计量经济学实验报告记录
- 格式:doc
- 大小:338.00 KB
- 文档页数:14
计量经济学实验报告实验报告实验课程名称:计量经济学实验案例1:近年来,中国旅游业⼀直保持⾼速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作⽤⽇益显现。
中国的旅游业分为国内旅游和⼊境旅游两⼤市场,⼊境旅游外汇收⼊年均增长22.6%,与此同时国内旅游也迅速增长。
改⾰开放20多年来,特别是进⼊90年代后,中国的国内旅游收⼊年均增长14.4%,远⾼于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
解题过程:⾸先,通过Eviews,得出回归模型:Y=-274.377+0.013X2+5.438X3+3.272X4+12.986X5-563.108X6tc=-0.208 t2=1.031 t3=3.940 t4=3.465 t5=3.108 t6=-1.753R^2=0.995 F=173.354 DW=2.311从估计结果来看,模型可能存在多重共线性。
因为在OLS下,R^2^2与F值较⼤,⽽各参数估计量的t检验值较⼩,说明各解释变量对Y的联合线性作⽤显著,但各个解释变量存在共线性从⽽使得它们对Y的独⽴作⽤不能分辨,故t检验不显著。
应⽤Eviews,写下命令:cor X2 X3 X4 X5 X6。
得到相关系数矩阵。
可以从中看出五个经济变量之间两两简单相关系数⼤都在0.80以上,甚⾄有的在0.96以上。
表明模型存在着严重的多重共线性。
从⽽为了消除多重共线性,这⾥采⽤逐步回归法。
第⼀步,⽤每个解释变量分别对被解释变量做简单回归。
得:Y=-3462+0.0842X2 t=8.666 R^2=0.903 F=75Y=-2934+9.052X3 t=13 R^2=0.956 F=173Y=640+11.667X4 t=5.196 R^2=0.771 F=27Y=-2265+34.332X5 t=6.46 R^2=0.839 F=42Y=-10897+2014X6 t=8.749 R^2=0.905 F=77根据R^2统计量的⼤⼩排序,可见重要程度依次为X3, X6, X2, X5, X4。
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告(一)
一、实验背景
计量经济学实验是一种采用经济理论和方法来设计实验的经济研究方法。
经济实验的主要目的是检验经济理论,比如检验假设和改进预测。
它还可以用于定性评价和定量评价政策方案和市场动态,以及验证行为经济学理论。
二、实验内容
本次实验通过一组独立的在线调查来研究人们对收入分配政策的态度。
调查中,受访者被要求就14种不同的收入分配政策支持、反对和中立做出反应。
这14种收入分配政策包括财政公平政策、税收和补贴政策、劳动力市场政策和参与机会政策等。
以及根据态度的强度来改变互动形式,不同类型的回答有不同的加分,比如更强烈的支持会比中立的有更多分数。
三、实验结果
实验结果显示,在14种收入分配政策中,受访者大部分表示支持或者反对。
最受支持的是劳动力市场政策,而最受反对的是税收和补贴政策。
同时,实验还发现,这14种收入分配政策受实验者支持或反对的原因大部分是经济实惠:如果一个政策能够为普通大众带来经济实惠,这个政策很可能受到受访者的支持。
此外,一些政策因其有助于实现平等收入而受到支持。
四、实验结论
本次实验结论清楚地表明,受访者支持或反对收入分配政策跟经济实惠有关。
当人们普遍受益于收入分配政策时,他们很可能支持这种政策。
另外,实验还发现,有些政策受支持的原因还在于它们有助于实现平等收入的目的。
本次实验不仅对计量经济学的理论和方法提供了有价值的信息,而且还为构建经济实证提供了重要的参考意见。
可以认为,经过本次实验的进一步检验和优化,可以发现更详细、更准确的数据,以便进一步检验和发展计量经济学的理论与方法。
篇一:计量经济学实验报告 (1)计量经济学实验基于eviews的中国能源消费影响因素分析学院:班级:学号:姓名:基于e views的中国能源消费影响因素分析一、背景资料能源消费是指生产和生活所消耗的能源。
能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。
能源是支持经济增长的重要物质基础和生产要素。
能源消费量的不断增长,是现代化建设的重要条件。
我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。
随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。
同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。
可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。
在20世纪的最后二十年里,中国国内生产总值(gdp)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。
然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。
鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。
由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。
二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。
对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。
另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。
一、实验背景随着经济全球化和信息技术的发展,计量经济学作为一门重要的应用经济学分支,在各个领域都得到了广泛的应用。
本实验旨在通过综合运用计量经济学方法,对某一经济问题进行实证分析,从而加深对计量经济学理论和方法的理解,提高实际操作能力。
二、实验目的1. 掌握计量经济学的基本理论和方法;2. 学会使用计量经济学软件(如EViews)进行数据处理和模型分析;3. 培养分析实际经济问题的能力;4. 提高论文写作和报告表达能力。
三、实验内容1. 数据收集与处理本次实验以我国某城市居民消费水平为例,选取以下变量:- 居民可支配收入(X1)- 居民消费支出(Y)- 居民储蓄(X2)- 居民教育程度(X3)- 居民年龄(X4)数据来源于某城市统计局和相关部门。
在收集数据后,对数据进行整理和清洗,确保数据质量和准确性。
2. 模型设定根据实际情况和理论依据,选择以下模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为居民消费支出,X1为居民可支配收入,X2为居民储蓄,X3为居民教育程度,X4为居民年龄,β0为常数项,β1、β2、β3、β4分别为各变量的系数,ε为误差项。
3. 模型估计使用EViews软件对模型进行估计,得到以下结果:Y = 5.23 + 0.83X1 - 0.16X2 + 0.15X3 - 0.02X4 + ε4. 模型检验(1)残差分析:对残差进行检验,发现残差基本服从正态分布,不存在明显的异方差。
(2)自相关检验:对残差进行自相关检验,发现残差不存在自相关。
(3)拟合优度检验:计算R²值,得到R² = 0.89,说明模型拟合效果较好。
5. 模型解释根据模型结果,可以得出以下结论:(1)居民可支配收入对消费支出有显著的正向影响,即收入越高,消费支出越高。
(2)居民储蓄对消费支出有显著的负向影响,即储蓄越高,消费支出越低。
(3)居民教育程度对消费支出有显著的正向影响,即教育程度越高,消费支出越高。
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学课程实验报告实验序号2实验名称Eviews的异方差检验与校正实验组别12模拟角色实验地点2教602指导老师刘冬萍实验日期11月29日实验时间16:05——17:45一、实验目的及要求学会使用计量学分析^p 软件Eviews的异方差检验与校正功能。
二、实验环境2教602,经管学院电脑实验室三、实验内容与步骤 ?DATA Y _SORT _1.生成相关图SCAT _ Y根据相关图随着_的增大Y的取值范围不断增大,所以方程存在异方差.2.方程的异方差检验(1)WHITE 检验建立回归模型 LS Y C _ Dependent Variable: Y Method: Least SquaresDate: 11/22/12 Time: 17:06 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent var3.100000Adjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395进行WHITE 检验White Heteroskedasticity Test: F-statistic6.172459Probability0.009656Obs_R-squared8.413667Probability0.014893Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 11/22/12 Time: 17:07 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-0.8401623.268547-0.2570450.8002_0.0346910.0966160.3590620.7240_^20.0002590.4703750.6441R-squared0.420683Mean dependent var 2.70020__Adjusted R-squared 0.352528S.D.dependent var5.061699S.E.of regression4.072927Akaike info criterion 5.784082Sum squared resid 282.0085Schwarz criterion5.933442Log likelihood-54.84082F-statistic6.172459Durbin-Watson stat 2.196613Prob(F-statistic)Nr^2=8.413677 因为检验的P=0.014893小于0.05,所以存在异方差.(2) PARK检验LS Y C _Dependent Variable: YMethod: Least SquaresDate: 11/22/12 Time: 17:13Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent varAdjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion 4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395GENR E2=LOG(RESID2) GENR LN_=LOG(_)LS LNE2 C LN_ Dependent Variable: LNE2 Method: Least SquaresDate: 11/22/12 Time: 17:16 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-7.6927982.272023-3.3858810.0033LN_1.8393580.5713163.2195140.0048R-squared0.365421Mean dependent var-0.465580Adjusted R-squared0.330167S.D.dependent var1.915506S.E.of regression1.567714Akaike info criterion3.831754Sum squared resid44.23911Schwarz criterion3.931327Log likelihood-36.31754F-statistic10.36527Durbin-Watson stat1.937606Prob(F-statistic)0.004754由上图可看出P分别为0.0033 ,0.0048,0.004754都是小概率事件,所以方程是显著的,表明随机误差项的方差随着解释变量的取值不同而不断变化,即存在异方差性.(3)GLEISER检验LS Y C _GENR E=ABS(RESID)eq \o\ac(○,1)GENR _1=_^0.5LS E C _1Dependent Variable: E1Method: Least SquaresDate: 11/28/12 Time: 13:14Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-1.2504440.637839-1.9604370.0656_10.3265340.0812324.0197750.0008R-squared0.473046Mean dependent var1.192860Adjusted R-squared0.443771S.D.dependent var1.159531S.E.of regression0.864787Akaike info criterion2.641972Sum squared resid13.46141Schwarz criterion2.741545Log likelihood-24.41972F-statistic16.15859Durbin-Watson stat2.047999Prob(F-statistic)0.000804|e1|=-1.250444+0.326534_1^0.5 R^2=0.473046 F=16.15859 P= eq \o\ac(○,2)GENR _2=_^-2LS E C _2Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:27 Sle: 1 20Included observations: 20 VariableCoefficientStd.t-StatisticProb.C1.6651230.3427744.8577860.0001_2-657.9505338.0359-1.9463920.0674R-squared0.173874Mean dependent var 1.192860Adjusted R-squared 0.127978S.D.dependent var1.159531S.E.of regression1.082794Akaike info criterion 3.091607Sum squared residSchwarz criterion3.191180Log likelihood-28.91607F-statistic3.788442Durbin-Watson stat1.454864Prob(F-statistic)0.067388|e2|=1.665123-657.9505_^-2R^2=0.173874 F=3.788442 P= eq \o\ac(○,3)GENR _3=_^2LS E C _3Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:32 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.5805350.2376322.4430010.0251_30.0001132.67E-054.2339310.0005R-squared0.498972Mean dependent var 1.192860Adjusted R-squared 0.471138S.D.dependent var1.159531S.E.of regression0.843245Akaike info criterion 2.591520Sum squared resid 12.79911Schwarz criterion2.691093Log likelihood-23.91520F-statistic17.92617Durbin-Watson stat2.064289Prob(F-statistic)0.000499|e3|=0.580535+0.000113_4^2R^2=0.498972 F=17.92617 P=0.000499 eq \o\ac(○,4)GENR _4=_^-0,5LS E C _4Dependent Variable: EMethod: Least SquaresDate: 11/28/12 Time: 13:36Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C3.4730600.7618054.5589870.0002_4-15.53960-3.1195030.0059R-squared0.350914Mean dependent var 1.192860Adjusted R-squared 0.314854S.D.dependent var1.159531S.E.of regression0.959785Akaike info criterion 2.850424Sum squared resid 16.58137Schwarz criterion2.949998Log likelihood-26.50424F-statistic9.731299Durbin-Watson stat 1.759756Prob(F-statistic)|e4|=3.473060-15.53960 _^-0.5 R^2=0.350914 F=9.731299 P= eq \o\ac(○,5)GENR _5=_^-1LS E C _5Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:45 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C2.2657780.4628754.8950140.0001_5-45.8762517.27699-2.6553390.0161R-squared0.281461Mean dependent var1.192860Adjusted R-squared0.241542S.D.dependent var1.159531S.E.of regression1.009829Akaike info criterion2.952079Sum squared resid18.35560Schwarz criterion3.051653Log likelihood-27.52079F-statistic7.050824Durbin-Watson stat1.627325Prob(F-statistic)0.016106|e5|=2.265778-45.87625_^-1R^2=0.281461 F=7.050824 P=0.016106由以上的五个方程表明,利润函数存在异方差性(只要取显著水平a大于0.067388)3.WLS方法估计利润函数(1)利用最小二乘法估计模型LS Y C _Dependent Variable: Y Method: Least SquaresDate: 11/28/12 Time: 12:40 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent var3.100000Adjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395得到:y^=0.859469+0.036340_ R^2=0.441531 (0.0014)T=(1.212130) (3.772393 )(2)生成权数变量:根据帕克检验得到:Ls y c _Genr lne2=log(resid^2)Genr ln_=log(_)Ls lne2 c ln_Dependent Variable: LNE2 Method: Least SquaresDate: 11/28/12 Time: 12:56 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-7.6927982.272023-3.3858810.0033LN_1.8393580.5713163.2195140.0048R-squared0.365421Mean dependent var-0.465580Adjusted R-squared0.330167S.D.dependent var1.915506S.E.of regression1.567714Akaike info criterion3.831754Sum squared resid44.23911Schwarz criterion3.931327Log likelihood-36.31754F-statistic10.36527Durbin-Watson stat1.937606Prob(F-statistic)0.004754LNEi^2=--7.692798+1.839358LN_ R^2=0.365421 进行戈里瑟检验LS Y C _GENR E=ABS(RESID)eq \o\ac(○,1)GENR _1=_^0.5LS E C _1Dependent Variable: E1 Method: Least SquaresDate: 11/28/12 Time: 13:14 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-1.2504440.637839-1.9604370.0656_10.3265340.0812324.0197750.0008R-squared0.473046Mean dependent var1.192860Adjusted R-squared0.443771S.D.dependent var1.159531S.E.of regression0.864787Akaike info criterion2.641972Sum squared resid13.46141Schwarz criterion2.741545Log likelihood-24.41972F-statistic16.15859Durbin-Watson stat2.047999Prob(F-statistic)0.000804|e1|=-1.250444+0.326534_1^0.5 R^2=0.473046 F=16.15859 P= eq \o\ac(○,2)GENR _2=_^-2LS E C _2Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:27 Sle: 1 20Included observations: 20Variable CoefficientStd.Errort-StatisticProb.C1.6651230.3427744.8577860.0001_2-657.9505338.0359-1.9463920.0674R-squared0.173874Mean dependent var 1.192860Adjusted R-squared 0.127978S.D.dependent var1.159531S.E.of regression1.082794Akaike info criterion3.091607Sum squared resid21.18Schwarz criterion3.191180Log likelihood-28.91607F-statistic3.788442Durbin-Watson stat1.454864Prob(F-statistic)0.067388|e2|=1.665123-657.9505_^-2R^2=0.173874 F=3.788442 P= eq \o\ac(○,3)GENR _3=_^2LS E C _3Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:32 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.5805350.2376322.4430010.0251_30.0001132.67E-054.2339310.0005R-squared0.498972Mean dependent var 1.192860Adjusted R-squared 0.471138S.D.dependent var1.159531S.E.of regression0.843245Akaike info criterion 2.591520Sum squared resid 12.79911Schwarz criterionLog likelihood-23.91520F-statistic17.92617Durbin-Watson stat2.064289Prob(F-statistic)0.000499|e3|=0.580535+0.000113_4^2R^2=0.498972 F=17.92617 P=0.000499 eq \o\ac(○,4)GENR _4=_^-0,5LS E C _4Dependent Variable: EMethod: Least SquaresDate: 11/28/12 Time: 13:36Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C3.4730600.7618054.558987_4-15.539604.981434-3.1195030.0059R-squared0.350914Mean dependent var 1.192860Adjusted R-squared 0.314854S.D.dependent var1.159531S.E.of regression0.959785Akaike info criterion 2.850424Sum squared resid 16.58137Schwarz criterion2.949998Log likelihood-26.50424F-statistic9.731299Durbin-Watson stat1.759756Prob(F-statistic)0.005921|e4|=3.473060-15.53960 _^-0.5 R^2=0.350914 F=9.731299 P= eq \o\ac(○,5)GENR _5=_^-1LS E C _5Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:45 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C2.2657780.4628754.8950140.0001_5-45.8762517.27699-2.6553390.0161R-squared0.281461Mean dependent var1.192860Adjusted R-squared0.241542S.D.dependent var1.159531S.E.of regression1.009829Akaike info criterion2.952079Sum squared resid18.35560Schwarz criterion3.051653Log likelihood-27.52079F-statistic7.050824Durbin-Watson stat1.627325Prob(F-statistic)0.016106|e5|=2.265778-45.87625_^-1R^2=0.281461 F=7.050824 P=由上可得在戈里瑟检验里最显著的是:|e3|=0.580535+0.000113_4^2 R^2=0.498972 F=17.92617 P=所以取权数变量为 : GENR W1=1/_^1.839358GENR W2=_^2另外取:GENR W3=1/ABS(RESID)GENR W4=1/RESID^2(3)利用最小二乘法估计模型:模型一LS(W=W1) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:00Sle: 1 20Included observations: 20Weighting series: W1VariableCoefficientStd.Errort-StatisticProb.C-0.6259810.318225-1.9671030.0648_0.0116496.1001610.0000Weighted Statistics R-squared0.573253Mean dependent var 1.734420Adjusted R-squared 0.549545S.D.dependent var0.940124S.E.of regression0.630973Akaike info criterion 2.011533Sum squared resid7.166292Schwarz criterion2.06Log likelihood-18.11533F-statistic24.17958Durbin-Watson statProb(F-statistic)0.000111Unweighted StatisticsR-squared-0.050320Mean dependent var3.100000Adjusted R-squared-0.108671S.D.dependent var2.255986S.E.of regression2.375406Sum squared resid.5659Durbin-Watson stat1.104724怀特检验的结果是White Heteroskedasticity Test: F-statistic0.986667Probability0.393Obs_R-squared2.080114Probability0.353435Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:36 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8994860.4380022.0536110.0557_-0.0146130.012947-1.1286980.2747_^26.64E-057.37E-050.9011740.3801R-squared0.104006Mean dependent var0.358315Adjusted R-squared-0.001405S.D.dependent var0.545410S.E.of regression0.545793Akaike info criterion1.764328Sum squared resid5.064137Schwarz criterion1.913688Log likelihood-14.64328F-statistic0.986667Durbin-Watson stat2.743143Prob(F-statistic)0.393得到估计结果Y^=-0.625981+0.071060_(0.318225) (6.100161)R^2=0.573253 NR^2=2.080114 P=0.393 模型二LS(W=W2) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:12Sle: 1 20Included observations: 20Weighting series: W2VariableCoefficientStd.Errort-StatisticProb.C4.3789433.2559741.3448950.1954_0.0060140.0227010.2649070.7941Weighted StatisticsR-squared0.702288Mean dependent var 4.737844Adjusted R-squared 0.685748S.D.dependent var8.767922S.E.of regression4.915135Akaike info criterion 6.117155Sum squared resid 434.8540Schwarz criterion6.216728Log likelihood-59.17155F-statistic42.46109Durbin-Watson stat 2.705915Prob(F-statistic)0.000004Unweighted Statistics R-squared-0.428848Mean dependent var3.100000Adjusted R-squared-0.508229S.D.dependent var2.255986S.E.of regression2.770576Sum squared resid138.1696Durbin-Watson stat0.87进行怀特检验的结果是White Heteroskedasticity Test: F-statistic46.95441Probability0.000000Obs_R-squared16.93442Probability0.000210Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:39 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C36.1706519.848121.8223720.0860_-1.6942460.586696-2.8877740.0102_^20.0166170.0033394.9760240.0001R-squared0.846721Mean dependent var21.74270Adjusted R-squared0.828688S.D.dependent var59.75546S.E.of regression24.73269Akaike info criterion9.391610Sum squared resid19.00Schwarz criterion9.540970Log likelihood-90.91610F-statistic46.95441Durbin-Watson stat2.837461Prob(F-statistic)0.000000得到结果是:Y^=4.378943+0.006014_(3.255974) (0.022701)R^2=0.702288 NR^2=16.93442 P=0.00000 模型三LS(W=W3) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:19Sle: 1 20Included observations: 20 Weighting series: W3 VariableCoefficientStd.Errort-StatisticProb.C0.7076590.2082663.3978670.0032_0.0387920.0053887.20__1690.0000Weighted StatisticsR-squared0.945796Mean dependent var2.344549Adjusted R-squared0.942785S.D.dependent var2.209824S.E.of regression0.528582Akaike info criterion 1.657402Sum squared resid5.029181Schwarz criterion1.756975Log likelihood-14.57402F-statistic314.0812Durbin-Watson stat 1.849162Prob(F-statistic)0.000000Unweighted Statistics R-squared0.439521Mean dependent var 3.100000Adjusted R-squared 0.408383S.D.dependent var2.255986S.E.of regression1.735229Sum squared resid54.19836Durbin-Watson stat2.097049进行怀特检验得White Heteroskedasticity Test: F-statistic0.494755Probability0.618232Obs_R-squared1.100097Probability0.576922Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:40 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.1819650.0821532.2149610.0407_0.0050.0024280.7558340.4601_^2-8.06E-061.38E-05-0.5831500.5674R-squared0.055005Mean dependent var 0.251459Adjusted R-squared-0.056171S.D.dependent var0.099611S.E.of regression0.102370Akaike info criterion-1.582959Sum squared resid0.178155Schwarz criterion-1.433599Log likelihood18.82959F-statistic0.494755Durbin-Watson stat2.096222Prob(F-statistic)0.618232Y^=0.707659+0.038792_(0.208266) (0.005388)R^2=0.945796 NR^2=1.100097 P=0.618232 模型四 LS(W=W4) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:24Sle: 1 20Included observations: 20Weighting series: W4VariableCoefficientStd.Errort-StatisticProb.C0.5918930.1283534.6114400.0002_0.0429390.00409310.490560.0000Weighted Statistics R-squared0.994979Mean dependent var 2.087552Adjusted R-squared 0.994700S.D.dependent var4.277070S.E.of regression0.311364Akaike info criterion 0.598931Sum squared resid1.745056Schwarz criterion0.698505Log likelihood-3.989313F-statistic3567.168Durbin-Watson stat 2.173306Prob(F-statistic)0.000000Unweighted Statistics R-squared0.422958Mean dependent var 3.100000Adjusted R-squared 0.390900S.D.dependent var2.255986S.E.of regression1.760681Sum squared resid 55.79997Durbin-Watson stat 2.027424进行怀特检验的结果是White Heteroskedasticity Test: F-statistic0.851707Probability0.444108Obs_R-squared1.821500Probability0.402222Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:42 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.2750730.1762821.5604170.1371_-0.0048390.005211-0.9285840.3661_^22.04E-052.97E-050.6876810.5009R-squared0.091075Mean dependent var 0.087253Adjusted R-squared-0.015857S.D.dependent var0.217943S.E.of regression0.219664Akaike info criterion -0.055951Sum squared resid0.820291Schwarz criterion0.093409Log likelihood3.559512。
计量经济学实验报告
标题:基于地区人民收入与犯罪率的实证分析
摘要:
本实验报告旨在使用计量经济学方法对地区的人民收入与犯罪率之间的关系进行实证分析。
通过收集该地区多年的相关数据,并建立合适的计量模型,我们得出了以下结论:在控制其他因素的情况下,人民收入对犯罪率具有显著的负向影响。
这一研究结果对相关当局在制定犯罪预防政策时具有重要的指导意义。
1.引言
犯罪问题一直是社会关注的焦点。
了解犯罪率的影响因素对改善社会治安具有重要的意义。
本实验以地区为例,通过实证分析人民收入对犯罪率的影响,希望为相关当局提供制定犯罪预防政策的参考。
【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。
二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。
三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。
(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。
四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。
五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。
(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。
(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。
计量经济学实验报告1
实验名称:消费者行为实验
实验目的:通过本次实验,我们想了解消费者在不同价格下的
购买行为及其对市场供求关系的影响。
实验步骤:
1. 确定实验条件:我们在同一时间段内,在同一地点内展开实验,实验环境保持不变,商品名称为饮料。
2. 设定实验价位:我们将饮料的售价设定为10元、8元、6元、4元及2元五个价位。
3. 开始实验:我们分别让100人在不同价格下购买饮料,记录
下每个价位下的销售量。
4. 数据归集:我们将每个价位下的销售量进行汇总,得到销售
量数据表。
5. 制作图表:根据销售量数据表,我们制作了销量-价格的散点图,并根据数据拟合出销量的价格函数。
6. 结果分析:通过销量数据表和散点图以及销量的价格函数,
我们可以看出在价格上涨的情况下,销售量会随之下降,反之亦然。
实验结论:消费者对物品的需求在很大程度上受到价格的影响,价格上涨会导致销量下降,价格下跌则会导致销量上升。
这一规
律符合市场供求关系的基本原理,即需求量与价格成反比例关系。
实验展望:在今后的实验中,我们将继续探究不同品类、品牌
的商品对消费者行为的影响,并根据实验结果为经济决策提供有
用的数据依据。
一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。
本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。
二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。
三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。
2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。
包括去除缺失值、异常值等。
(2)建立模型根据实验目的,选择合适的计量经济学模型。
本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。
(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。
(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。
(5)模型预测根据估计得到的模型,对地区生产总值进行预测。
3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。
(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。
(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。
预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。
四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。
一、实验一: Eviews入门二、实验目的: 熟悉Eviews基本操作三、实验内容1.对数据序列做散点图, 时间序列图2.对组对象的建立和作图3.利用已有序列生成新序列4.对数据序列做描述统计分析三、实验过程记录1.数据散点图2.对组对象的建立和作图obs Y X1981 585.0000 636.82001982 576.0000 659.25001983 615.0000 685.92001984 726.0000 834.15001985 992.0000 1075.2601986 1170.000 1293.2401987 1282.000 1437.0901988 1648.000 1723.440 1989 1812.000 1975.640 1990 1936.000 2181.650 1991 2167.000 2485.460 1992 2509.000 3008.970 1993 3530.000 4277.380 1994 4669.000 5868.480 1995 5868.000 7171.910 1996 6763.000 8158.740 1997 6820.000 8438.890 1998 6866.000 8773.1003.利用已有序列生成新序列Modified: 1981 1998 // y2=y^21981 342225 1990 37480961982 331776 1991 46958891983 378225 1992 62950811984 527076 1993 124609001985 984064 1994 217995611986 136**** **** 344334241987 1643524 1996 457381691988 2715904 1997 465124001989 3283344 1998 47141956 4. 对数据序列做描述分析XMean 3371.411Median 2078.645Maximum 8773.100Minimum 636.8200Std.Dev.2951.449Skewness 0.834886Kurtosis 2.102850Jarque-Bera 2.694765Probability 0.259920Sum 60685.39Sum Sq.Dev.1.48E+08Observations 18四、实验体会 Ⅰ、感悟1. 实验过程开始比较难但是随着实验一步一步的进行和练度的上升感觉越来越简单, 速度也越来越快 2. 经过实验一的基本操作使得后续实验更加容易 3. 最开始一定要掌握基础操作否则实验无法继续Ⅱ、建议1. 基础操作讲解应该更详细, 而且正式, 不要太快, 否则很多同学都学不会后续实验无法继续进行 2. 实验指导可不可以加入视频教程一、 实验二: 线性回归模型的参数估计、假设检验及点预测 二、 实验目的: 全过程体验Economictrics 中线性回归模型的估计方法 三、 实验内容(a )1. 研究的问题: 居民可支配收入X 与年均消费性支出Y 之间的关系2. 数学模型设定i X Y μββ++=103. 散点观察Y Mean 2807.444 Median 1874.000 Maximum 6866.000 Minimum576.0000 Std.Dev.2333.000 Skewness 0.809287 Kurtosis2.088648Jarque-Bera 2.587760 Probability0.274205Sum 50534.00 Sum Sq.Dev.92529116Observations184.分析: 存在比较明显的线性关系5.参数估计及分析Variable Coefficient Std.Errort-Statistic Prob.C 135.3063 24.74086 5.468940 0.0000X 0.691754 0.024671 28.03936 0.0000R-squared 0.978835 F-statistic 786.2057Adjusted R-squared 0.977590 Prob(F-statistic) 0.0000006.分析: 由表可知, =135.3063 =0.691754。
山东轻工业学院实验报告 成绩课程名称 计量经济学基础 指导教师 实验日期 2012.04.27院(系) 商学院 专业班级 实验地点 机电楼机房学生姓名 学 号 同组人实验项目名称 多元线性回归模型(案例分析)一、 实验目的和要求建立某地区个人储蓄X 与可支配收入Y 之间的线性经济模型并估计之1、学习教材相关内容,理解EViews 的操作程序;已阅读本次实验的引导,了解EViews 中的相关工具。
2、根据经济理论建立计量经济模型,做好相应的实验记录,判断模型是否存在异方差性。
3、以EViews 文件形式提交实验报告。
二、 实验原理根据一元线性回归模型的建立及其假定条件,建立经济模型,利用图示法、斯皮尔曼等级相关系数、戈德菲尔德-夸特检验、White 检验、加权最小二乘估计等方法来检验模型是否存在异方差性。
三、 主要仪器设备、试剂或材料计算机,计量经济学基础课本,EViews 软件四、 实验方法与步骤第一步,建立数学模型根据X 与Y 的样本数据,作X 与Y 之间的散点图可以看出, 它们的变化趋势是线性的,由此建立可支配收入Y 与个人储蓄X 之间的一元回归模型。
第二步,估计参数用EViews 软件的操作步骤如下:1、图示法检验 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)ii i u X Y ++=10ββ(1)create u 1 15(2)data y x 输数据(3)Ls y c x(4)scat y xGenr e1=resid scat x ei2、斯皮尔曼等级相关系数检验(1)Sort X(2)data X dd1(3)GENR e1=abs(resid)(4)Sort e1(5)Data e1 dd2(6)genr r=1-6*@sum((dd2-dd1)^2)/(31^3-31) genr Z=r*@sqrt(30)3、G-Q检验(1)Sort X(2)Smpl 1 11(3)Ls y c x(记下第一个残差平方和:150867.9)Smpl 20 31Ls y c x(记下第二个残差平方和:966997.0)(4)计算F,查表作出判断G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。
《计量经济学》课程实验报告1专业国际经济与贸易班级B谢谢谢谢姓名XXX 日期2012.9.28一、实验目的1.学会Eviews工作文件的建立、数据输入、数据的编辑和描述;2.掌握用Eviews软件求解简单线性回归模型的方法;3.掌握用Eviews软件输出结果对模型进行统计检验;4.掌握用Eviews软件进行经济预测。
二、实验内容:根据1978年到2007年的中国居民的人均消费水平和人均GDP的数据,通过模型设定,估计参数,模型检测,回归预测等步骤,分析中国全体居民的消费水平和经济发展的数量关系,对于探寻居民消费增长的规律性。
三、实验数据四:实验步骤:1:模型设定。
由上表分析居民人均消费水平(y)和人均GDP(x)的关系,制作散点图。
从中可以看出居民消费水平(y)和人均GDP(x)大体呈现为线性关系。
2:估计参数:利用软件eviews作简单线性分析的步骤包括以下几方面内容。
建立文件夹,首先双击eviews图标,进入主页。
在其菜单栏中点击File|new|workfile,并选择数据频率为1978和2007.输入数据:在eviews命令框中直接输入“data x y”回车出现“Group”窗口数据编辑框,在对应的“y”,“x”下输入数据。
估计参数。
在eviews命令框中直接键入“LS Y C X”,按回车,即出现回归结果。
Dependent Variable: YMethod: Least SquaresDate: 11/17/12 Time:8:37Sample: 1978 2007Included observations: 30Coefficient Std. Error t-Statistic Prob.C 224.3149 55.64114 4.031457 0.0004X 0.386430 0.007743 49.90815 0.0000R-squared 0.988884 Mean dependent var 2175.067Adjusted R-squared 0.988487 S.D. dependent var 2021.413S.E. of regression 216.8978 Akaike info criterion 13.66107Sum squared resid 1317251. Schwarz criterion 13.75448Log likelihood -202.9161 Hannan-Quinn criter. 13.69095F-statistic 2490.823 Durbin-Watson stat 0.115812Prob(F-statistic) 0.000000若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项、实际值、拟合值的图形:3:模型检测:包括经济意义检测和拟合有度、统计检验。
计量经济学实验报告姓名:何璐(交换生)班级:经济91学号:09182250实验报告1.第二章十二题1.1实验目的建立一元计量经济学模型并对方程进行检验和预测1.2实验内容1)做出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程。
并解释斜率的经济意义。
2)对所建立的回归方程进行检验3)若2008某地区国内生产总值为8500亿元,求该地区税收的预测值及区间。
下表是中国2007年内地各地区税收Y和国内生产总值GDP的统计资料1.3实验过程与结论(1)做Y关于GDP 的散点图,按照如下步骤:在Eviews软件中,选择Quick/Graph(图1-1),出现Serise List(图1-2)对话框图1-1图1-2在Graph窗口的Graph Type栏中选择Scatter Diagram,点击OK按钮,即出现如图1-3所示的散点图。
图1-3在Eviews软件下,为了得到税收Y随GDP变化的一元线形回归方程,选择Quick/Estimate Equation(图1-4),得到如下结果:图1-4由此可知,Y随GDP变化的一元线形方程:Ý=-10.63+0.071GDP(-0.12) (9.59)R2=0.7603斜率的经济意义是:2007年,中国内地各省区GDP每增加1亿元时,税收平均增加0.071亿元。
(2)在α=5%的显著水平下,自由度为31-2=29的t分布的临界值位2.045,可由此判断,斜率项显著不为零,截距项显著为零.R2=0.7603,表明税收的76%的变化可以GDP的变化来解释,拟合度较好(3)通过Eviews操作得出Y在GDP=8500下的预测值(图1-5)为593.2667图1-52、第三章十一题2.1实验目的学习对二元回归方程进行估计,并进行F检验和t检验2.2实验内容1)估计回归方程的参数及随机干扰项的方差,计算可决系数和调整的可决系数。
2)对方程进行F检验,对参数进行t检验,并构造参数95%的置信区间。
计量经济学实验报告本实验的目的是通过一个计量经济学实验来探讨价格对商品需求的影响。
在实验中,我们设定了两组价格水平,并观察了对应的商品需求量。
通过对实验结果的统计分析,我们得出了一些有关价格与需求关系的结论。
实验过程中,我们邀请了50位参与者来参与实验。
实验的流程如下:首先,我们向参与者展示了一段视频介绍了商品的特点和使用价值。
然后,我们给每位参与者一份价格调查问卷,询问他们对该商品的需求情况以及他们愿意出多少钱购买该商品。
根据参与者的回答,我们将他们分为两组,一组是高价组,另一组是低价组。
高价组的参与者被告知商品价格为100元,而低价组的参与者被告知商品价格为50元。
接下来,我们记录了每组参与者购买该商品的数量。
通过对实验结果的分析,我们发现价格与商品需求之间存在着显著的负向关系。
具体而言,对于高价组的参与者,他们的购买数量明显低于低价组的参与者。
这说明高价对于商品需求有着抑制的效果,而低价则相对而言更吸引人。
这个结果与经济学理论中的需求理论相吻合,即价格上升会导致需求减少,价格下降会导致需求增加。
通过本实验的结果,我们进一步验证了这一理论。
此外,我们还通过计算得到了价格弹性系数。
价格弹性系数是一种衡量价格变动对需求变动影响程度的指标。
计算结果显示,高价组的价格弹性系数为-1.5,而低价组的价格弹性系数为-2.5。
这表明当价格上涨1%,高价组的需求量会下降1.5%,而低价组的需求量会下降2.5%。
可以看出,价格对于低价组的参与者来说,其影响更加敏感。
通过这个实验,我们得出了结论:价格对商品需求有着显著影响,高价会抑制需求,而低价则会促进需求。
这个实验结果对于企业制定定价策略以及消费者作出购买决策都具有一定的指导意义。
然而,需要注意的是,本实验具有一定的局限性。
首先,实验规模相对较小,只有50位参与者。
其次,实验环境与真实市场环境存在差异,可能会影响实验结果的有效性。
为了更好地了解价格与需求的关系,今后可以进一步开展更大规模的实验,并且尽可能真实地模拟市场环境。
计量经济学实验报告记录
————————————————————————————————作者:————————————————————————————————日期:
中国海洋大学《计量经济学》实验报告
实验项目名称:黄金价格影响因素解析
指导教师:殷克东
姓名:王焜
学号: 14120021030 年级专业: 14金融
中国海洋大学经济学院
1.通过实验课是自己能够了解并深入认识什么是计量经济学,掌握计量经济学的理论与方法。
了解和掌握计量经济分析的步骤和方法。
同时知道如何在实践中运用计量经济学。
使得我们从感性认识上升到理性认识。
2.通过课程实验,利用计量经济学模型定量分析研究经济问题。
培养自我的分析问题和解决问题的能力,在学完该课程后,不仅学习了理论知识和计算方法,还能接触到社会实际中有待解决的计量经济问题,并能建立数学模型和求解。
3.通过实验教学培养自己发现问题、分析问题、解决问题的能力,能够自己分析数据结果。
掌握什么是
4.最重要的就是自己能够有理论认知上升到实践认知。
通过自己的理解真切的感受经济现象的变动。
【实验要求】
1.要求我们了解和熟悉计量经济学的基本知识,为具体操作做好知识准备。
2.要求我们熟悉什么是计量经济,如何利用计量分析,他们各自的分类又有什么,为具体操作做好知识准备。
3.要求我们利用计量经济学软件,按实际操作规范和流程进行操作处理,培养自己的动手操作能力。
培养自己对EViews计量软件的熟悉程度。
4.能够正确运用软件,能够看懂软件中给出的数据所代表的意义。
能够了解理论、数据与实际之间的某些相关性。
3、对于外界条件的变化,具有一定的分析解决问题的能力。
【实验原理】
1.EViews8.0软件
2.多重共线性、模型检验、模型的修正等
3.利用教材《计量经济学实验教程》以及老师提供的数据
1.创建工作文件;
2.利用并建立“黄金价格影响因素”的计量经济学模型
3.输入数据
4.回归分析
5.利用样本数据估计模型的参数
6.检验美元指数、通胀率、原油价格、US利率、GDP、标准普尔指数对黄金价格是否有显著影响
7.对模型的修正
8.对模型修正后的检验
9.总结
【实验步骤】
1.打开并新建EViews8.0文件;
2.利用“黄金价格、美元指数、通胀率、原油价格、US利率、GDP、标准
普尔指数”数据,建立相关文件;
3.根据出现的数据进行回归分析;
4.对建立的模型进行检验
5.对模型进行修正
6.对修正后的模型进行检验
7.总结
【实验步骤——自己操作】
一、实验数据:
黄金价格、美元指数、通胀率、原油价格、US利率、GDP、标准普尔指数的数据
如下:
Y U I O RS RL GDP SP 317.66126.3 3.5554.547.4711.376849300171.61 368.24113.8 1.9128.7 5.979.027*********.89 447.9598.8 3.6633.05 5.789.387313300264.51 438.3193.1 4.0827.45 6.679.717613900250.48 382.5898.3 4.8332.228.119.267885900285.41 384.9391.3 5.3938.577.59.328033900339.97 363.2993.2 4.2532.33 5.388.778015100325.5 344.9788.6 3.0829.9 3.438.148287100316.08 360.9195.4 2.9625.2837.228523400435.23 385.4292.4 2.6123.02 4.257.978870700472.99 385.584.5 2.8123.96 5.497.599093700465.25 389.0986.9 2.9328.42 5.017.379433900614.42 332.3995.4 2.3425.32 5.067.279854300766.22 295.2498.6 1.5515.93 4.78 6.5310283500963.36 279.9199.1 2.1921.62 4.647.05107798001248.77 280.1108.3 3.3834.65 5.827.62112260001425.59 272.22115 2.8328.32 3.47.08113472001330.93 311.33112.4 1.2927.65 1.61 6.49115530001140.21 364.897.5 2.2732.82 1.01 5.6611840700895.84 410.5288.3 2.6843.42 1.37 5.63122638001080.64 44686.7 3.3955.8 3.15 5.23126384001199.21 60685.9 3.2463.02 4.73 5.59129762001262.07 69980.5 2.8567.37 4.36 5.56132541001416.42 76877.3 3.8592.31 1.73 5.63133122001479.22 95081.7-0.3454.240.15 5.3112987400877.56二、实验步骤:
(1)建立回归模型
1.建立EViews8.0实验文件
2.输入Y、X的数据
在EViews软件的命令窗口键入DATA命令,命令格式为::输入:data Y X1 X2 X3 X4 X5 X6 X7
3.建立回归模型:
建立Y C X1 X2 X3 X4 X5 X6 X7的回归,
其中Y代表黄金价格 X1代表美元指数 X2代表通胀率 X3代表原油价格 X4代表短期US利率 X5代表长期US利率 X6代表GDP X7代表标准普尔指数
4.回归结果如下:
5、对模型的初步分析
a.对模型拟合度分析:从报告单可以看出,R-squared为0.89,模型拟合度在89%左右。
b.对变量的显著性分析:在t检验中,截距项参数、RS的参数并不显著。
可能为0。
但要判断是否为0,还要对残差和变量进行检验。
c.对模型显著性分析F检验中,F统计量值为21.39,大于显著水平为5%的临界值,说明模型显著。
对多个解释变量的模型,若OLS法估价的R2与F值较大,但t检验值较小,则说明各解释变量对Y的联合线性作用显著,但各解释变量间存在共线性而使得它们对Y的独立作用不能分辨,故t检验不显著。
d、对模型的残差项进行分析
异方差检验:怀特检验
由图知Obs*R-squared统计量为9.75,概率值大于0.05,说明不存在异方差自相关检验
P(Obs*R-squared)为1.75,大于0.05的显著水平,所以不存在自相关。
e、对变量进行分析
对变量进行多重共线性检验
由相关系数矩阵知:
1.GDP与RL、RS和SP存在明显的线性相关性。
可以看出GDP与利率存在线性负相关,与股票市场存在线性正相关。
因为GDP是反映国家经济的一个重要指标,因此,国家为了刺激经济,货币政策往往比较宽松,利率比较低,此时国家经济发展,GDP加速上升,带动股市上扬。
2.RL与SP存在明显的线性相关性。
由股票理论价格=股票收益/利率知
道利率与股票价格存在负相关。
由于存在多重共线性存在,导致OLS下估计量的非有效、变量显著性检验失效和模型预测失效,因此必须克服模型多重共线性,对模型进行修改。
6、对模型的修正
前面已经大致检测出存在多重共线性的解释变量,分别是短期利率(X4)、长期利率(X5)、标准普尔指数(X7)、GDP(X6)。
对这些解释变量进行逐步回归:短期利率:
长期利率
标准普尔指数
GDP
可以看出在标长期利率的逐步回归中t检验最显著;R检验值为0.883,在四个检验中最好;因此模型应采用G=C(1)+C(2)*X1+C(3)*X2+C(4)*X3+C(5)*X5+E 的形式。
7、对修正后的模型进行检验
怀特检验中P值大于0.05,说明不存在残差项异方差。
BG-LM检验中P值大于0.05,说明不残差项存在自相关。
8、总结
模型经过修正后,有效的减小了多重共线性的影响。
除了模型稳定性不是很理想,且可能遗留了某些解释变量外,其他的检验比较理想。
由报告可以看出:
一.黄金的价格与美元走势存在负相关。
二.黄金价格与石油价格存在正相关。
三.黄金价格与通货膨胀率存在负相关。
四.黄金价格与利率水平存在着正相关,这与现实不符。
从回归模型的报告中,我们只能确认黄金价格与石油价格存在正相关,而其他的影响因素因为数据本身的缺陷以及经济变量中普遍存在着多重共线性不能有效消除,所以失去了应有的经济意义。
【实验总结】
1.熟悉了EViews8.0软件的运行环境;
2.利用所给的数据建立所需的文件、参数等;
3.运用数据进行经济意义分析,了解计量实验在现实中的运用;
4.学会了如何建立文件、如何使用软件;
5.回归分析,建立图表等。
从计量经济学的实验中,我学会了如何将课本中的公式运用在软件中,知道了软件中每一部分数据所代表的意义,总之就是从认识到实践,再从实践到认识,深刻了书中要点,学习收获颇多。