哪种处理方式,寻找不动点都是一个很好的递推公式的整理方向,引导我们去一步步进行代数变形,将一个未知的问题转化成我们已经解决的问题.除了这些情形之外,如果递推公式的形式为也可以尝试不动点法求数列的通项公式,大家可以自行尝试.最后给出一些练习题.+1=,a n +14(+1)a n +3a n −1=.a n +12(−1)a n +3a n =2⋅.+1a n +1−1a n +1+1a n −1a n =3⋅,+1a n −1a n 2n −1=.a n 3⋅+12n −13⋅−12n −1g ()a n a n a n =,r ,s ∈R ,a n +1p +q a 2n r +sa n 4−21.若,,求.2.若,,求.3.若,,求.4.(2011全国高考大纲卷理科第22题)函数,定义数列如下:,是过两点,的直线与轴交点的横坐标.(1)证明:;(2)求数列的通项公式.5.(2010东城高考一模理科第20题)已知数列满足,.(1)求证:;(2)求证:;(3)求数列的通项公式.参考答案1..2..3..=3a 1=a n +14−2a n +1a n a n =2a 1=a n +13−1a n +1a n a n =1a 1=a n +1+2a 2n 2+1a n a n f (x )=−2x −3x 2{}x n =2x 1x n +1P (4,5)(,f ())Q n x n x n PQ n x 2⩽<<3x n x n +1{}x n {}x n =4x 1=x n +1−3x 2n 2−4x n >3x n <x n +1x n {}x n =a n 2⋅−3n −12n −2−3n −12n −2=a n n +3n +1=a n +222n −122n 9⋅−1n −14.(1)略;(2).5.(1)(2)略;(3).注 由递推公式求数列通项公式的倒数法是不动点法的一种特殊情形.倒数法中,恰为数列的一个不动点.=x n 9⋅−15n −13⋅+15n −1=x n −13+12n −1−132n −10。
不动点法求数列
不动点法求数列通项原理是不动点是使f(x)=x的x值。
1、不动点法是作为求解函数迭代的方法而被研究的。
所以在开始之前,我们先介绍一下递推数列与函数迭代的关系。
如果我们把函数看作从R到R的一个映射,那么不动点经过这一映射之后,还是它本身,就像固定在数轴上“不动”,所以叫作“不动点”。
2、设不动点为x0,则f(x0)-x0=0,即x是f(x)-x0=0的根,所以f(x)-x0因式分解时有x-x0这个因子,对数列有a(n+1)=f(an),两边同时减去不动点x0有a(n+1)-x0=f(an)-x0,f(an)-x0只不过是把x换成了an,所以f(an)-x0有an-x0这个因子,所以a(n+1)-x0=(an-x0)*g (an),减去不动点后两边出现了形式相同的项an-x0,g(an)则相当于公比。
3、数列通项公式(an=f(n))表示的是数列的第n项a与项的序数n之间的关系。
对于一个数列{ an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差位公差,记为d ;从第一项a1到第n项an的总和,记为Sn。
高中数学常用方法—利用函数的不动点求数列的通项公式1. 函数的不动点:给出函数()y f x =,满足方程0()f x x =的解0x ,称为函数()y f x =的一个不动点。
例 求函数()24f x x =-的不动点。
解:令24x x -=,解出4x =,即4是函数()24f x x =-的一个不动点。
2. 用函数的不动点求数列的通项公式:如果给出的数列的递推式中不含有自变量n 的函数()f n ,那么就可以考虑用函数的不动点法:首先求出函数的不动点,然后把递推式的两边都减去不动点,最后把递推式的两边都化为相同的形式去求数列的通项公式。
例 已知数列{}n a 中,11a =,121n n a a +=+求数列的通项公式na 。
解:因为121n na a +=+,所以211x x x =+⇒=-,两边都减去不动点1-得11211n n a a ++=++,所以可以得到112(1)n n a a ++=+,设1n na b +=,所以12n n b b +=,数列{}n a 为等比数列,故1122n n n b b -=⋅=,所以121nn na b =-=-。
例 已知数列{}na 中,11a =,1112n n aa +=+求数列的通项公式na 。
解:因为1112n n aa +=+,所以1122x x x =+⇒=,两边都减去不动点2得12212n n aa +-=+-,所以可以得到112(2)2n n aa +-=-,设2nna b -=,所以112n nb b +=,故111122n nn b b --⎛⎫=⋅=- ⎪⎝⎭,所以1222nnn ab -=+=-。
3.定理1:若函数(),01f x ax b a a =+≠≠且,p 是函数()f x ax b=+的一个不动点,即()f p p =,如果数列{}nx 满足递推关系1(),1nn x f x n -=>,则1()nn x p a x p --=-。
数列不动点法求通项
以《数列不动点法求通项》为标题,写一篇3000字的中文文章什么叫数列不动点法?它是一种求解数学数列中特定元素的解法,又称作不动点迭代。
其中的一种典型的应用场景就是通过它来求解数列的通项。
一、数列不动点法的基本原理与概念
数列不动点法是一种基于极限理论的迭代解法,其核心思想就是能够将一组数字反复迭代,最终能够收敛到一个不变的、固定的数字,这个数字就叫做不动点,也叫稳定点或者可靠的结果。
在数列的研究中,数列的不动点可以帮助我们了解其数列的总体规律,并且可以推导出满足条件的通项。
二、数列不动点法求解数列的通项的过程
1、将每一项的值进行相应的迭代,得到迭代后的值。
2、将迭代后的值进行比较,如果出现不动点,则表明数列收敛到某一个点,那么就可以利用该点作为数列的通项,即可将数列中任意一个元素进行表达。
3、进一步利用已求得的不动点,寻找数列的特征值,并结合相应的条件,寻找出满足条件的通项。
三、数列不动点法的优势
数列不动点法比较简单,只需要根据数学原理,采用简单的迭代方式,就能够推导数列中任意一个元素,从而大大节约了解决数列问题所需要的时间和精力。
此外,数列不动点法在求解数列的通项时,
和其他方法相比,更加精准,可以得到更为准确的结果。
四、数列不动点法应用的实例
1、数列 4、9、14、19、24……的第n项是多少?
利用数列不动点法,可以得出第n项的值为5n+4,即第n项的值等于第一项的值(4)加上公差(5)乘以(n-1)次。
2、数列 8、7、6、5、4……的第n项是多少?
利用数列不动点法,可以得出第n项的值为n+7,即第n项的值为第一项的值(8)减去公差(1)乘以(n-1)。
用不动点法求数列的通项定义:方程= X的根称为函数/(X)的不动点.利用递推数列/(X)的不动点,可将某些递推关系0” ==/("“」)所确左的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若f(x) = ax + b(a^O,a^\\ p是/(劝的不动点,©满足递推关系a n = f(%),(“ > 1),则a n-p = - /?),即{a n - p]是公比为a 的等比数列.证明:因为"是/(x)的不动点ap + b = p••• b-p = -ap由a n= a • a n_} + b得a n - p = a-a n_x +b-p =“("心-p)所以{a n-p}是公比为d的等比数列.定理2:设f(x) = ""+(c 丰 0,ad 一H 0), {a”}满足递推关系a… = f (a n_}), n > 1,cx + d初值条件q工_/(山)(1):若/(x)有两个相异的不动点p、q,则乞二£ = &・竺丄工(这里《=丄二2竺)〜一q Si -q "一qc1 1 2c(2):若/(兀)只有唯一不动点〃,则--- = -------- + k(这里k = U)a n一P 一P。
〃证明:由 /(%) = x得 /(牙)="入+ ” =小所以ex2 + (d - a)x - b = 0 cx + dP ==><q =J 一P j-q 叫T +h所以(1)因为pg是不动点,所以a _ pc qd b叫t +b eg + d(a - pc)g + b _ pd(a — gc)% 十b _ qdpd bqd _b a_qc g _ qa_qc(2)因为”是方程ex 2 +(d-a)x-b = 0的唯一解,所以cp2+(d-a)p-b = 0所以b _ pd = c]F 一 ap , p = -_ 所以2c_ aa n ^ +b _ (a — cp )5-i +b_pd _(u-cp)a fJ _{ +cp 2 - ap _ (a 一 cp^a^ 一 p)a ” 一 p = ---------- — p = -------------------------- = ------------------------------ = -----------------------+ d eg + d fl + 〃所以1 _ 1 5一]+〃_ 1 c(% - ”)+ 〃+ 3 _ c d + cp 1 _ 1 2c------ = ------ . --------- = ------ • ----------------- = ------- + ------- • ------- = --------— -----5 _ P u _ cp g - P u _ cp n a _ cp u — cp a n ^ - p a n ^ - p a + d2c 1 1令k=^—9 则一-一 =一-一 + k〃 _ P例1:设{给}满足绚=1卫叶=也匸三MW NS 求数列{心}的通项公式2例2:数列{〜}满足下列关系:⑷=2么色利=2d — ”4H0,求数列{心}的通项公式//y- 4- bx + C定理3:设函数f(x) = — ------------ ——(G HO,0HO)有两个不同的不动点且由ex + J知利=/(绻)确定着数列{心),那么当且仅当h = 0,e = 2a 时,⑺一"=(匕二I ),% 一勺 知一勺证明:・・・Xk 是f (x )的两个不动点耳田一州==叫^+少一如冷+ —町=叫:+ @_M )给 + (f __ 1小 冷+i 一吃 + bi* +c-x 2(eu n + /) cm ; + (b — %)冷+c-x 2f an ; + (Z? — ex 2)u tt +(e-一娅•> 2auj + (Z? - ex x )u n +(£_□)叮- byan/ + (Z? - ex 2 )u n +(e-a)x 2^ -bx 2ax^ +bx k +cM /-2X A +X 22即 c-x k f =(e —a)x k 2于是,H 2 [ “ | 2_心「W" a " aj b 一 ex. (e 一 一 bx 、 叮+——心+ ----------------------- =---- "a a・・・'HO ・・・方程组有唯一解b = 0上=2a1 x 22 -例3:已知数列{©}中宀=2如=——求数列{心}的通项.2®其实不动点法除了解决上而所考虑的求数列通项的几种情形,还可以解决如下问题:42 t例4:已知q >0,®工1且匕+i[ *,求数列{心}的通项.仇(勺「+1).4 x 2]解:作函数为/« =「二匸 懈方程f(x) = /得f(x)的不动点为4x( J T +1)X] =—1,勺=1,勺=-^-/,x 4 = $/•.取/? = l,q =—1,作如下代换:勺,+6%2+]r' *43分勺田+1 = 4。
不动点求数列通项原理
不动点是指在某个函数定义域上存在一个实数x,使得f(x)=x
成立。
求不动点的过程称为不动点求数列通项原理,主要有以下几种方法:
1. 不动点迭代法:假设函数f(x)满足Lipschitz条件,即存在常数L满足|f(x)-f(y)|≤L|x-y|,选择一个初值x0,通过迭代逼近函数的不动点。
迭代公式为:xn+1=f(xn)。
当迭代序列{xn}收敛
到不动点时,即x=lim(n→∞)xn,可得到不动点的近似值。
2. 转化为方程求根:将函数f(x)=x转化为方程f(x)-x=0,然后
使用数值方法求解这个方程的根。
常用的求根方法有二分法、不动点迭代法、牛顿法等。
通过求解得到的根即为函数的不动点。
3. 直接求解:对于某些特殊的函数,可以通过直接求解方程
f(x)=x来得到不动点。
例如,对于线性函数f(x)=ax+b,不动
点为x=(b/(1-a))。
这些方法都是通过迭代、逼近或求解方程的方式来求解不动点,从而得到不动点求数列的通项原理。
这些方法的选择取决于函数的性质和问题的要求。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为p 是)(x f 的不动点pb ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则qa pa k q a p a n n n n --⋅=----11(这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k pa p a n n +-=--111(这里da ck +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx (1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令d a c k +=2,则k pa p a n n +-=--111例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式定理3:设函数)0,0()(2≠≠+++=e a f ex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴f ex c bx ax x k k kk +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x a ex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 1121x x 0≠∴方程组有唯一解ae b 2,0==例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解:作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换:42342342242241111(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n 已知曲线22:20(1,2,)n C x nx y n -+== .从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521nn nxx x x x y -⋅⋅⋅⋅<< 设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14q =,求{}n x 的前n 项和n S .已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=' ,,.(1)求αβ,的值;(2)证明:对任意的正整数n ,都有n a α>;(3)记ln(12)n n n a b n a βα-==- ,,,求数列{}n b 的前n 项和nS 13陕西文21.(本小题满分12分)已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
数列通项公式的求法之不动点法一、内容分析本节课是高三年级针对数列求通项公式的复习课,主要讲解运用不动点法灵活求解数列的通项公式,纵观每年高考试题,无论在选择题还是大题中数列求通项公式都是必考内容,所占的分值也很高,所以熟练掌握求数列通项公式的方法是非常重要的。
二、学情分析上一节课学生已经系统的学习数列求通项公式的七种方式(公式法、叠加法、叠乘法、待定系数法、迭代法、对数变换法、数学归纳法、换元法), 通过学习这些方法,大部分学生能够求解常规数列的通项公式,但是对于复杂一点的数列的求解还是存在一定困难,所以本节课更深入地讲解运用不定点法求解数列通项公式,让学生更加深入、系统地掌握求解数列通项公式的方法和技巧。
三、教学目标1、知识与技能(1)知道什么是不动点;(2)掌握运用不动点求解数列的通项公式的方法;(3)明白运用不动点法求解数列通项公式的条件。
2、过程和方法(1)通过分析类比,引入不动点的概念及运用不动点法如何构造数列;(2)通过教师的演算分析,运用不动点法构造数列的一般步骤;(3)通过使学生合作思考,以不断尝试错误的方式口己归纳总结运用不动点法求解的限制条件。
3、情感态度和价值观通过木节课的学生使学生感受运用不动点法求解数列通项公式的便捷性和灵活性,同时在归纳分析的过程中使学生形成化归、类比的数学意识,养成严谨的逻辑思维习惯。
四、教学重难点1、教学重点(1)明白什么是不动点;(2)熟练掌握不动点法求解数列的通项公式及使用条件。
2、教学难点(1)灵活运用不动点法快速求解数列的通项公式;(2)针对不同的数列灵活选择其求解方法。
五、教学策略与方法分析类比法、尝试错误法、归纳总结法、合作探究法、讲解演算法六、教学过程教学时教师活动学生活动设计意图间(一)分析类比,讲授新课大家首先回顾一下上节课我们学习了求解数列通项公式的七种方法,分别是哪些?回答:公式法、叠加法、叠乘法、待定系数法、迭代学生思考在之前已学知识的基础上,通过类比法、对数变换法、数学归纳法、换元法。
不动点法求数列通项的原理
一、不动点法(特征根法)的概念
不动点法,又称特征根法,是一种用于解决数列求通项的有效方法,该方法通过求解特征根或不动点来求出数列通项。
二、不动点法(特征根法)的原理
不动点法,是把数列的运算转化为求解特征根的问题。
特征根,是指使得其中一特定数列值不变的数。
通常情况下,当一个数列的通项具有对数函数的形式时,它的公式可以求出,但如果它具有指数函数的形式时,就不能用常规的方法求出。
此时,可以用不动点法来求出该数列的通项。
不动点法的基本步骤为:
(1)将数列的前n项归纳成一个大的等比数列;
(2)建立等比数列的递推关系式;
(3)求解递推关系式的特征根;
(4)根据特征根求出数列的通项。
例如,解数列{an}的通项
要解这个数列的通项,可以先将数列归纳成一个大的等比数列,即显然,等比数列 {an} 的公比 = q = 3 ,自然数 n 的取值范围是0 ≤ n ≤ 7
接下来,建立等比数列的递推关系式:
an+1=3·an
可以把它写成递推公式的一般形式:an+1-3an=0
特征方程可以由上式求出:
lamda^2-3lamda+1=0
两个根分别是
lamda_1=1
lamda_2=3
这样,就可以求出数列通项,即
an=A·1^n + B·3^n
设a0=7
则有A+B=7,a1=21,则有3A+B=21。
用不动点法求数列的通项
定义:方程x x f =)(的根称为函数)(x f 的不动点.
利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.
定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系
)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.
证明:因为 p 是)(x f 的不动点
p b ap =+∴
ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---
所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=
bc ad c d
cx b
ax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,
初值条件)(11a f a ≠
(1):若)(x f 有两个相异的不动点q p ,,则
q a p a k q a p a n n n n --⋅=----11 (这里qc
a pc
a k --=)
(2):若)(x f 只有唯一不动点p ,则
k p a p a n n +-=--111 (这里d
a c k +=2)
证明:由x x f =)(得x d
cx b
ax x f =++=
)(,所以0)(2=--+b x a d cx
(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(2
2b q a d cq b p a d cp ⇒⎪⎪⎩
⎪
⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a p
a qc a pc a qc a
b qd a p
c a b
pd a qc
a pc a qd
b a q
c a p
d b a pc a q
d
ca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅
--=------
⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pc
a k --=
,则q a p a k q a p a n n n n --=----1
1
(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2
=--+b p a d cp 所以ap cp pd b -=-2
,c
d
a p 2-=
所以 d
ca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=
+-+-=+-+-=-++=---------111211111)
)(()()(所以
d
a c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令d
a c
k +=
2,则
k p a p a n n +-=--111 例1:设}{n a 满足*11,2
,1N n a a a a n
n n ∈+=
=+,求数列}{n a 的通项公式 例2:数列}{n a 满足下列关系:0,2,22
1
1≠-==+a a a a a a a n
n ,求数列}{n a 的通项公式
定理3:设函数)0,0()(2≠≠+++=
e a
f ex c
bx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,
2
2
12111)(x u x u x u x u n n n n --=--++
证明: k x 是)(x f 的两个不动点
∴f
ex c bx ax x k k k k +++=2
即k k k bx x a e f x c --=-2
)()2,1(=k
∴
2
22221
2
11222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=
-+-+-+-+=+-+++-++=--++于是,
2212111)(x u x u x u x u n n n n --=--++⇔2
2
222
1
12222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔2
2222
11222222
1
2
112
22)()(x u x u x u x u a
bx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+
-+--+-+
⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221
1
22x a ex b x a
ex b ⇔⎩⎨
⎧=-+=-+0)2(0)2(21x e a b x e a b 11
2
1
x x 0≠ ∴方程组有唯一解a e b 2,0==
例3:已知数列}{n a 中,*2
1
1,22,2N n a a a a n
n n ∈+==+,求数列}{n a 的通项.
其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)
1(4162
2
4
1+++=
+n n n n n a a a a a ,求数列}{n a 的通项.
解: 作函数为)
1(41
6)(2
24+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 3
3,33,1,14321=-
==-=.取1,1-==q p ,作如下代换: 4
2
3
4
23422
42
2
4
11)1
1(
1
46414641
)
1(41
61)
1(41
611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:1
1
1141414141)
1()
1()1()1(------+-++=
n n n n a a a a a n
已知曲线22
:20(1,2,
)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)
n n k k >的切线n l ,切点为(,)n n n P x y . (1)求数列{}{}n n x y 与的通项公式;
(2)证明:13521n n n
x
x x x x y -⋅⋅⋅
⋅<
< 设p q ,为实数,αβ,是方程2
0x px q -+=的两个实根,数列{}n x 满足1x p =,
22x p q =-,12n n n x px qx --=-(34n =,,
…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,1
4
q =
,求{}n x 的前n 项和n S .
已知函数2
()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()
(12)()
n n n n f a a a n f a +=-=',,. (1)求αβ,的值;
(2)证明:对任意的正整数n ,都有n a α>; (3)记ln
(12)n n n a b n a β
α
-==-,,,求数列{}n b 的前n 项和n S
13陕西文
21.(本小题满分
12
分)已知数列
{}
n a 满足,
*1
1212,,2
n n n a a a a a n N ++=∈’+2==
. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N +
∈ ,点(,)n n S ,均在函数(0x
y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)当b=2时,记 1
()4n n
n b n N a ++=∈ 求数列{}n b 的前n 项和n T。