几何图形初步认识的常见题型
- 格式:ppt
- 大小:415.50 KB
- 文档页数:15
《6.1 几何图形初步认识的常见题型》题型1 物体的特征在构建几何体模型中的应用1.如图的四种物体中,最接近于圆柱的是()A.B.C.D.题型2 生活中的情境在构建平面几何模型中的应用2.如图是一座房子的平面图,这幅图的组成是()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形题型3 图形的特征在认识平面图形、认识几何体中的应用3.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体题型4 常见立体图形的特征在分类中的应用4.如图a,请帮助甲、乙、丙三名同学从图b中选出合适的立体图形.题型5 常见几何体的特征在说明面、顶点、棱的关系中的应用5.如图:由此可推测n(n为大于或等于3的正整数)棱柱有多少个面?多少个顶点?多少条棱?题型6 常见立体图形的特征的应用6.如图是一个直七棱柱,它的底面边长都是2cm,侧棱长是5cm,观察这个棱柱,回答下列问题:(1)这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状相同、面积相等?侧面的面积是多少?(2)这个七棱柱一共有多少条棱?它们的长度分别是多少?(3)这个七棱柱一共有多少个顶点?(4)通过对棱柱的观察,你能说出n棱柱的顶点数与n的关系及棱的条数与n的关系吗?题型7 图形的展开与折叠在辨识相对面中的应用7.现有4枚相同的骰子,骰子的展开图如图①所示,这4枚骰子摞在一起后,如图②,相互接触的两个面点数之和都是8,这4枚骰子每枚骰子都有一个面被遮住了(阴影部分),你能说出每个被遮住的面各是几点吗?题型8 图形的形成在计算中的应用8.如图,将一个长方形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少(结果保留m)?参考答案1.答案:A2.答案:C3.答案:C4.答案:见解析解析:甲选(2)和(4);乙选(1);丙选(1)和(3).5.答案:见解析解析:n 棱柱有(2n +)个面,2n 个顶点,3n 条棱.6.答案:见解析解析:(1)这个七棱柱共有九个面,上、下两个底面是七边形,七个侧面都是长方形.上、下两个底面的形状相同、面积相等;七个侧面的形状相同、面积相等.225770()S cm =⨯⨯=侧.(2)这个七棱柱一共有21条棱,侧棱长为5cm ,其余棱长为2cm.(3)这个七棱柱一共有14个顶点.(4)通过观察棱柱可知,n 棱柱共有2n 个顶点,3n 条棱.7.答案:见解析解析:1为1点,2为6点,3为4点,4为3点.8.答案:见解析解析:(1)得到的几何体是圆柱.(2)绕宽所在直线旋转一周得到的圆柱的底面半径为6cm ,高为4cm ,体积=2364144()cm ππ⨯⨯=;绕长所在直线旋转一周得到的圆柱的底面半径为4cm ,高为6cm ,体积=234696()cm ππ⨯⨯=.《6.2 线段的计算的四大技法》素养练技法1 和差关系法1.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使2BC AB =,取AC 中点D ;(2)在(1)的条件下,如果4AB =,求线段BD 的长度.2.如图,已知线段24AB =cm ,点P 是线段AB 上任意一点,与点,A B 都不重合,点C 是线段AP 的中点,点D 是线段PB 的中点,计算CD 的长度.3.如图,点C 为线段AB 的中点,点D 在线段CB 上.(1)图中共有_______条线段;(2)图中,AD AC CD BC AB AC =+=-,类似地,请你再写出两个有关线段的和与差的关系式;(3)若8, 1.5AB DB ==,求线段CD 的长.技法2 设元列方程法4.如图,点C 为线段AB 上一点,且:2:3AC BC =,N 是BC 的中点,若35AN =,求AB 的长.5.如图,线段AB 被点,C D 分成3:4:5的三部分,且AC 的中点M 和BD 的中点N 之间的距离是40cm ,求AB 的长.6.已知线段AB ,延长AB 到点C ,使12BC AB =,延长BA 到点D ,使2AD AB =,点,M N 分别是,BC AD 的中点,若MN =18cm ,求AB 的长.技巧3 整体求值法7.如图,点,C D 是线段AB 上的两点,,M N 分别是AC 与BD 的中点.(1)若2418AB CD ==,,求MN 的长;(2)若,AB a CD b ==,请用含,a b 的式子表示MN 的长.8.如图,点C 在AB 的延长线上,,M N 分别是AC 和BC 的中点.(1)若6cm,4cm AB BC ==,则线段MN 的长是_______;(2)若cm,cm AB a BC b ==,则线段MN 的长是_______;(3)若AB m =cm ,求线段MN 的长;(4)若点C 是线段AB 的延长线上任意一点,其他条件不变,请你用一句简洁的话描述你发现的结论.技法4 分类讨论法9.已知线段AB =60cm ,在直线AB 上画线段BC ,使BC=20cm ,点D 是AC 的中点,求CD 的长度.10.已知,点,,A B C 在同一条直线上,且AC =10,BC =6,,M N 分别是,AC BC 的中点.(1)画出符合题意的图形;(2)依据(1)中的图形,求线段MN 的长.参考答案1.答案:见解析解析:(1)图略(2)因为2BC AB =,且AB =4,所以BC =8,所以8412AC AB BC =+=+=.因为点D 为AC 的中点,所以162AD AC ==,所以642BD AD AB =-=-=. 2.答案:见解析解析:设AP 的长度是x cm ,则PB 的长度是(24-x )cm ,则12CP AP ==12x cm ,12PD PB = =12(24-x )cm ,则CD =12x +12(24-x )=111222x x +-=12(cm ).3.答案:见解析解析:(1)6(2)答案不唯一,如:① BC CD BD =+;②AD AB DB =-. (3)因为点C 为线段AB 的中点,AB =8,所以12CB AB ==4,所以CD =CB DB - 2.5=.4.答案:见解析解析:设AC =2x ,BC =3x ,则5AB AC BC x =+=,因为N 是BC 的中点, 所以12CN BC ==13322x x ⨯=. 因为AN AC CN =+, 所以32352x x +=,解得x =10,所以AB=5x =5×10=50.5.答案:见解析解析:设AB 的长为xcm.因为线段AB 被点C ,D 分成3:4:5的三部分, 所以3141,124123AC x x CD x x ====,512DB =x ,因为AC 的中点M 和DB 的中点N 之间的距离是40cm ,又18MC x =,524DN x =, 所以115408324x x x ++=,解得x =60,所以AB 的长为60cm. 6.答案:见解析解析:设AB x =cm ,则122x BC AB ==cm ,124x BM BC ==cm ,2AD x =cm ,12AN AD x ==cm ,由18MN =cm ,得184x x x ++=,解得x =8,则8AB =cm . 7.答案:见解析解析:(1)因为24AB AC CD BD =++=,CD =18,所以24186AC BD +=-=.因为M 是AC 的中点,N 是BD 的中点,所以11,22CM AC DN BD ==,所以11163222CM DN AC BD +=+=⨯=,所以31821MN MC DC DN =++=+=. (2)由(1)知AC BD a b +=-,111()222CM DN AC BD a b +=+=-. 所以111()222MN CM DN DC a b b a b =++=-+=+. 8.答案:见解析解析:(1)3cm(2)12a cm (3)因为,M N 分别是AC 和BC 的中点, 所以12CM AC =,12CN BC =,又因为AC AB BC =+,所以111()222MN CM CN AC BC AB BC =-=-=+111222BC AB m -== cm. (4)若点C 是线段AB 延长线上的任意一点,点,M N 分别是AC 和BC 的中点,则线段MN 的长等于12AB . 9.答案:见解析解析:当点C 在线段AB 上时,如图①,111()(6020)222CD AC AB BC ==-=-=140202⨯=(cm ); 当点C 在线段AB 的延长线上时,如图②,111()(6020)222CD AC AB BC ==+=+180402=⨯=(cm ). 所以CD 的长度为20cm 或40cm .10.答案:见解析解析:(1)画图如下:(2)如图①:因为,M N 分别是,AC BC 的中点, 所以152MC AC ==,132NC BC ==, 所以8MN MC NC =+=;如图②:同理可求5MC =,3NC =,所以2MN MC NC =-=,答:MN 的长是8或2.。
七年级数学第四章几何图形初步典型例题及答题技巧单选题1、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.答案:A解析:由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.小提示:本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平2、下列各角中,是钝角的是( ).A .14周角B .23平角C .平角D .14平角答案:B解析:直接利用角的定义逐项分析即可得出答案.解:A. 14周角= 14×360°=90°,不是钝角,不合题意; B. 23平角=23×180°=120°,是钝角,符合题意;C. 平角=180°,不是钝角,不合题意;D. 14平角=14×180°=45°,不是钝角,不合题意. 故选:B小提示:此题主要考查了角的概念,正确掌握平角、周角、钝角的概念是解题关键.3、已知∠AOB =30°,如果用10倍的放大镜看,这个角的度数将( )A .缩小10倍B .不变C .扩大10倍D .扩大100倍答案:B解析:根据角是从同一点引出的两条射线组成的图形.它的大小与图形的大小无关,只与两条射线形成的夹角有关系,直接判断即可.解:角的大小只与角的两边张开的大小有关,放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是30度.小提示:本题考查了角的概念.解题关键是掌握角的概念:从同一点引出的两条射线组成的图形叫做角,明确角的大小只与角的两边张开的大小有关.4、如图所示,∠COD的顶点O在直线AB上,OE平分∠COD,OF平分∠AOD,已知∠COD=90°,∠BOC=α,则∠EOF的度数为()A.90°+αB.90°+α2C.45°+αD.90°﹣α2答案:B解析:先利用∠COD=90°,∠BOC=α,求出∠BOD的度数,再求出∠AOD的度数,利用角平分线,分别求出∠FOD和∠EOD的度数,相加即可.解:∵∠COD=90°,∠BOC=α,∴∠BOD=90°-∠BOC=90°-α,∴∠AOD=180°-∠BOD=90°+α,∵OF平分∠AOD,∴∠DOF=12∠AOD=45°+12α,∵OE平分∠COD,∴∠DOE=12∠COD=45°,∴∠EOF=∠FOD+∠DOE=90°+α;2故选:B.小提示:本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.5、观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D.答案:B解析:利用正方体及其表面展开图的特点解题.解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.小提示:本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.6、下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线答案:B解析:根据两点确定一条直线进而得出答案.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.小提示:此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.7、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是()A.传B.国C.承D.基答案:D解析:正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则:“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面.故选:D.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8、如图,是一个几何体的表面展开图,则该几何体中写“英”的面相对面上的字是( )A.战B.疫C.情D.颂答案:B解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“战”与“情”是相对面,“疫”与“英”是相对面,“颂”与“雄”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手分析是解题的关键.填空题9、下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:_____.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:_______.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:_________.答案:(3)(2)(1)解析:解:观察图形,根据所给的信息可得:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).所以答案是:(3);(2);(1).小提示:本题考查了直线、射线与线段的知识,注意掌握三者的特点,给出图形应该能判断出是哪一个.10、一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)答案:12π或16π解析:根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,π×32×4=12π,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:13π×42×3=16π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:13所以答案是:12π或16π.小提示:此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.11、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是________答案:丁解析:能围成正方体的“一四一”,“二三一”,“三三”,“二二二”的基本形态要记牢.解题时,据此即可判断答案.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,所以答案是:丁.小提示:本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.12、如图,∠AOC=∠BOD=90°,∠AOB=70°,在∠AOB内画一条射线OP得到的图中有m对互余的角,其中∠AOP=x°,且满足0<x<50,则m=_______.答案:3或4或6解析:分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.∠AOB =35°时,∠BOP=35°①∠AOP=12∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.所以答案是:3或4或6.小提示:本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.13、已知∠A=20°18',则∠A的余角等于__.答案:69°42′解析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.解答题14、如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).答案:(1)CM=1cm,NM=2.5cm;(2)12n解析:(1)求出AM长,代入CM=AM-AC求出即可;分别求出AN、AM长,代入MN=AM-AN求出即可;(2)分别求出AM和AN,利用AM-AN可得MN.解:(1)∵AB=8cm,M是AB的中点,∴AM=12AB=4cm,∵AC=3cm,∴CM=AM−AC=4−3=1cm;∵AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∴AM=12AB=4cm,AN=12AC=1.5cm,∴MN=AM−AN=4−1.5=2.5cm;(2)∵AC=m,BC=n,∴AB=AC+BC=m+n,∵M是AB的中点,N是AC的中点,∴AM =12AB =12(m +n),AN =12AC =12m ,∴MN =AM −AN =12(m +n)−12m =12n . 小提示:本题考查了两点之间的距离,线段中点的定义的应用,解此题的关键是求出AM 、AN 的长.15、已知:如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段AC =6,BC =4,求线段MN 的长度;(2)若AB =a ,求线段MN 的长度;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出MN 的长度. 答案:(1)5cm ;(2)12a ;(3)1或5. 解析:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度.(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB .(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵ AC =6,BC =4,∴ AB =6+4=10,又∵ 点M 是AC 的中点,点N 是BC 的中点,∴ MC =AM =12AC ,CN =BN =12BC ,∴ MN =MC +CN =12AC +12BC =12(AC +BC )=12AB =5(cm ).(2)由(1)中已知AB =10cm 求出MN =5cm ,分析(1)的推算过程可知MN =12AB ,故当AB=a时,MN=12a,从而得到规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.(3)分类讨论:当点C在点B的右侧时,如图可得:MN=MC−NC=12AC−12BC=12(AC−BC)=12×(6−4)=1;当点C在线段AB上时,如(1);当点C在点A的左侧时,不满足题意.综上可得:点C在直线AB上时,MN的长为1或5.小提示:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.。
(文末带答案)人教版初一数学几何图形初步常考题型例题单选题1、某个几何体的展开图如图所示,该几何体是()A.三棱柱B.三棱锥C.长方体D.圆柱2、如图,点A位于点O的()方向上.A.西偏东35°B.北偏西65°C.南偏东65°D.南偏西65°3、下面图形中,以直线l为轴旋转一周,可以得到圆柱体的是( )A.B.C.D.4、如图所示,与∠B不是同一个角的是()A.∠1B.∠ABC C.∠DBE D.∠DAC5、如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°6、下列说法中错误的有().(1)一个锐角的余角比这个角大;(2)一个锐角的补角比这个角大;(3)一个钝角的补角比这个角大;(4)直角没有余角,也没有补角;(5)同角或等角的补角相等;(6)若∠1与∠2互余,∠2与∠3互余,则∠1与∠3也互余.A.1个B.2个C.3个D.4个7、如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100°B.110°C.115°D.120°8、点A,B,C在同一条直线上,AB=6cm,BC=2cm,M为AB中点,N为BC中点,则MN的长度为()A.2cm B.4cm C.2cm或4cm D.不能确定填空题9、已知∠A=20°18',则∠A的余角等于__.10、长方体的长、宽、高分别是12cm、7cm、5cm,它的底面面积是_________cm2;它的体积是_______cm3.11、长方体的长、宽、高分别是12cm、7cm、5cm,它的底面面积是_________cm2;它的体积是_______cm3.12、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=137°,则∠BOC=________°.13、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.解答题14、如图,AB与OC交于点O,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,求∠AOE的度数;(2)∠COD与∠EOC存在怎样的数量关系?请说明理由.15、如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)(文末带答案)人教版初一数学几何图形初步_003参考答案1、答案:A解析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:三个长方形和两个等腰三角形折叠后,能围成的几何体是三棱柱.故选A.小提示:本题考查了由展开图判断几何体的知识,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.2、答案:B解析:根据方向角的定义即可直接解答.解:如图,A在点O的北偏西65°.故选:B.小提示:本题考查了方向角的定义,正确确定基准点是关键.3、答案:C解析:直接根据旋转变换的性质即可解答.解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.小提示:此题主要考查图形的旋转变换,发挥空间想象是解题关键.4、答案:D解析:根据角的概念和角的表示方法,依题意求得答案.解:除了∠DAC,其他三种表示方法表示的都是同一个角∠B.故选:D小提示:利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.5、答案:B解析:首先根据补角的定义求得这个角的度数,然后根据余角的定义即可求出这个角的余角.根据定义一个角的补角是150°,则这个角是180°-150°=30°,这个角的余角是90°-30°=60°.故选B.小提示:此题主要考查的是补角和余角的定义,属于基础题,较简单,主要记住互为余角的两个角的和为90°;互为补角的两个角的和为180°.6、答案:D解析:根据余角和补角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角进行解答即可.(1)若已知的锐角>等于45°,则它的余角<等于45°.错误;(2)锐角的补角是钝角,正确;(3)一个钝角的补角一定是锐角,所以钝角的补角比这个角小,错误;(4)直角有补角,补角为90°,错误;(5)根据补角定义,同角或等角的补角相等,正确;(6)若∠1与∠2互余,∠2与∠3互余,则∠1=∠3,错误;故选:D.小提示:本题考查的是余角和补角,熟知相关定义是解答此题的关键.7、答案:B解析:根据时针在钟面上每分钟转0.5∘,分针每分钟转6∘,然后分别求出时针、分针转过的角度,即可得到答案.解:∵时针在钟面上每分钟转0.5∘,分针每分钟转6∘,∴钟表上12时20分钟时,时针转过的角度为0.5∘×20=10∘,分针转过的角度为6∘×20=120∘,所以12:20时分针与时针的夹角为120∘−10∘=110∘.故选B .小提示:本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.8、答案:C解析:分点C 在直线AB 上和直线AB 的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可. 解:①当点C 在直线AB 上时∵M 为AB 中点,N 为BC 中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C 在直线AB 延长上时∵M 为AB 中点,N 为BC 中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN 的长度为2cm 或4cm .故答案为C.小提示:本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.9、答案:69°42′解析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.10、答案: 84 420解析:根据长方体的底面积和体积公式计算即可;长方体的底面积=长×宽=12×7=84,长方体的体积=底面积×高=84×5=420.故答案为84,420.小提示:本题主要考查了长方体的底面积和体积,准确计算是解题的关键.11、答案: 84 420解析:根据长方体的底面积和体积公式计算即可;长方体的底面积=长×宽=12×7=84,长方体的体积=底面积×高=84×5=420.故答案为84,420.小提示:本题主要考查了长方体的底面积和体积,准确计算是解题的关键.12、答案:43解析:由题意可得∠AOB=∠COD=90°,则可得∠AOD+∠BOC=180°,即可求得结果.解:∵∠AOB=∠COD=90°∴∠AOC+∠BOC+∠BOD+∠BOC=180°即∠AOD+∠BOC=180°∵∠AOD=137°∴∠BOC=43°,所以答案是:43.小提示:本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键.13、答案:72°.解析:由∠AOB=∠COD=90°,∠AOC=∠BOD ,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC . 解:∵ ∠AOB=∠COD=90°,∴ ∠AOC=∠BOD , 又∠AOD=108°,∴ ∠AOC=∠BOD=108°-90°=18°,∴ ∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.14、答案:(1)60°;(2)∠COD +∠EOC =90°.理由见解析解析:(1)先求出∠AOC 的度数,再根据角平分线的定义解答;(2)根据角平分线的定义表示出∠COD 与∠EOC ,然后整理即可得解.解:(1)∵∠BOC =60°,∴∠AOC =180°﹣∠BOC =180°﹣60°=120°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×120°=60°;(2)∠COD +∠EOC =90°.理由如下:∵OD 平分∠BOC ,OE 平分∠AOC ,∴∠COD =12∠BOC ,∠EOC =12∠AOC ,∴∠COD +∠EOC =1(∠BOC +∠AOC )=1×180°=90°.11小提示:本题考查了余角和补角的概念,角度的计算,以及角平分线的定义,准确识图并熟记概念是解题的关键.15、答案:(75√3+360)cm2.解析:试题分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积. 试题解析:∵其高为12cm ,底面半径为5,∴其侧面积为6×5×12=360cm 2密封纸盒的底面积为:12×5×√32×5×12=75√3cm 2, ∴其全面积为:(75√3+360)cm 2.。
专题12 几何图形初步章末重难点题型(13个题型)一、经典基础题题型1 直线、射线、线段、角的基本概念题型2 角的表示、换算及比较大小题型3 直线、射线、线段的实际生活中的应用题型4 线段、角度中的计数问题题型5 作图问题题型6 与线段有关的计算题型7 实际背景下线段的计算问题题型8 钟面上的角度问题题型9 方位角问题题型10 一副直角三角形板中的角度问题题型11 与角平分线(角的和差)有关的计算题型12 余角、补角、对顶角的相关计算题型13 七巧板相关问题二、优选提升题题型1 直线、射线、线段、角的基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。
例1.(2022·广东汕头七年级期末)下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个变式1.(2022·山东潍坊·七年级期末)如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C .到点B 的距离为3的点有两个D .经过A ,B 两点的直线有且只有一条变式2.(2022·河北七年级期末)下列说法正确的是( )A .连接两点的线段,叫做两点间的距离B .射线OA 与射线AO 表示的是同一条射线C .经过两点有一条直线,并且只有一条直线D .从一点引出的两条直线所形成的图形叫做角题型2 角的表示、换算及比较大小例1.(2022·山东菏泽·七年级期末)角度换算:2648'︒=___°.变式1.(2022·江西吉安·七年级期末)如下图,下列说法正确的是( )A .1∠与AOB ∠表示同一个角 B .1β∠=∠C .图中共有两个角:1∠,β∠D .β∠表示AOC ∠ 变式2.(2022·湖南永州·七年级期末)若3218A '∠=︒,321530B '''∠=︒,32.25C ∠=︒,则( ). A .A B C >>∠∠∠ B .B A C ∠>∠>∠ C .A C B ∠>∠>∠ D .C A B ∠>∠>∠题型3 直线、射线、线段的实际生活中的应用解题技巧:主要考查“两点确定一条直线”和“两点之间,线段最短”,弄明白两者的区别即可例1.(2022·陕西·西安铁一中分校七年级期末)下列现象能用“两点确定一条直线”来解释的是( ) ①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设; ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.A .①③B .①②C .②④D .③④变式1.(2022·河南漯河·七年级期末)下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;(3)植树时,只要确定两颗树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4)题型4 线段、角度中的计数问题例1.(2022·山西·右玉县七年级期末)阅读并填空:问题:在一条直线上有A ,B ,C ,D 四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A 为端点的线段有AB ,AC ,AD 3条,同样以B 为端点,以C 为端点,以D 为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB 和BA 是同一条线段,即每一条线段重复一次,所以一共有______条线段.那么,若在一条直线上有5个点,则这条直线上共有______条线段;若在一条直线上有n 个点,则这条直线上共有______条线段.知识迁移:若在一个锐角AOB ∠内部画2条射线OC ,OD ,则这个图形中总共有______个角;若在AOB ∠内部画n 条射线,则总共有______个角.学以致用:一段铁路上共有5个火车站,若一列火车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备______种不同的车票.变式1.(2022·山东青岛·七年级期末)平面内两两相交的7条直线,其交点个数最少是m 个,最多是n 个,则m +n 的值为( )A .18B .20C .22D .24变式2.(2022·广西贺州·七年级期末)如图,从AOB ∠的顶点引出两条射线OC ,OD ,图中的角共有( )A .3个B .4个C .6个D .7个题型5作图问题 解题技巧:(1)尺规作图:做已知线段的和差倍数问题;(2)常规作图:与线段射线直线有关的基本作图。