大学物理作业--稳恒磁场二解答
- 格式:ppt
- 大小:445.50 KB
- 文档页数:17
*作品编号:DG13485201600078972981* 创作者: 玫霸*第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为 x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
习 题12-1 若电子以速度()()616120103010.m s .m s --=醋+醋v i j 通过磁场()0030.T =-B i ()015.T j 。
(1)求作用在电子上的力;(2)对以同样速度运动的质子重复上述计算。
解:(1)()()kj i j i B v F 136610624.015.003.0100.3100.2-⨯=-⨯⨯+⨯-=⨯-=e e (2)k F 1310624.0-⨯-=12-2 一束质子射线和一束电子射线同时通过电容器两极板之间,如习题12-2图所示。
问偏离的方向及程度有何不同?质子射线向下偏移,偏移量较小;电子射线向上偏移,偏移量较大。
12-3 如习题12-3图所示,两带电粒子同时射入均匀磁场,速度方向皆与磁场垂直。
(1)如果两粒子质量相同,速率分别是v 和2v ;(2)如果两粒子速率相同,质量分别是m 和2m ;那么,哪个粒子先回到原出发点? 解:qBmT π2=(1)同时回到原出发点;(2) 质量是m 先回到原出发点。
12-4 习题12-4 图是一个磁流体发电机的示意图。
将气体加热到很高温度使之电离而成为等离子体,并让它通过平行板电极1、2之间,在这习题12-2图习题12-3图习题12-4图里有一垂直于纸面向里的磁场B 。
试说明这两极之间会产生一个大小为vBd 的电压(v 为气体流速,d 为电极间距)。
问哪个电极是正极? 解:qE qvB =,vB E =,vBd Ed U ==,电极1是正极。
12-5 一电子以713010.m s v -=醋的速率射入匀强磁场内,其速度方向与B 垂直,10T B =。
已知电子电荷191610.C e --=-?。
质量319110.kg m -=?,求这些电子所受到的洛仑兹力,并与其在地面上所受重力进行比较。
解:11719108.410100.3106.1--⨯=⨯⨯⨯⨯==evB F N ,3031109.88.9101.9--⨯=⨯⨯==g m G e N18104.5⨯=GF12-6 已知磁场B 的大小为04.T ,方向在xy 平面内,并与y 轴成3p 角。
S 当面S 向长直导线靠近的过程中,穿过面S 的磁通量Φ及面上任一点P 的磁感应强度B 大小的变化为[ ]。
A. Φ增大,B 不变B. Φ不变, B 增大C. Φ增大,B 增大D. Φ不变, B 不变答案:【B 】 解:由磁场的高斯定理0=⋅⎰⎰S S d B ,即穿过闭合曲面的磁通量为零,或者说,磁感应线为闭合曲线,所以Φ不变;由于长直载流导线的磁场aI B πμ20=,与距离成反比,所以,当闭合曲面靠近载流直导线时,闭合曲面上各点的磁感应强度增大。
2.一电子以速度ν→垂直地进入磁感应强度为B →的均匀磁场中,此电子在磁场中运动的轨迹所围的面积内的磁通量将是[ ]。
A.反比于B ,正比于2νB. 反比于B ,正比于νC. 正比于B ,反比于2νD. 正比于B ,反比于ν 答案:【A 】解:电子垂直于磁场进入磁场,将在洛伦兹力的作用下,在垂直于磁场的平面内作圆周运动。
电子在磁场中运动的轨迹半径qBmv R = 由于磁场与面积S 垂直,所围的面积内的磁通量Bq v m B R S B 2222ππ==⋅=Φ3. 如图9-2所示,一无限长密绕真实螺线管,通电流强度为I 。
对套在螺线管轴线外的环路L (螺线管穿过环路)作积分=⋅⎰Ll B d 。
答案:I l B 0d μ=⋅⎰ 解: ①根据安培环路定理;②真实螺线管。
4.两平行长直导线相距0.4m ,每条导线载有电流10A (如图9-3所示),则通过图中矩形面积abcd 的磁通量m Φ= 。
答案:Wb 101.16-⨯解:电流1I 和2I 大小相等,方向相反,由毕萨定律可以判知,它们在矩形面积内产生的电磁感应强度方向均垂直于纸面向外。
由对称性可知,电流1I 和2I 产生的电磁感应强度穿过矩形面积的磁通量大小相等,因此只须计算一个电流产生磁场的磁通量。
x I B πμ2101=3ln 203.01.0111πμI ab dx B ab S d B d a ==⋅=Φ⎰⎰ 76012ln 31010ln 3 1.110(W b)ab I μπ--Φ=Φ==⨯≈⨯ 5.有一很长的载流导体直圆管,内半径为a ,外半径为b ,电流强度为I ,电流沿轴线方向流动,并且均匀地分布在管壁的横截面上,如图9-4所示。
浙江工业大学大学 物理稳恒磁场习题答案1解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度.则 ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕奥-萨伐尔定律,有 )60sin 90(sin 402︒-︒π=dIB μ式中 6/330tan 21l l Oe d =︒⋅==)231(34602-⋅π=lI B μ)332(40-π=l I μ 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 acb acb ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴ acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反. ∴ )332(402-π==lIB B μ,B的方向垂直纸面向里.7—2. 解:两折线在P 点产生的磁感应强度分别为:⎪⎪⎭⎫ ⎝⎛+=22141a I B o πμ 方向为⊗, ⎪⎪⎭⎫⎝⎛-=22142a I B o πμ 方向为⊙ 所以:aIB B B o πμ4221=-= 方向为⊗3. 解:O 点处的磁场由三部分构成,即:cd bc ab B B B B++=, 方向垂直纸面向里。
其中:()R Ia I B o o ab πμπμ4/90cos 0cos 4=-=(半无限长载流导线), RIB o bc 4μ=(半圆环), 0=cd B (其延长线过O 点)。
()T RIR I B B B B o o cd bc ab 5101.244-⨯=+=++=μπμ4解:设L 1中电流在O 点产生的磁感强度为B 1,由于L 1与O 点在一条直线上,由毕奥-萨伐定律可求出 01=B 设L 2中电流在O 点产生的磁感强度为B 2,L 2为半无限长直电流,它在O 处产生的场是无限长直电流的一半,由安培环路定律和叠加原理有RIR I B π=⋅π=4212002μμ 方向垂直图面向外.以下求圆环中电流在O 点产生的磁感强度.电流由L 1经a 点分两路流入圆环,一路由a 点经1/4圆弧流至b ,称此回路为L 3.另一路由a 点经3/4圆弧流至b ,称此段回路为L 4.由于圆环为均匀导体,若L 2的电路电阻为R ,则L 4的电阻必为3R .因此电流在L 3、L 4上的分配情况为L 3中电流为3 I /4,L 4中电流为I / 4.L 3、L 4中电流在O 点产生的磁感强度的大小相等,方向相反,总值为0.即043=+B B故O 点的磁感强度: =+++=43210B B B B BRIπ40μ 方向垂直图面向外. 56. 解:取一个窄长条dx ,它在P 点产生磁场()x b a a dx a I dB p -+=πμ20 所以,P 点磁场 bba a I xb a dx o a a I B p +=-+=⎰ln2200πμπμ 方向向外。
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4小为πR 2c Wb。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
13 稳恒电流、稳恒磁场习题解答一、选择题1、 沿x 方向的电流产生的磁感应强度:T yI B 67011052.0251042--⨯=⋅⋅⨯==πππμ 方向沿着z 轴正向沿y 方向的电流产生的磁感应强度: T yI B 6702105.24.0251042--⨯=⋅⋅⨯==πππμ 方向沿着z 轴负向T B B B 621105.2-⨯=-= 方向沿着z 轴正向2、1012a I B μ=2020222)145cos 45(cos 2/44a Ia I B πμπμ=︒-︒⋅=由于 21B B = 所以 8:2:21π=a a3、由安培环路定理得:NI l d H l =⋅⎰ 则 r NIH π2= rNI H B πμμ200==2102/2/0ln2212D D h NI dr h rNI s d B D D ⋅⋅=⋅⋅=⋅=⎰⎰πμπμφ4、aev Te t q I π2=== T aevaIB 5200105.1242-⨯===πμμ5、导线1的左端与导线2的右端到o 点的距离不同,则21B B ≠,即021≠+B B由于a、b 两端的电压相等,cb ac ab I I I 22==,所以,03=B ,而0321≠++=B B B B6、ebmv R = B A v v 2= 则B A R R 2= eBm T π2=所以B A T T =7、 由于DIB R V H = 则 IBVD R H =8、略。
二、填空题1、4.0×1010个; 2、单位正电荷沿闭合回路移动一周时,非静电力所作的功;⎰⋅=电源内l d E k ε;由负极指向正极; 3、 Rih πμ20; 4、0; 5、2.197×10-6Wb;6、 22R B π-; 7、7.59×10-2m ; 8、1:11、lnec rnec Tne I ===π2 )(10410个⨯==eclI n2、略3、先把狭缝补全,并假设其电流密度与圆筒的一样,由整个圆筒得对称性得,0=B再假设在狭缝处有一反向电流,其电流密度为i -,则狭缝在管轴线上的RihB πμ20=4、由A 、C 两端的电压相等:221122112211θθI I l I l I R I R I UAC=⇒=⇒==rI rI B πθμμ42110101==rI rI B πθμμ42220202==所以021=-B B5、由对称性得:Wb r r r Il dr l r I s d B r r r612100102.2ln 22222211-+⨯=+⋅=⋅⋅=⋅=⎰⎰πμπμφ6、由于⎰=⋅0s d B,则圆盘的磁通量: 22B R s d B π=圆盘⎰⋅ , 所以任意曲面S 的磁通量为: 22BR s d B S π-⋅⎰=7、m eBmv R 21059.7-⨯==8、rIB πμ20=2ln 220201πμπμφIldr l rIs d B aa=⋅⋅=⋅=⎰⎰2ln 2204202πμπμφIldr l rIs d B aa=⋅⋅=⋅=⎰⎰所以1:1:21=φφ三、计算题1、解:两半无限长载流直导线在O 点产生的磁感应强度为:01=B ;四分之一圆周载流导线在O 点产生的磁感应强度为:RIB 802μ=,方向垂直纸面向外;故:此载流导线在0点产生的磁场为: RIB 802μ=2、解:取坐标轴如图所示,将半球分割成无数薄圆盘片,圆周单位长度的线圈匝数为θπθπd NRd RNdN 22==当线圈通电流I 时,该薄圆盘片上电流在球心O 处产生的磁感应强度大小为dNy x IxdB 232220)(2+=μπθμθπμRNI d Ny x IxdB 20232220cos 2)(2=+=由于每个薄圆盘片上电流在球心O 产生的磁感应强度方向一致,故 ⎰⎰===0204cos πμθπθμRNI d RNI dB B磁感应强度的方向由电流的流向决定,沿y 轴正向或负向。
习题14-1. 如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B . 解:圆弧在O 点的磁感应强度 R6IR 4I B 001μπθμ==方向垂直纸面向外直导线在O 点的磁感应强度 R 2I 3)]60sin(60[sin 60cos R 4I B 000002πμπμ=--=方向垂直纸面向里 总场强 )313(R 2I B 0-=πμ 方向垂直纸面向里14-2. 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远处的电源相连,如图所示.求环中心O 点的磁感应强度B .解:设两段圆弧电流对O 的磁感应强度大小分别为1B 、 2B ,导线长度分别为1L 和2L ,横截面积为S ,电阻 率为ρ,电流1I 和2I 的关系12121221L L SL S L R R I I ===ρρ即 2211L I L I = r L I 4r dl 4I B 110L 21011⋅==⎰πμπμ r L I 4r dl 4I B 220L 22022⋅==⎰πμπμ由于两段圆弧电流对O 的磁感应强度方向相反,所以 0B =14-3. 无限长细导线弯成如图所示的形状,其中c 部分是在xoy 平面内半径为R 的半圆,试求通以电流I 时o 点的磁感应强度。
解: a 段 R4IB 01πμ=b 段 0B 2=c 段 R4IB 03μ=O 点的总场强 0044I IB R Rμμπ=-j +k 方向如图 14-4. 无限长直圆柱形导体内有一无限长直圆柱形空腔(如图所示),空腔与导体的两轴线平行,间距为a ,若导体内的电流密度均匀为j ,j 的方向平行于轴线。
求腔内任意点的磁感应强度B 。
解:采用补偿法,以导体的轴线为圆心,过空腔中任一点作闭合回路20r j d πμ=∙⎰L B 1 2rj B 01μ= 同理还是过这一点以空腔导体的轴线为圆心作闭合回路20)r a (j d -=∙⎰πμL B 2 2)r a (j B 02-=μ 1201B B B μ=+=⨯j a 14-5.在半径cm 1=R 的无限长半圆柱形金属片中,有电流A 5=I 自下而上通过,如图所示。