等式的基本性质
- 格式:docx
- 大小:21.79 KB
- 文档页数:1
等式的基本性质知识梳理1.等式的基本性质(1)等式两边同时加(或减)同一个---------------,所得结果仍是等式。
(2)等式两边同时乘同一个---------(或除以同一个--------------的数),所得结果仍是等.式。
2.利用等式的性质解方程将下列方程变形为x=a的形式①x+7=5.②2x=-6对于方程①,只需两边同时-----,可得x=----------对于方程②,只需要两边同时乘------------或除以-----------,可得x=-----------.考点整合考点-:等式的基本性质1.下列等式的变形不成立的是()A.由5x-7y=2,得-2-7y=5x,B.由6x-3=x+4,得6x-3=4+x,C.8-x=x-5,得-x-x=-5-8,D.由x+9=3x-1,得3x-1=x+9.2.(一题多解)(1)在等式x-2=y-2的两边同时----,得x=y .(2)如果5x=10-2x,那么5x+_=10.3.在等式3a-5=2a+6的两边同时减去一个多项式可以得到a=11,则这个多项式可以是--。
考点二:等式的基本性质24.已知a=b,则下列等式不成立的是()A.a+1=b+1,B.1—a=1-b,C.3a=3b,D.2-3a=3b-25.下列方程变形正确的是()A.由3-x=-2,得x=3+2,B.3x=-6,得x=2.C.由4+x=6,得x=2 D由1/4x=o,得x=4 考点三.利用等式基本性质解方程6.下列利用等式基本性质解方程中,正确的是()A.由x-5=6,得x=1,B.由5x=6,得x=5/6,C.由-5x=10,得x=2,D.由x+3=4,得x=1.7.利用等式的性质解方程(1)x+2=5, (2)5x-7=8拓展提升8.先阅读下列材料,再解方程.小明解方程|x-3|=2用的思路是:由于|2|=2,|-2|=2,所以x-3 =2或x-3=-2,当x-3=2时,方程两边加3,得x=5,当x-3=-2时,方程两边加3,得x=1,所以|x-3|=2的解为x=5或x=1.你能用小明的思路解方程|1-2x|=3吗?请试一试吧.。
等式的基本性质是什么等式是数学中常见的概念,它表达了两个数或表达式相等的关系。
在数学中,等式具有一些基本的性质,这些性质对于理解和解决各种数学问题非常重要。
本文将讨论等式的基本性质,包括等式的自反性、对称性、传递性以及运算性质。
1. 等式的自反性等式的自反性指的是任何数与其本身相等,即 a = a。
这是因为任何数都是与其本身相等的,例如:3 = 3、x = x。
这个性质在数学推导和证明中经常被使用。
2. 等式的对称性等式的对称性指的是如果 a = b,那么 b = a。
也就是说,两个相等的数可以互换位置,依然保持相等关系。
例如,如果3 + 4 = 7,那么7 = 3 + 4。
这个性质在简化等式和解方程时非常有用。
3. 等式的传递性等式的传递性指的是如果 a = b,b = c,那么 a = c。
也就是说,如果两个数分别与第三个数相等,那么这两个数也是相等的。
例如,如果 x + 2 = 7,7 = 5 + 2,那么我们可以得出 x + 2 = 5 + 2,进一步简化为 x = 5。
等式的传递性可以用于连续推导和证明。
4. 等式的运算性质等式的运算性质是指在等式两边同时进行相同的运算,等式仍然保持相等。
例如,对等式两边同时加上一个相同的数,两边仍然相等;对等式两边同时乘以一个相同的非零数,两边仍然相等。
例如,如果 a = b,那么 a + c = b + c;如果 a = b,且c ≠ 0,那么 ac = bc。
这个性质在解方程和推导中经常被使用。
总结起来,等式的基本性质包括自反性、对称性、传递性和运算性质。
这些性质是数学推导和证明中的基石,能够帮助我们简化等式、解方程、推导数学关系,以及构建更复杂的数学理论。
通过理解和应用等式的基本性质,我们可以更加深入地理解数学中的各种概念和问题。
正确认识等式的性质,有助于提高解决数学问题的能力,培养数学思维和推理能力。
因此,熟悉并灵活运用等式的基本性质是数学学习中的重要一步。
等式的基本性质教案1. 等式的定义等式是指两个数或者表达式之间用等号连接的关系,表示它们的值相等。
例如,2+3=5就是一个等式,表示左边的表达式的值等于右边的表达式的值。
2. 等式的基本性质2.1 反身性任何数或者表达式都等于它本身,即a=a。
2.2 对称性如果a=b,那么b=a。
2.3 传递性如果a=b,b=c,那么a=c。
2.4 加法的基本性质•加法的交换律:a+b=b+a•加法的结合律:(a+b)+c=a+(b+c)•加法的零元素:a+0=a•加法的相反元素:a+(−a)=02.5 乘法的基本性质•乘法的交换律:a×b=b×a•乘法的结合律:(a×b)×c=a×(b×c)•乘法的单位元素:a×1=a•乘法的倒数元素:a×1=1,其中a≠0a2.6 分配律对于任意的数a,b,c,有a×(b+c)=a×b+a×c。
3. 等式的应用3.1 解方程等式的基本性质在解方程中起着重要的作用。
例如,对于方程2x+3=7,我们可以通过等式的基本性质将它变形为2x=4,然后再除以2得到x=2。
3.2 化简表达式等式的基本性质也可以用于化简表达式。
例如,对于表达式2x+3x,我们可以利用加法的结合律将它化简为(2+3)x,再利用乘法的基本性质得到5x。
3.3 证明定理等式的基本性质也可以用于证明定理。
例如,我们可以利用加法的结合律和交换律证明a+b=b+a,利用乘法的结合律和交换律证明a×b=b×a。
4. 总结等式的基本性质是数学中非常重要的概念,它们不仅可以用于解方程、化简表达式,还可以用于证明定理。
因此,我们需要深入理解等式的基本性质,并在实际问题中灵活应用。
《等式的基本性质》教学设计一、教材分析《等式的性质》选自北师大版七年级上册第五章《一元一次方程》第一节认识一元一次方程。
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型,它是解方程的必备知识,并且对解一元一次方程中的移项、合并同类项起着至关重要的作用。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
同时培养学生数学思维能力。
三、教学重难点教学重点:引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点:抽象归纳出等式的基本性质。
四、学情分析在此之前,学生已经学习了算式中的图形或字母所表示数的求解方法,大部分学生已经较好的掌握了用乘法分配律对代数式进行化解方法,并在学习中初步建立起了利用等式的性质求解图形和字母所表示的数的思维,认识了方程并会求解一些简单的方程。
但是,也有一少部分的学生对对方程的认识还不完善,误用等式的性质等,因此在教学中,关注全体学生的同时,要特别关注这些学生,课堂上给予提供及时的帮助。
五、教学过程一.引入师:天平右盘放一个质量为10kg的圆柱体a,左盘什么也不放,天平会出现什么状态呢?要使天平平衡,那么天平左边应该放一个质量为多少的小方块b呢?此时你们能用数学式子来表示天平平衡吗?a=b,这是一个等式,那么等式有什么性质?它的性质又有什么用途呢?这节课我们一起来研究等式的性质。
(板书:等式的性质)(引用学生熟悉的生活背景——天平秤,通过天平处于的平衡状态引出等式 a=b,从而引出课题。
从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题。
让学生从中体验学生与生活的紧密联系。
)二.探索新知1.探究等式性质1师:如果在天平左边加上一个质量为10kg的小方块c,要使天平保持平衡,右边需要进行什么操作?(根据学生回答,教师进行添加演示。
尊敬的各位评委老师,大家好,我是21号考生,我今天的说课内容是等式的基本性质。
等式的基本性质是人教版小学数学五年级上册第五单元中解简易方程的第二小节内容,是在学生刚刚理解了等式与方程,用字母表示数的基础上实行的,它是系统学习方程的开始,为后面学习解方程打下基础。
基于对教材的理解,我确定本节课的教学目标如下:学生理解并能够用语言表达出等式的基本性质,会用基本性质解决简单的问题,通过观察实验操作讨论归纳等活动,经历探索等式基本性质的过程,培养学生观察与概括,比较与分析的水平,积极参与教学活动,学生能够感受数学源于生活,生活离不开数学,培养学生积极的学习态度。
根据五年级学生的年龄特点和认知水平,我确定本节课的教学重点为引导学生探索发现等式的基本性质,利用基本性质解决简单的问题,教学难点是学生能够抽象归纳出等式的基本性质。
五年级的学生已经属于高年级,他们的思维已经由具体形象思维过渡到抽象思维,对周围事物的理解较以前也上升了一个层次。
基于本节课特点,为了更好的突出重点突破难点,按照学生认知规律,遵循教师为主导学生为主体训练为主线的指导思想,我将在教学中采用情境教学法,教师引导法,小组讨论法和讲练结合法等教学方法,在学法上采用教师引导组织学生自主探究合作交流,培养学生的探究水平和合作意识。
在教学设计时,我制定了以下教学环节:1,创设情景,引入新课。
课前让同学们先说一说生活中哪些地方用到平衡的知识,比如我们常见的扁担,跷跷板,天平,引入教材例题。
这个环节设计的目的将教材内容转化为现实情境,这样更贴近学生的现实生活,更容易让学生接受,调动学生学习积极性,激发学生学习兴趣,而且也能促使学生把知识的学习当成自我的需求。
2,尝试探究,探索新知
这个环节,我将利用天平直观演示两个实验:1.天平处于平衡状态,在天平两端的托盘上同时增加或减去相同数量的砝码,让学生观察此时天平的状态。
2.天平处于平衡状态,在天平两端的托盘上同时扩大或者缩小相同的倍数,让学生观察此时天平的状态。
通过道具直观演示,化静为动,激发学生学习兴趣,放手让学生自己思考并在此基础上,让学生前后四人为一个小组讨论探究,然后每个组派一个代表说出讨论的结果,出现以下情况:天平处于平衡时,两端同时加上或者减去同一个数量,天平任然平衡。
天平处于平衡时,两端同时扩大或者缩小相同的倍数,天平仍然平衡。
学生边汇报,我将利用多媒体演示学生的回报结果,其他同学能清楚的与自己的思路实行比较,即时发现错误并纠正过来。
对于学生的回答我将给予表扬鼓励学生积极发言,我将再引导学生归纳出等式的性质:等式两边加上或者减去同一个数,左右两边任然相等。
等式两边同乘一个数或同除以一个不为0的数,左右两边任然相等,初步完成教学目标。
3,随堂练习,巩固新知
要求同学们完成课本上的练习题,我下去巡看,了解学生掌握新知识的情况,并请同学上台板演,即时发现问题并讲解纠正,协助学生理解和应用新学的知识。
4,课堂小结,布置作业
课堂结束前,让学生先谈谈自己的收获,强化巩固知识,我再实行总结并布置作业。
教学评价,在教学过程中,要适时提醒学生注意等式的两边要同时加上或者减去或者乘或者除以一个不为0的数,等式左右才相等,这样有利于突破本节课的教学重点和难点,通过交流多种计算方法,学生感受数学在实际生活中的使用,产生积极的数学学习情感。
我的说课到此结束,谢谢。