欧拉图和汉密尔顿图
- 格式:ppt
- 大小:1.75 MB
- 文档页数:28
习题四: 欧拉图与汉密尔顿图1.判定图7-4.15的图形是否能一笔画。
2.构造一个欧拉图,其结点数v 和边数e 满足下述条件 a )v ,e 的奇偶性一样。
b )v ,e 的奇偶性相反。
如果不可能,说明原因。
3.确定n 取怎样的值,完全图n K 有一条欧拉回路。
4.a )图7-4.16中的边能剖分为两条路(边不相重),试给出这样的剖分。
b )设G 是一个具有k 个奇数度结点(k >0)的连通图,证明在G 中的边能剖分为2k 条路(边不相重)。
c )设G 是一个具有k 个奇数度结点的图,问最少加几条边到G 中,而使所得的图有一条欧拉回路,说明对于图7-4.16如何能做到这一点。
d )在c )中如果只允许加平行于G 中已存在的边,问最少加几条边到G 中,使所得的图有一条欧拉回路,这事总能做到吗?叙述能做到这事的充分必要条件。
5.找一种9个a ,9个b ,9个 c 的圆形排列,使由字母{c b a ,,}组成的长度为3的27个字的每个字仅出现一次。
6.a )画一个有一条欧拉回路和一条汉密尔顿回路的图。
图7-4.15(a)(b)图7-4.16图7-4.17b )画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。
c )画一个没有一条欧拉回路,但有一条汉密尔顿回路的图。
7.判断图7-4.17所示的图中是否有汉密尔顿回路。
8.设G 是一个具有n 个结点的简单无向图,3≥n ,设G 的结点表示n 个人,G 的边表示他们间的友好关系,若两个结点被一条边连结,当且仅当对应的人是朋友。
a )结点的度数能作怎样的解释。
b )G 是连通图能作怎样的解释。
c )假定任意两人合起来认识所留下的n -2个人,证明n 个人能站成一排,使得中间每个人两旁站着自己的朋友,而两端的两个人,他们每个人旁边只站着他的一个朋友。
d )证明对于n 4≥,c )中条件保证n 个人能站成一圈,使每一个人的两旁站着自己的朋友。
9.证明如G 具有汉密尔顿路,则对于V 的每一个真子集S 有 1)(+≤-S S G W10.一个简单图是汉密尔顿图的充要条件是其闭包是汉密尔顿图。
第四讲几种特殊图一、小结本讲主要介绍欧拉图与汉密尔顿图、平面图与着色以及一些相关的概念与结论等。
1.欧拉图的概念给定无孤立结点图G ,若存在一条路经过图G的每条边一次且仅一次,则该路称为欧拉路;若存在一条回路经过图G的每条边一次且仅一次,在该回路称为欧拉回路;具有欧拉回路的图称为欧拉图;具有欧拉路但无欧拉回路的图称为半欧拉图。
规定平凡图为欧拉图。
2.欧拉路与回路存在的充要条件无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或2个奇数度数的结点。
无向图G具有一条欧拉回路,当且仅当G是连通的,并且它的结点度数都是偶数的。
3.汉密尔顿图的概念给定图G ,若存在一条路经过图G的每个结点一次且仅一次,则该路称为汉密尔顿路;若存在一条回路经过图G的每个结点一次且仅一次,则该回路称为汉密尔顿回路;具有汉密尔顿回路的图称为汉密尔顿图;具有汉密尔顿路但无汉密尔顿回路的图称为半汉密尔顿图。
4.汉密尔顿回路存在的必要条件若图G=<V,E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S均有W(G-S)£|S|成立,其中W(G-S)是(G-S)中连通分支数。
5.汉密尔顿路存在的充分条件设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n - 1,则在G中存在一条汉密尔顿路。
6.平面图的概念设G=<V,E>是一个无向图,如果能把G的所有结点与边画在平面上,并且使得任何两条边除端点外没有其他的交点,则称G是一个平面图(也称可平面图).显然平面图的边与边只在结点处相交。
将平面图“图示在平面上”,有时也说成“将平面图嵌入一平面”。
7.平面图的面、边界、面的次数等概念设G是一个连通平面图,如果由图中的边所包围的一个区域内既不包含图的结点,也不包含图的边,则这个区域称为G的一个面,包围该面的所有边所构成的回路称为这个面的边界。
面r的边界的回路长度称为该面的次数,记为deg(r)。
8.欧拉图与哈密顿图1.设G为n (n≥2)阶欧拉图,证明G是2-边连通图证明:存在一条欧拉回路,所以去掉其中任何一边e,该图G-e仍然是连通得,去掉两条边,该图可能是不连通的,所以λ(G)≥2,所以该图是2-边连通图2.设G为无向连通图,证明:G为欧拉图当且仅当G的每个块都是欧拉图证明:根据理题G为欧拉图当且仅当G可表示为若干个边不重的圈之并,易证若干个边不重的边,不一定是块。
块是指没有割点的极大连通子图证明:必要性如果G是欧拉图,根据定理8.1及其推论:G是若干边不相交的圈的并,G是欧拉图当且仅当G时连通的且G中无奇度顶点,所以我们在G中找块时,无非就是找割点两侧的圈,割点在每个圈中出现的所得的度数都是偶数,割点为V(V v11,v12,...,v1n,V,v21,v22,...v2nV,v3.....,V)其实很容易证明,割点两侧的圈都是连通的,且度数都为偶数,必要性得证充分性每个块都是欧拉图, 都是圈其中得割点是V1,V2...,Vn,那么V1,v11,v12,...,V2,v21,v22,...,v2n,V3,v31,v32,...v3n,..,V3....,V1得证我觉得思路是正确的,不过证明过程不是很严格(图这部分我还没有认真思考如何写出严格的步骤,以后我会继续研究证明过程!!·!)3.设G恰有2k(k≥1)个奇度顶点的连通图,证明G中存在K条边不重的简单通路P1,P2,…Pk,使得E(G)=U(I=1,k)E(Pi)证明:方法二对k做归纳法(1)k=1时,G为半欧拉图,因而存在欧拉通路P,则P为所求,所以结论为真。
(2)设k=r时,结论为真。
要证:k=r+1时结论为真。
设G的2k=2r+2个奇度顶点分别为V1,V2,…,Vr,Vr+1V1',V2',…,Vr',Vr+1'在Vr+1与Vr+1'之间加一条新边er+1=(Vr+1,Vr+1'),得图G',则G'连通且有2r个奇度顶点。