当前位置:文档之家› 流体力学复习资料

流体力学复习资料

流体力学复习资料
流体力学复习资料

第一章 绪论

1-2、连续介质的概念:流体占据空间的所有各点由连续分布的介质点组成。 流体质点具有以下四层含义:

1、流体质点的宏观尺寸很小很小。

2、流体质点的微观尺寸足够大。

3、流体质点是包含有足够多分子在内的一个物理实体,因而在任何时刻都应该具有一定的宏观物理量。

4、流体质点的形状可以任意划定,因而质点和质点之间可以完全没有空隙。 1-

5、流动性:液体与固体不同之处在于各个质点之间的内聚力极小,易于流动,不能自由地保持固定的形状,只能随着容器形状而变化,这个特性叫做流动性。 惯性:物体反抗外力作用而维持其原有状态的性质。

黏性:指发生相对运动时流体内部呈现内摩擦力而阻止发生剪切变形的一种特性,是流体的固有属性。

内摩擦力或黏滞力:由于流体变形(或不同层的相对运动),而引起的流体内质点间的反向作用力。

F :内摩擦力;=du F A

dy

μ±。 τ:单位面积上的内摩擦力或切应力(N/m2);==F du A dy

τμ±。 A :流体的接触面积(m2)。

μ:与流体性质有关的比例系数,称为动力黏性系数,或称动力黏度。

du

dy

:速度梯度,即速度在垂直于该方向上的变化率(1s -)。 黏度:分为动力黏度、运动黏度和相对粘度。 恩氏黏度:试验液体在某一温度下,在自重作用下从直径的测定管中流出200cm3

所需的时间T1与在20℃时流出相同体积蒸馏水所需时间T2之比。1

t 2

T E T =。

牛顿流体:服从牛顿内摩擦定律的流体(水、大部分轻油、气体等) 温度、压力对黏性系数的影响

温度升高时液体的黏度降低,流动性增加;气体则相反,温度升高时,它的黏度增加。这是因为液体的黏度主要是由分子间的内聚力造成的。压力不是特别高时,压力对动力黏度的影响很小,并且与压力的变化基本是线性关系,当压力急剧升高,黏性就急剧增加。对于可压缩流体来说,运动黏度与压力是密切相关的。在考虑到压缩性时,更多的是动力黏度而不用运动粘度。

压缩性:在温度不变的情况下,流体的体积随压强的增大而变小的性质。 压缩系数βp :在一定温度下,密度的变化率与压强的变化成正比。1p dV

V dp

β=-

12V V V ?=-,V1、V1分别是压强为P1、P2时流体的体积。

21p p p ?=-,p1、p2分别是流体体积为V1、V2时的压力。

流体弹性力的大小用体积系数或体积弹性模数表示,体积弹性模数是体积压缩系数的倒数。用1

=

K ρ

β来度量。

膨胀性:在压强不变的情况下,流体体积随温度升高而变化的性质。 膨胀系数βt :在一定压强下,体积的变化率与温度的变化成正比。/t dV V

dT

β=

=210T T T ?->,温度升高量,单位为K 或℃。

=21V V V ?->0,体积增大量,单位为3m 。

表面张力σ:液体分子间有内聚力(吸引力),但在液体与气体交界的自由面上,各个方向上的内聚力不能达到平衡,从而产生了分子的内压力。在这个内压力的作用下,液体表面层中的分子有尽量挤入液体内部的趋势,因而液体要尽可能地缩小它的表面积。在宏观上,液体表面就好像是拉紧的弹簧模,这是由于沿着表面存在着使表面有收缩倾向的张力,这种力叫做液体的表面张力。

毛细现象:毛细现象就是液体和固体相接触时,液体沿壁面上升或下降的现象。

第二章 流体静力学

流体的静压强特性:

1)流体静压强的方向必然重合于受力面的内法线方向。

2)平衡流体中任意点的静压强值只能由该点的坐标决定,而与该压强的作用方向无关,即沿各个方向作用于同一点的压强是等值的。

作用在流体微团上的力可分为两类:质量(体积)力和表面力。质量力m F ?r

包括

重力mg r

和流体加速运动时的惯性力ma r ,是与流体微团质量大小成正比并且集中作用在微团质量中心上的力。表面力是相邻流体(或固体)作用于此流体微团各个表面上的力。其大小与表面面积有关,而且分布作用在流体表面上。

欧拉平衡方程式:1f 01f 01f 0

x y z p

x p

y p z

ρρρ?-

=??-

=??-=? W (x ,y,z ):是描述质量力的标量函数,称为质量力的势函数。由势函数决定的力称为有势力,可以看到:在有势的质量力作用下,流体中任何一点上的流体静压强可以由坐标唯一地确定,这样流体才能保持平衡状态,因而结论是:只有在有势的质量力作用下流体才能平衡。

等压面:流体中压强相等的点所组成的面。等压面与质量力垂直,且等压面也就是等势面

液体静力学基本方程式:C g

p

z =ρ+

由gh p p 0ρ+=得以下推论:1)静压强的大小与液体的体积无直接关系。相同的液体,压强只和深度h 有关;2)两点的压强差,等于两点间单位面积铅直液柱的重量;3)平衡状态下,液体内任意点压强的变化,等值地传递到其它点.帕斯卡定理:

)z z (g p p 2112-ρ+=

流体静力学方程的几何意义和能量意义:

1) 几何意义

A z 、

B z 、

C z 、

D z ——位置水头。

'A p g ρ、'

B p g

ρ——测压管高度或称相对压强高度。

C p g ρ、

D p

g

ρ——静压高度或绝对压强高度。 相对压强高度与绝对压强高度,均称为压强水头。

位置高度与测压管高度之和如'

A A p z g

ρ+,称为

测压管水头。

位置高度与静压高度之和如图C

C p z g ρ+——静压水头。''A B A B p p z z g g ρρ+=+及C

D C D p p

z z g g

ρρ+

=+ 上式说明:①静止液体中各点位置水头和测压管高度可以相互转换,但各点测压管水头却永远相等,即敞口测压管最高液面处于同一水平面——测压管水头面。②静止液体中各位置水头和静压高度亦可以相互转换,但各点静压水头永远相等,即闭口的玻璃管最高液面处在同一水平面——静压水头面。

2) 能量意义(物理意义)

z ——比位能,表示单位重量液体对基准面O —O 的位能;

p

g ρ——比压能,表示单位重量液体所具有的压力能;

p

z g

ρ+

——比势能,表示单位重量液体对基准面具有的势能。 能量意义:在同一静止液体中,各点处单位重量液体的比位能可以不相等,比压能也不相同,但其比位能与比压能可以相互转化,比势能总是相等的,是一个不变的常量。是能量守恒定律在静止液体中的体现。

7、

其中绝对压强用p 表示;当地大气压用a p 表示

压力体的定义:实压力体:压力体和液体在曲面的同侧,压力体内实有液体,称为实压力体,垂直分力方向向下。,虚压力体:压力体和液体在曲面的异侧,其上地面为自由也米娜的延伸面,压力体内无液体,称为虚压力体

第3章 流体运动学基础

概念性知识:

1.描述流体运动的两种方法:拉格朗日方法和欧拉方法。拉格朗日方法是一种基于流体质点的描述方法,通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。欧拉方法描述适应流体的运动特点,利用了流场的概念。(所谓流场,是指在流动的空间充满了连续的流体质点,而这些质点的某些物理量分布在整个流动空间,形成物理量的场,如速度场、温度场等,这些场统称为流场)通过在流场中不同的空间位置(x ,y ,z )设立许多“观察点”,对流体的情况进行观察,来确定通过该观察点时流体质点的流动参数,得到的物理量随时间变化的函数(x ,y ,z ,t ),(x ,y ,z ,t )称为欧拉函数。

2.定常场与非定常场:如果流场中的各物理量的分布与时间t 无关,即t T

t t p t ??=

?ρ?=??=?ν?···=0则称为定常场或定常流动。定常场各物理量分布具有时间不变性。如果任何一个物理量分布不具有时间不变性,则称为非定常场或非定常流动。

3.均匀场与非均匀场:如果流场中的各物理量的分布与空间无关,即

y p y p x p z y x ??=??=??=?ν?=?ν?=?ν?=z

T y T x T z y x ??=??=??=?ρ?=?ρ?=?ρ?···=0,则称为均匀场和均匀流动。均匀场各物理量分部具有空间不变性。如果任何一个物理量分布不具有空间不变性,则称为非均匀场或非均匀流动。

4.流线与迹线:迹线是流体质点运动轨迹线,是拉格朗日方法描述的几何基础。流线是流场中假想的这样一种曲线:某一时刻,位于该曲线上的所有流体质点的运动方向都与这条曲线相切。流线是欧拉方法描述的几何基础。同一时刻,流场

中会有无数多条流线(或流线簇)构成流动图景,称为流线谱或流谱。 5.驻点与奇点:作流线方程C xy =的曲线如右图所示,是一族

双曲线,质点离原点越近,即r 越小,其加速度与加速度均越小,在r =0点处,速度与加速度均为零。流体力学上称速度为零的点为驻点(或滞止点),如图中O 点即是。

在r →∞的无穷远处,质点速度与加速度均趋于无穷。流体力学上称速度趋于无穷的点为奇点。 驻点和奇点是流场中的两种极端情况,一般流场中不一定存在

6.流线的性质:1.定常流动中流线形状不随时间变化,而且流体质点的迹线与流线重合。 2.在实际流场中,除了驻点和奇点以外,流线既不能相交,也不能突然转折。

7.流管与流束:在流场中任意取出一个有流线从中通过的封闭曲线,如图3-8中的l ,l 上的所有流线围成一个封闭管状曲面,称为流管。流管内所包含的所有流体称为流束。当流管的横断面积无穷小时,所包含的流束称为元流,最小的元流就退化为一条流线。如果封闭曲线取在管道内壁周线上,则流束就是管道内部的全部流体,这种情况称为总流。

8.过流断面、流量和净通量:流管内与流。处处垂直的截面称为过流截面(或过流断面),过流截面可以是平面或曲面。流量:单位时间内流过某过流截面的流体体积称为体积流量,也简单称为

流量,如果流过的流体按质量计量,则称为质量流量。 净通量q 反映了微面积上流出、流入流量的代数和,若q >0,表示流出大于流入,控制体内流体减少;q <0,表示流出小于流入,控制体内流体增加;而q v =0,表示流出等于流入,控制体内流体质量不变。 9.动能修正系数和动量修正系数:

1.动能修正系数:单位时间内,若dA 上通过的质点动能为dA v 321

ρ,则通过通流

截面A 的流体质点总动能E ,2/A E 3αρυ=,式中,1dA u A

3

123>?υ+=α?,是

用平均速度代替瞬时质点速度计算动能时所乘的一个系数,称为动能修正系数。 2.动量修正系数:单位时间内,若dA 上通过的质点动量为dA v 2ρ,则通过通流截

面A 的流体质点总动量p 。A p 3βρυ=,式中,1dA u A

112

A 2>?υ+

=β?,是用平均速度代替瞬时质点速度计算动量时所乘的一个系数,称为动量修正系数。 具体取值与流态(流态的概念见第五章管中流动)有关:管中层流时取2=α,

3

4

=β;管中湍流时取106.1≈=α,102.1≈=β。

10.流体连续性方程:当流体是不可压缩时,在单位时间内,从控制体的表面A

流出的体积与流入的体积相等。222111A v A v ρρ=对既是定常场又不可压缩的流动,C ==21ρρ,2211A v A v =

流体微元运动的四种形式:平移、线变形、旋转、角变形。 第四章 流体的力学基础 欧拉运动微分方程

1x x du p f dt x ρ?=-? y 1y du p f dt y ρ?=-? 1z z du p f dt z ρ?=-? 伯努利微分方程:2

2p u z C g g

ρ+

+=,(C 为常数) 当速度u 为0时,上述就转化为平衡流体的流体静力学基本方程p

z C g

ρ+= Z 代表单位重力流体的位能,或简称位置水头;

p

g

ρ代表单位重力流体的压能,或简称压强水头; 2

u 2g 代表单位重力流体的动能,也简称速度水头; p

z g

ρ+

表示比势能。 具体应用伯努利方程的步骤:

1、分析流动现象。为定常、不可压缩、还是渐变流动。

2、选取截面。需要选取两个缓流截面,这两个截面尽量包含已知条件和需要求解的位置变量。

3、选取基准面和基准点。基准面是计算位置水头z 的参考面,基准点指压强水头

p

g

ρ、位置水头z 的取值点。一般原则是:基准面尽量通过一个或两个基准点,而基准点尽量选在截面的形心上。

4、列出方程、带入已知量求解。注意与连续性方程和静力学方程求解。

v c 为流速系数,一般可以取:。q t q c =

=q 实际流量理论流量

,称为流量系数。 第5章:圆管流动

1.雷诺数(判断流动状态的准则):ν

υ=μρυ=

d

d R

e 。对于工程实际来说可取下临界雷诺数为判断标准:即Re c Re ≤时,为层流;Re>c Re 时为湍流

2.粗糙管与光滑管:管壁面凹凸不平的绝对尺寸的均值δ称绝对粗糙度。当?<δ时,

管壁的凹凸部分完全淹没在层流中,流体的湍流核(区)不直接与管壁接触,δ对液体湍

流无影响。由于层流边层的存在,δ对层流阻力有一定影响,这种管称水力(流动)光滑管。当?>δ时,管壁粗糙(凹凸)部分突出到湍流中,层流边层被破坏,这时流体的阻力主要决定于管的粗糙度δ,而与雷诺数e R 或黏度μ无关,这时的管道称水力(流动)粗糙管。管壁的几何粗糙度δ并不能完全描述管壁对液体的影响。同一管道,可为水力光滑管,也可为水力粗糙管,主要决定于层流边层厚度?或雷诺数e R 。

3.沿程阻力:是指流体在过流断面沿程不变的均匀流道中所受的流体阻力。主要是由流体与管路壁面的摩擦和内摩擦引起的,由沿程阻力造成的流体流动过程中的能量损失称为沿程损失。

4.局部阻力:是指流体在流过局部装置(如阀门、接头、弯管)时,因流体与这些装置内部件的冲击以及流体质点流速大小和方向发生急剧变化引起的碰撞形成的阻力。由局部阻力造成的水头损失称为局部损失。

5.尼古拉斯实验:

根据λ(管流沿程摩擦阻力系数)的变化特性,尼古拉兹曲线可分为五个区:层流区、层流向湍流的过渡区、“光滑区”、湍流过渡区、“粗糙区”。 6水锤现象的减轻:

1)缓慢关闭阀(延长关闭时间T )和缩短管道长度可显着减小p ? 2)在管路中安装蓄能器可吸收冲击的能量,减弱压力冲击

3)在管路中可以安装安全阀,限制最大的冲击压力,从而保护管路的安全

第6章 流体的出流

1.薄壁孔出流:孔口可以根据孔口直径d 和壁厚s 间的大小关系

分为薄壁孔口和厚壁孔口。当0.5s

d

<时,称为薄壁孔。如图6-1

所示。此时的孔口出流,水流与孔壁仅在一条周线上接触,壁厚对出流无影响。反则24s d <<时,称为厚壁孔口或外伸管嘴

2.收缩系数:在大气压强a p 和水头H 的压力下,流体经过

薄壁孔口出流,由于流线不能突然弯折,在孔口内形成一个收缩面c -c (如上图),设收缩断面面积为c A ,孔口断面面积为A ,为了研究的方便,首先引入收缩断面面积与孔口断面面积的比为 c

c A C A

=

,则称c C 为收缩系数。 3.薄壁孔口的恒定自由出流:设大容器内液体流速为0u ,收缩面c -c 处的压强为c p 、流速为c u ;建立过流断面1-1和收缩断面c -c 的伯努利方程

2

22

001222a c c c p a u p a u u H g g g g g

ζρρ++=++ 式中ζ为孔口的局部水头损失系数,又a c p p =,代入上式化简得

2200()22c c a u u H a g g ζ+=+。 令2

00

02a u H H g

=+称为作用水头,收缩断面流速为

012c c u gH a ζ

=

+,令上式1u c C a ζζ

=

=

++(取1c a =),称为孔口的流速系数。 经过孔口出流的体积流量为

02V c c u c q A u C C A gH == 令1c q c u C C C ζ

==

+称为孔口的流量系数。

4.孔口出流系数;孔口出流收缩系数c C 、流速系数u C 、流量系数q C 决定了孔口出流的主要性能,其中的流速系数u C 和流量系数q C 取决于收缩系数c C 和孔口处的局部水头损失系数ζ。在实际工程中,由于孔口出流大多为湍流,雷诺数都很大,可忽略雷诺数对孔口系数的影响,故认为上述系数主要和边界条件有关。 在边界条件中,孔口形状、孔口在壁面上的位置和孔口的边缘情况,是影响流速系数u C 的主要因素。通过实验表明:不同形状孔口的流速系数u C 差别不大,而孔口在壁面上的位置对收缩系数c C 影响较大,进而影响流速系数u C 。

孔口1周边距离邻近壁面较远,侧壁对流束

的收缩没有影响,称为完善收缩。孔口2,其右边距离邻近壁面较小,流束的收缩受到侧壁的影响而减弱,称为非完善收缩。对应的流量系数将比完善收缩的大。孔口3和4与壁面接触,称为部分收缩。 5.薄壁阻尼孔的出流(淹没孔口出流):比较孔口恒定自由出流和淹没出流,自由出流基本公式中的作用水头0H 是折算作用水面到孔口的形心高度,

而淹没孔口出流的水头012H H H =-(120u u ==)是上下游液面的高度差,与孔口位置无关,因而淹没出流孔口断面各点的水头相同,所以淹没出流就不区分大小孔口。

6.薄壁厚孔的自由出流:由于厚壁孔口在出流过程中,在孔口内出现流束的收缩截面,收缩截面就形成一个真空区域,具有抽吸作用,从而增大流量。 厚壁孔口内最小截面的真空度为

00.75a c

p p H g

ρ-=。 上式表明,厚壁孔口内最小截面的真空度达到作用水头的倍,相当于增加了75%的作用水头高度,这就是厚壁孔口出流量比薄壁孔口出流量大的原因。

第七章 缝隙流动

7-1、平行平板间的缝隙流 公式:2

121=-2p y C y C L

μμ?++ 一、在x 方向压强作用下固定平板之间的缝隙流动(压差流) 上下面均固定不动,由于两端压力差12p=p -p ?的作用使流体在x 方向流动。1、由边界条件y=0,u=0;y=h,u=0,可以得到积分常数1h =

2C p L

μ?,

2=0C 代入式中有: 2p

=

()(0)2hy y y L

μμ?-> 2、最大速度发生在两平行平面中线处,把h

y=

2

代入式得:2max u 8p h L μ?=

3、通过缝隙缝宽为B 的流量

3

12Bh q p L

μ=? 4、平均流速

2

12q h v p Bh L

μ==?

5、平均流速与最大流速比

max

23

v u =

6、压力损失

2

12Lv p h μ?=,222L v p h λρ?=得96

Re

λ= 22Re vh vh ρμυ== 二、零压强差的情况下,上板匀速带动的缝隙流动(剪切流)

边界条件为y=0,u=0;y=h ,0u=u

1、速度分布

()00u

u y y h

=≥

2、剪切流条件下的流量

02

bu q h =

3、切应力分布

0u =u h

τ

该情况下,切应力为常数。

三、在压强差和上板运动共同作用下的缝隙流动 1、速度分布

()20u hy (0)2p

u y y h l h

μ?=

-±≤≤y 2、流量

30

122u

h q B p h L μ??=?± ???

3、切应力为前两种流动切应力的叠加

0=()2u h p

y L h

τμ?-±

7-2、环形缝隙流

图示在同心环状缝隙间的流动。当h /r <<1时(相当于液压元件内配合间隙的情况),可以将环形缝隙间的流动近似地看作是平行平板缝隙间的流动,只要

将b =πd 代入,就可得这种情况下的流量。公式:3

0(

)122

u h q d p h L πμ=?±

当缝隙h 较大时(相当于液压元件内没有配合要求的间隙的情况,见图b),其流量公式为

()()222004400008ln(/r )R r p q R r L R πμ?

?-???=--??

??

(式中R 0在图中为r 2,r 0在图中为r 1) 222000000ln(/)ln(/)u 4ln(/)R r r r r R p r L R r μ??

-?=-?

???

引入平均半径00

2

R r r +=

及间隙00h=R -r ,并对00ln(/)R r 做一阶线性近似,则有 316dh q p L πμ=? 式中:d ——平均直径,d =R 0+r 0=2r 对于圆管层流0000,2,r d d R h R ??→===则有4

q 128d p L πμ=

? 四、偏心环形缝隙流的流量

3

2200(1 1.5)(1 1.5)16dh q p q L

πεεμ=?+=+ (ε偏心率,0=e /h ε)

当偏心率达到最大值1时,流量最大,为

3

max

q 2.5

16d ph L

πμ?=,为同心流的倍。 五、微元间隙为平行平面间隙流动

2

1212dp u y C y C dx

μ=

++ 1、边界条件

0y =、0u u =;y h =、0u =

2、流速

0112y p dp y y u u h dx h h

μ??

???=--- ? ?????

3、流量

300212h

bhu bh dp

q b udy dx

μ==-?

整体间隙流动 1、压力分布

积分,并利用边界条件确定积分常数,得

012211

6611

11()()u q p p btg h h tg h h μμαα=+

--- 021222121

6611

11()()u q p p btg h h tg h h μμαα=+

--- 22

012

1212221212

66u h h h h q p p p btg h h tg h h μμαα--?=-=-?+?

2、流量

22

121201212

6h h bh h b

q p u l h h h h μ=??+++

3、如果上、下平板均固定不动

1221

611()q p p btg h h μα=+

- 122221611

()q p p p btg h h μα?=-=-

- 22

1212

6h h b

q p l h h μ=??+

六、两平行圆盘间缝隙流 流过的流量为

21026h

rh dp

q u rdz dr

ππμ==-?

令u 0=0,可得在半径为r 、离下平面z 处的径向速度u 1为

()112dp

u h z z dr

μ=-

- 即

3

6dp q

dr rh μπ=-

36ln q

p r C h

μπ=-+

当r=r2 时,p=p2,求出C ,代入得

2226ln r q p p h r

μπ=+

又当r=r1时,p=p1,所以可得

22

1

6ln h p

q r r πμ?=

流体力学期末考试作图

1、作出标有字母的平面压强分布图并注明各点相对压强的大小(3分) 2、作出下面的曲面上压力体图并标明垂直方向分力的方向(4分) h1 A B h2 γ γ1=2γ h1 h2 A B γ

3、请定性作出下图总水头线与测压管水头线(两段均为缓坡)(4分) 28.试定性画出图示等直径管路的总水头线和测压管水头线。 4、转速n=1500r/min 的离心风机,叶轮内径D 1=480mm 。叶片进口处空气相对速度ω1=25m/s, 与圆 周速度的夹角为 β1=60°,试绘制空气在叶片进口处的速度三角形。 题13图

5、画出两台性能相同的离心泵并联工作时的性能曲线,并指出并联工作时每台泵的工作点。 答案:两台性能相同的离心泵并联工作时的性能曲线如图所示,图中B点为并联工作时每台泵的工作点,A点为总的工作点。 1.绘出如图球体的压力体并标出力的方向。 2.试绘制图示AB壁面上的相对压强分布图,并注明大小。 28.试定性画出图示等直径管路的总水头线和测压管水头线。

试定性分析图中棱柱形长渠道中产生的水面曲线。假设流量、粗糙系数沿程不变。 28.有断面形状、尺寸相同的两段棱柱形渠道如图示,各段均足够长,且i1>i c,i2 h'',试绘出水面 01 曲线示意图,并标出曲线类型。 1.试做出下图中的AB壁面上的压强分布图。 1.画出如图示曲面ABC上的水平压强分布图与压力体图。

2.画出如图短管上的总水头线与测压管水头线。 3.有三段不同底坡的棱柱体渠道首尾相连,每段都很长,且断面形状、尺度及糙率均相同。试定性画出各段渠道中水面曲线可能的连接形式。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考, 感谢您的配合和支持) 0≠上V 0≠下V i 1=i c i 2i c K K

流体力学试题 答案及评分标准

流体力学试卷 一、名词解释(共10小题,每小题4分,共40分) 1、流体力学 2、连续介质基本假设 3、理想流体 4、牛顿内摩擦定律 5、动量定律 6、流线和迹线 7、恒定流 8、层流和紊流 9、水击(锤)现象 10、明渠底坡 二、简答题(共5小题,每小题5分,共30分) 1、简述毕托管测流速的原理 2、雷诺数及其物理意义 3、简述水在土壤中的状态 4、试简述理想液体恒定元流的能量方程z+常数γ=+g v p 22 各项的物理意义 5、简述曲面边界层的分离现象 6、堰流的类型 五、计算题(共3小题,每小题10分,共30分) 1、闸门AB 曲面为一圆柱形的四分之一,半径r=2.0m ,垂直纸面的宽度b=1.0m ,水深H=4.0m ,闸门曲面左侧受到水压力。求作用在闸门AB 曲面上的水平分力和铅直分力。 2、某矩形断面排水沟,采用浆砌块石衬砌,粗糙系数n=0.025,底宽1.5m ,全长1000m ,进出口底板高差为0.4m ,计算水深为1.0m 时输送的明渠均 匀流流量。 3、如图闭合并联管路,用旧铸铁管从A 向B 输水,已知d1=150mm ,l 1=800m ; d2=150mm ,l 2=500m ;d3=200mm ,l 3=1000mm ;总流量Q=100L/s ,求分支路上的流量Q1、Q2、Q3及AB 间损失水头。 一、名词解释(本大题共10小题,每小题4分,共40分)

1、流体力学:是力学的分支(1分),主要研究流体在各种力的作用下,流体本身的运动规律(1分),以及流体与固体壁面、流体与流体间由于存在相对运动时的相互作用(2分)。也即研究流体的机械运动规律。 2、连续介质基本假设:流体力学研究流体的宏观运动规律,对流体的宏观运动(1分),假设流体是由无数质点组成的、没有空隙的连续体(1分),并认为流体的各物理量的变化随时间和空间也是连续的(1分),可应用高等数学中的连续函数来表达流体中各种物理量随空间、时间的变化关系(1分)。 3、理想流体:是流体力学中一个重要假设模型(或流体物理性质的简化)(1分),即流体分子间不存在内聚力(3分)。 4、牛顿内摩擦定律:流体的内摩擦力T(切向力)与流层间的接触面面积A和流层的速度梯度du/dy或变形率成正比(2分),即T=μAdu/dy,μ称为流体动力粘性系数(2分)。 5、动量定律 作用于物体的外力∑F等于该物体在力作用方向上的动量变化率。 6、迹线和流线:迹线:某一流体质点的运动轨迹,是运动的流体质点在不同时刻所占据的空间位置的连线(2分)。流线:是描述流场中各质点瞬态流动方向即速度方向的的曲线(2分)。 7、恒定流:描述流体质点运动的所有参数仅仅是空间坐标(x、y、z)的函数,而与时间 t无关。(或流场中任意空间位置上运动参数或物理量都不随时间而改变,即对时间的偏导数等于零。) 8、层流和紊流:层流:流体质点无横向脉动,质点互不混杂,层次分明,稳定安详的流 动状态(2分)。 紊流:流体质点不仅在轴(纵)向而且在横向均有不规则脉动速度,流体质点杂乱交错的混沌流动状 态(2分)。 9、水击(锤)现象:在有压管道流中(1分),由于某种原因(如阀门突然启闭、换向阀 突然变换工位等),使流体速度突然发生变化(动量发生变化)(1分),从而引起流体压强的突然变化、升压和降压交替进行的水力现象(1分),对于管壁和阀门的作用如锤击一样,也称为水锤(1分)。 10、明渠底坡:明渠渠底与水平线的夹角的正弦值,即流体质点的落差与相应渠长(质点 路径)的比值,i=sinθ=Δz/l。(或单位渠长上的渠底高差。) 11、流体质点:是研究流体宏观运动规律的最小基本单元,具有宏观足够小、微观足够大的性质。一方面,流体质点的尺度比起所研究问题的宏观尺度足够的小,从宏观上可以认为是一个几何上没有体积的点;另一方面,从微观上看,该特征体积远远大于流体分子间的间距,可容纳足够多的流体分子,个别分子运动参数的变化不影响这群分子运动参数的平均值,而不表现其随机性。 二、简答题(本大题共4小题,每小题5分,共20分) 1、简述毕托管测流量的原理(P39) 2、雷诺数及其物理意义。

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

流体力学期末考试计算

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3/850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力:RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)22 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1222121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的 压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

流体力学计算题及答案.docx

例 1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程 z0=3m,压差计各水银面的高程分别为z1=0.03m, z 2=0.18m, z 3=0.04m, z 4=0.20m,水银密度ρ13600kg / m3,水的密度ρ 1000kg / m3。试求水面的相对压强p0。 解: p0γ(z0 z1 ) γ'( z2z1) γ'(z4z3 ) p a p0γ'(z2z1 z4z3 ) γ(z0 z1 ) 例 2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为 θ的Π形管。已知测压计两侧斜液柱读数的差值为L=30mm,倾角θ=30 °,试求压强差p1– p2。 解:p1γ(z3z1 )γ(z4z2 ) p2p1p2γ(z3z4 )γL sinθ 例 3:用复式压差计测量两条气体管道的压差(如图所示)。两个U形管的工作液体为水银, 密度为ρ2,其连接管充以酒精,密度为ρ 1 。如果水银面的高度读数为z1、 z 2、 z 3、z4,试求压强差p A– p B。

解:点 1 的压强: p A点2的压强: p2p Aγ2( z2z1 ) 点 3的压强: p3 p Aγ2( z2z1 )γ1( z2 z3 ) p4p Aγ2( z2z1 ) γ1(z2z3 ) γ2( z4z3 ) p B p A p Bγ2(z2 z1 z4z3 ) γ1( z2z3 )例 4:用离心铸造机铸造车轮。求A-A 面上的液体总压力。 解:p 1 2r2gz C p 1 2r2gz p a 22 在界面 A-A 上: Z = - h p 1 2r2gh p a F( p p a ) 2 rdr 21 2 R41 ghR2 R 2082 例 5:在一直径 d = 300mm,而高度 H= 500mm的园柱形容器中注水至高度h1 = 300mm, 使容器绕垂直轴作等角速度旋转。如图所示。 (1) 试确定使水之自由液面正好达到容器边缘时的转数n1; (2)求抛物面顶端碰到容器底时的转数 n2,此时容器停止旋转后水面高度 h2将为多少? 解: (1)由于容器旋转前后,水的体积不变( 亦即容器中空 气的体积不变 ) ,有:图1d 2L1 d 2 (H h1 ) 424 L 2( H h1 ) 400 mm0.4 m 在 xoz 坐标系中,自由表面 2 r 2 1 的方程:z0 2g 对于容器边缘上的点,有: d 0.15m z0 r 2 2gz0 2 9.80.4 r 20.152 ∵ 2 n / 60L0.4m 18.67( rad / s) n1 606018.67 2 178.3 (r / min) 2 (2) 当抛物面顶端碰到容器底部时,这时原容器中的水将被甩出一部分,液面为图中2

(完整版)流体力学期末试题(答案)..

中北大学 《流体力学》 期末题

目录 第四模块期末试题 (3) 中北大学2013—2014学年第1学期期末考试 (3) 流体力学考试试题(A) (3) 流体力学考试试题(A)参考答案 (6) 中北大学2012—2013学年第1学期期末考试 (8) 流体力学考试试题(A) (8) 流体力学考试试题(A)参考答案 (11)

第四模块 期末试题 中北大学2013—2014学年第1学期期末考试 流体力学考试试题(A ) 所有答案必须做在答案题纸上,做在试题纸上无效! 一、 单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.交通土建工程施工中的新拌建筑砂浆属于( ) A 、牛顿流体 B 、非牛顿流体 C 、理想流体 D 、无黏流体 2.牛顿内摩擦定律y u d d μ τ =中的 y u d d 为运动流体的( ) A 、拉伸变形 B 、压缩变形 C 、剪切变形 D 、剪切变形速率 3.平衡流体的等压面方程为( ) A 、0=--z y x f f f B 、0=++z y x f f f C 、 0d d d =--z f y f x f z y x D 、0d d d =++z f y f x f z y x 4.金属测压计的读数为( ) A 、绝对压强 p ' B 、相对压强p C 、真空压强v p D 、当地大气压a p 5.水力最优梯形断面渠道的水力半径=R ( ) A 、4/h B 、3/h C 、2/h D 、h 6.圆柱形外管嘴的正常工作条件是( ) A 、m 9,)4~3(0>=H d l B 、m 9,)4~3(0<=H d l C 、m 9,)4~3(0>>H d l D 、m 9,)4~3(0<

流体力学计算题练习

练习题 1. 如右图所示,在一密闭容器中,上部装有密度ρ1=0.8× 103kg/m3的油,下部为密度ρ2=103kg/m3的水,已知 h1=0.4m,h2=0.2m。测压管中水银柱的读数h=0.5m,水 银的密度为ρ1=13.6×103 kg/m3。求密闭容器中油液面上的 压强p0。 2. 图示为一水暖系统,为了防止水温升高时体积膨胀将水管 胀裂,在系统顶部设一膨胀水箱,使水有膨胀的余地。若系 统内水的总体积为8m3,加温前后温差为50℃,在其温度范 围内水的膨胀系数为βT=9×10-4 1/℃,求膨胀水箱的最小 容积。 3. 当温度不变,压强从0.20 MPa增加到10 MPa时,某种液体的体积减小0.49%,求该液体的体积模量。 4. 两个充满空气的封闭容器互相隔开,左边压力表M的读 数为100kPa,右边真空计V的读数为3.5mH2O,试求连 接两容器的水银压差计中h的读值。 5. 已知流体运动的速度场为: 3 2 3 1 y v xy v y x = =, ,试求t=2时过点 ()() x y z ,,,, =312 处的流线方程。 6. 如图所示,水在压强作用下从密封的下水箱沿竖直管道流入上水箱中,已知h=50cm,H=3m,管道直径D=25mm,λ h p a p0 h 1 h 2 ρ1 ρ2 ρ3

=0.02,各局部阻力系数分别为ζ1=0.5,ζ2=5.0,ζ3=1.0,求:为维持稳定的管中流速V =1m/s ,下水箱的液面压强应保持在多少Pa? 7. 右图为毕托管示意图。液体自左向右流动,直管和直角弯管直接插入管道内的液体中,弯管开口迎着流动方向。测得A 点的液柱高度为hA =170 mm ,B 点的液柱高度为hB = 230 mm ,已知液 体的密度为ρ =990 kg/m3,忽略阻力损失,试计算管内液体的流速uA 。 8. 如右图所示为一壁厚可以忽略的大容器,在其下部开一直径为d =12mm 的小孔口,水自孔口流出后进入另一液面比大容器液面低H =1.2m 的容器中,两容器内的水位始终保持不变。试计算水的出流流量和孔口处的流速。 9. 如图所示为一壁厚可以忽略的大容器,为了便于出流,在容器壁上开一圆孔并在外面焊接一段等径圆管,容器自由液面及孔口出口皆与大气相通,而且可以保证容器内的水位不变。已知孔口直径为d =12mm ,焊接的圆管长度l = 40mm 。容器自由液面相对于孔口中心线的高度为H =1.2m ,试计算水的出流流量和出口流速。 10. 用长l =300m 、内径d =200mm 的铸铁管输送密度ρ = 880 kg/m3的油液,测得质量流量qm = 8.80×104 kg/h 。设冬季油液的运动粘度ν1=109.2×10-6m2/s ,夏季运动粘度ν2=35.5×10-6m2/s ,试确定冬、夏季输油管路以油柱高度表示的水头损失h λ。 [注:若流动状态为湍流,可取λ = 0.04] 11、一恒定有压均匀管流,已知管径d=20 mm ,管长 l=20m ,管中水流

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

流体力学期末复习,计算部分

三计算题 一、粘性 1.一平板在油面上作水平运动,如图所示。已知平板运动速度V=1.0m/s,板与固定边界的距离δ=1mm,油的粘度μ=0.09807Pa·s。 试求作用在平板单位面积上的切向力。 2. 一底面积为2 cm 50 45?,质量为6kg的木块,沿涂有润滑油的斜面向下作等速运动,木块运动速度s m 2.1 = u,油层厚度mm 1 = δ,斜面角C 02ο = θ(如图所示),求油的动力粘度μ。 δ u θ 二静力学 1.设有一盛水的密闭容器,如图所示。已知容器内点A的相对压强为4.9×104Pa。若在该点左侧壁上安装一玻璃测压管,已知水的密度ρ=1000kg/m3,试问需要多长的玻璃测压管?若在该点的右侧壁上安装一水银压差计,已知水银的密度ρHg=13.6×103kg/m3,h1=0.2m,试问水银柱高度差h2是多大? 2.如图所示的半园AB 曲面,宽度m 1= b,直径m 3= D,试求曲AB 所受的静水总压力。 D /2 A B 水 水D

α O B O A H p a 3. 如下图,水从水箱经管路流出,管路上设阀门K ,已知L=6m,α=30°,H=5m, B 点位于出口断面形心点。假设不考虑能量损失,以 O-O 面为基准面,试问:阀门K 关闭时,A 点的位置水头、压强水头、测压管水头各是多少? 4. 位于不同高度的两球形容器,分别贮有 2m kN 9.8=g A ρ的 油 和2 m kN 00.10=g B ρ的盐水,差压计内工作液体为水银。 m 21=h ,m 32=h ,m 8.03=h ,若B 点压强2cm N 20=B p ,求A 点压强A p 的大小。 ? ? M M A B 汞 h h h γγA B 1 2 3 5. 球形容器由两个半球面铆接而成,有8个铆钉,球的半径m 1=R ,内盛有水, 玻璃管中液面至球顶的垂直距离2m . 1=H ,求 每个铆钉所受的拉力。 R H 6.设有一盛静水的密闭容器,如图所示。由标尺量出水银压差计左肢内水银液面距A 点的高度h 1=0.46m ,左右两侧液面高度差 h 2=0.4m ,试求容器内液体中A 点的压强,并说明是否出现了真空。已知水银的密度ρHg =13.6×103kg/m 3。

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

计算流体力学习题-期中考试题题库2

1)把有量纲二维Euler方程组转换成无量纲形式。 解:二维Euler方程组如下所示: 引入参考量:自由来流密度,自由来流x方向速度,流场中物体特征长度,则有 将上面式子代入二维Euler方程组,则 2)求出定常不可压缩粘性流动方程组特征根,并分析它的数学性质和类型。 解:定常不可压缩粘性流动方程组为 设流函数为ψ,则有 定常不可压缩粘性流动方程组化简为 ☆ 根据☆方程组有 λ=±i 所以该方程组的数学性质和类型是确定的,它是椭圆形的。 3)对流方程的两步迎风差分格式为: 分析它的精度和稳定性。 解:设,则有 ☆ 根据Taylor展开公式有 据此有 代入☆式 下面分析稳定性 ☆ 代入☆式 放大因子 要使,则有 时两步迎风差分格式是稳定的。 4)的Lax-Wendroff一步差分格式的精度和稳定性。 解:根据Taylor展开公式有 据此有 下面分析稳定性 ☆ 代入☆式 放大因子

当时,,Lax-Wendroff一步差分格式是稳定的。 5)分析Burgers方程的Lax差分格式的精度和稳定性。 解:Lax差分格式为 下面分析稳定性 ☆ 代入☆式 放大因子 ☆☆ 令,求的极值 端点值时令, 综上所述有Lax差分格式稳定的条件是 6)分析的紧致格式的精度和稳定性 解:根据泰勒展开有 下面分析稳定性 放大因子 根据,求得 此时,紧致格式是稳定的。 7)分析差分格式的精度和稳定性。 解:根据泰勒展开有 分析稳定性 8)推导的蛙跳差分格式的修正方程。 解:根据泰勒展开 其修正方程为 9)对流方程的一阶迎风差分格式为: 用Taylor分析方法求出差分格式耗散项和色散项表达式。 解:根据泰勒展开有 10)数值计算实习 采用二阶迎风差分格式或Warming-Beam差分格式数值求解一位激波管问题,并和二阶MacCor mack差分格式计算结果进行比较。 解:

06级研究生高等流体力学期末考试试题及参考答案

06级研究生高等流体力学期末考试试题 一、 概念题: 1. 什么是边界层厚度,位移厚度和动量损失厚度,并解释其物理意义。 边界层中速度为99%主流速度的位置到壁面的垂直距离。 位移厚度00 1 *u dy u δ∞ ? ? =? ??? ? ∫由于壁面存在,使得流量减少,相当于壁面向外推移了一定的厚度。 动量亏损厚度0 001 u u dy u u θ∞ ?? =????? ∫由于由于壁面存在, 使得动量通量减少,相当于壁面向外推移了一定的厚度。 2. 什么是牛顿传热定律,试解释自然对流不满足牛顿传热定律的原因。 单位时间单位面积的换热量正比于温差。 自然对流中温差不仅影响换热,而且影响速度场,从而改变换热系数,换热量与温差的关系不是线性的。 3. 分析Ekman 层和静止坐标系中壁面边界层的相同点与不同点。 相同点:Ekman 层和边界层都是自由流与固壁之间的运动,需要考虑粘性力的影响。Ekman 层坐标系是旋转的,边界层的坐标系是不旋转的。 不同点:Ekman 层中粘性力和科氏力平衡,U ,仅是的函数,与V z x,y 无关,Ekman 层厚度是常数。边界层中惯性力与粘性力平衡,速度沿流动方向是变化的,边界层的厚度是变化的。 4. 什么是Kelvin-Helmholtz 不稳定,举例说明哪些流动可以产生K-H 不稳定。 剪切流中,由于速度分布有拐点引起的不稳定性过程。平面混合层、自由射流,尾流中都可以产生K-H 不稳定。 5. 湍流粘性系数的定义,并说明它与分子粘性系数的区别。 湍流应力张量和平均流场应变率之间的线性关系,比例系数为湍流粘性系数。湍流粘性系数不是物性参数,与流场结构有关。分子粘性系数是物性参数。 二、 密度为ρ的不可压缩均质流体以均匀速度1u 进入半径为R 的水平直圆管, 出口处的速度分布为( )2 2 21r u C R =?,式中 C 为待定常数,r 是点到管轴的距离。 如果进口和出口处的压强分别为1P 和2P ,求管壁对流体的作用力。

最新西工大计算流体力学试卷(整合)

试卷 1. 简述计算流体力学的特点及其应用领域。 CFD 是以计算机作为模拟手段,运用一定的计算技术寻求流体力学各种复杂问题的离散化数值解。它的主要特征:(1)数值解而不是解析解;(2)计算技术起关键作用;(3)与计算机的发展紧密相关。(成本较低,适用范围宽,可靠性差,表达困难)应用领域:航空、航天、气象、船舶、武器装备、 水利、化工、建筑、机械、汽车、海洋、体育、环境、卫 生等 2. 等步长网格分布情况下u x ??的一阶向前差分、22u x ??的二阶中心差分表达式。(P89) 一阶向前差分:1,,,()i j i j i j u u u x x x +-?=+O ???() 二阶中心差分:21,,1,2,22 2()()i j i j i j i j u u u u x x x +--+?=+O ???() 3. 简答题 1) 什么是差分方程的相容性? 差分方程与微分方程的差别是截断误差R 。必要时通过缩小空间步长(网格尺寸)h 和时间步长t ,这一误差应可缩小至尽可能小。当h->0和t->0时,若R->0,则差分方程趋于微分方程,表示这两个方程是一致的。这时称该差分方程与微分方程是相容的。 2) 什么是差分解的收敛性? 当微分方程在离散为差分方程来求解,当步长h 0→时,存在着差分方程的解 n y 能够收敛到微分方程的准确解y()n x ,这就是差分方法的收敛性。 收敛性定义:对于任意节点的0n x x nh =+,如果数值解n y 当h 0→(同时n →∞)时趋向于准确解y()n x ,则称该方法是收敛的。 3) 什么是差分解的稳定性? 数值计算时,除计算机舍入误差(字长有限)外,初始条件或方程中某些常数项 也有可能给的不尽精确。舍入误差和这些误差在计算过程中可能一步步积累与传 递,误差的传递,有时可能变大,有时可能变小。某一步舍入误差放大或缩小的

重庆科技学院流体力学期末考试卷

一、选择题: 1、从力学的角度分析,一般流体和固体的区别在于流体_________。 A 、能承受拉力,平衡时不能承受切应力 B 、不能承受拉力,平衡时能承受切应力 C 、不能承受拉力,平衡时不能承受切应力 D 、能承受拉力,平衡时也能承受切应力 2、液体在重力场中作加速直线运动时,其自由面与( )处处正交。 A 、重力 B 、惯性力 C 、重力和惯性力的合力 D 、压力 3、图示容器内盛有两种不同的液体,密度分别为1ρ,2ρ,则有 A 、g p z g p z B B A A 11ρρ+=+ B 、g p z g p z C C A A 21ρρ+=+ C 、g p z g p z D D B B 21ρρ+=+ D 、g p z g p z C C B B 21ρρ+=+ O 4、流线与流线,在通常情况下: A .能相交,也能相切; B .仅能相交,但不能相切; C .仅能相切,但不能相交; D .既不能相交,也不能相切。 5、输水管道在流量和水温一定时,随着直径的增大,水流的雷诺数Re 就 A 、增大; B 、减小; C 、不变; D 、不定 6、圆管流动中,过流断面上速度分布为 (a)(b)(c)(d) 7、虹吸管最高处的压强_________。 A 、大于大气压 B 、等于大气压 C 、小于大气压 D 、无法确定 8、在变截面喷管内,亚声速等熵气流随截面面积沿程减小,则有( )。

A 、v 减小 B 、p 增大 C 、ρ增大 D 、T 下降。 9、圆管突然扩大的水头损失可表示为( )。 A 、g v v 22 2 21- B 、g v v 22 1- C 、 ()g v v 22 21- D 、g v v 22 122- 10、在安排管道阀门阻力试验时,首先考虑要满足的相似准则是( )。 A 、雷诺数Re B 、弗劳德数Fr C 、斯特劳哈尔数Sr D 、欧拉数Eu 二、判断题:对的打“√”,错的打“×”( 1、液体粘度随温度升高而降低;气体粘度随温度升高而升高。 ( ) 2、研究流体的运动规律是应用拉格朗日法分析流体运动的轨迹。 ( ) 3、作为由层流向紊流过度的临界雷诺数,在水中和煤油中是不同的。 ( ) 4、根据尼古拉茨实验结果,管流湍流区沿程摩阻系数随雷诺数增大而呈现 减小的趋势,因此实际工程中为了减小水头损失应该增大管道中流体速度。 ( ) 5、在过流断面突变处一般发生局部水头损失。 ( ) 6、压力管路中的水击现象通常有害,开关阀门时速度一定要足够快速。 ( ) 7、应用总流的伯努利方程时,两过水断面之间不能出现急变流。 ( ) 8、薄壁孔的收缩系数对其出流性能没有影响。 ( ) 9、长度超过10米的管道,通常称为长管;反之称为短管。 ( ) 10、气体运动速度小于当地声速时,气体中某点的微弱扰动理论上可以传播

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

计算流体力学复习题

设流经某多孔介质的一维流动的控制方程为:0=+ dx dp c μμ;()0=dx F d μ其中,系C 与空间位置有关,F 为流道的有效截面积。对于下图所示的均匀网格,已知:2,38,200,4,5,2.0,25.031=?======x p p F F C C C B C B 。 以上各量的单位都是调的,试采用SIMPLE 算法确定C B u u p 和,2的值。 解:在一项无源的流动中药是连续性方程得到满足,不同几何位置上的流速必是同向的,故 u u 实际上是2u 项。在作数值计算时,变量的平方项要作线性化处理。为加速迭代收敛过 程,采用如下线性化方法:设0u 为上一次计算值或(初始假定值),u 为本次计算值,则: () 2 02022u u u u -? 此式的导出过程与导出Newton 迭代法求根公式相似。于是,对于B 、 C 界面有: x C u p p u u B B B B ?--=0120 * 22 (a ) x C u p p u u C C C C ?--=0 23 0* 22(b ) 而压力修正值2p 相应的速度修正值则为: x C u p u B B B ?'-= '02 2 (c ) x C u p u C C C ?'='0 22 (d ) 利用这些公式,即可进行关于2,p u u C B 以及的迭代计算。设,,120 p 15020 0===C B u u 则由式(a )与(b )得: 12.8335.3337.52150.580 --215u *B =+=??= 14.3336.8337.515 40.282215u *C =+=??+= 这两个速度值不满足连续方程。计算修正后的速度: 2 2 B *B B 06666.0833.1215 40.25p - 12.833u u u p '-=??'='+= 22 C *C C 08333.0333.141542.0p 14.333u u u p '+=??'+='+= 代入连续方程,得: ()()22 08333.03333.14406666.0833.125p p '+='- 833.66666.02 ='p 251.102='p C

流体力学期末复习资料全

1、流体运动粘度的国际单位为m^2/s 。 2、流体流动中的机械能损失分为沿程损失和局部损失两大类。 3、当压力体与液体在曲面的同侧时,为实压力体。 4、静水压力的压力中心总是在受压平面形心的下方。 5、圆管层流流动中,其断面上切应力分布与管子半径 的关系为线性关系。 6、当流动处于紊流光滑区时,其沿程水头损失与断面 平均流速的1.75 次方成正比。 7、当流动处于湍流粗糙区时,其沿程水头损失 与断面平均流速的2 次方成正比。 8、圆管层流流动中,其断面平均流速与最大流速的比值为1/2 。 9、水击压强与管道流动速度成正比关系。 10、减轻有压管路中水击危害的措施一般有:延长阀门关闭时间, 采用过载保护,可能时减低馆流速。 11、圆管层流流动中,其断面上流速分布与管子半径的关系为二次抛物线。 12、采用欧拉法描述流体流动时,流体质点的加速度由当地加速度和迁移加速度组成。 13流体微团的运动可以分解为: 平移运动、线变形运动、角变形运动、旋转运动。 14、教材中介绍的基本平面势流分别为:点源、点汇、点涡、均匀直线流。 15、螺旋流是由点涡和点汇两种基本势流 所组成。 16、绕圆柱体无环量流动是由偶极流和 平面均匀流两种势流所组成。

17、流动阻力分为压差阻力和摩擦阻力。 18、层流底层的厚度与雷诺数成反比。 19、水击波分为直接水击波和间接水击波。 20、描述流体运动的两种方法为 欧拉法和拉格朗日法。 21、尼古拉兹试验曲线在对数坐标中的图像分为5个区域,它们依次为: 层流层、层流到紊流过渡区、紊流区、 紊流水力粗糙管过渡区、紊流水力粗糙管平方阻力区。 22、绕流物体的阻力由和两 部分组成。 二、名词解释 1、流体:在任何微小剪力的持续作用下能够连续不断变形的物质 2、牛顿流体:把在作剪切运动时满足牛顿摩擦定律的流体称为牛顿流体。 3、等压面:在流体中,压强相等的各点所组成的面称为等压面。 4、流线:流线是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体的速度方向都与该曲线相切。 5、流管:过流管横截面上各点作流线,则得到充满流管的医术流线簇 6、迹线:流场中某一质点的运动轨迹。 7、控制体:假定平面边界流动是定常的,并忽略质量力,在边界层的任一处,取单位宽度,沿边界层长度为dx的微元断。 8、压力管路:在一定压差下,流体充满全管的流动管路。 9、有旋流动:在流体流动中,如果流场中有若干处微元团具有绕过其自身轴线的旋转运动,则称为有旋流动。 10、层流底层:粘性流体在管道中做紊流流动时,管壁上的流速为零,从管壁起的流速将从零迅速增大,在紧贴管壁的一极薄层,速度梯度很大,黏性摩擦很大,黏性摩擦切应力其主要作用,处于层流状态,称为层流底层 11、紊流核心:距管壁稍远出有一黏性摩擦切应力和紊流附加切应力同时起作用的薄层,称

流体力学试题及答案

流体力学复习题 -----2013制 一、填空题 1、1mmH2O=9.807Pa 2、描述流体运动的方法有欧拉法和拉格朗日法。 3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时粘性力与惯性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并 联 后总管路的流量Q为Q=Q1+Q2,总阻抗S为。串联后总管路的流量Q为Q=Q1=Q2,总阻抗S为S1+S2。 6、流体紊流运动的特征是脉动现行,处理方法是时均法。 7、流体在管道中流动时,流动阻力包括沿程阻力 和局部阻力。 8、流体微团的基本运动形式有:平移运动、旋转流动和变形运动。 9、马赫数气体动力学中一个重要的无因次数,他反映了 惯性力与弹性力的相对比值。

11、理想流体伯努力方程 z + p + u + + + 10、稳定流动的流线与迹线 重合 。 r 2 g 2 = 常数中,其中 z + p r 称为 测压管 水头。 12、一切平面流动的流场,无论是有旋流动或是无旋流动 都存在 流线 ,因而一切平面流动都存在 流函数 , 但是,只有无旋流动才存在 势函数。 13、雷诺数之所以能判别 流态 ,是因为它反映了 惯性力 和 粘性力 的对比关系。 14、流体的主要力学性质有 粘滞性 、 惯性 、 重力 性 、 表面张力性 和 压缩膨胀性 。 15、毕托管是广泛应用于测量 气体和 水流一种仪器。 16、流体的力学模型按粘性是否作用分为 理想气体 和 粘性气体 。作用与液上的力包括 质量力, 表面力。 17、力学相似的三个方面包括 几何相似 、 运动 相似 与 动力相似 。 18、流体的力学模型是 连续介质 模型。 19、理想气体伯努力方程 p (z 1 - z 2)(γ α - γ g ) ρu 2 2 中, p (z 1 - z 2) (γ α - γ g ) 称 势压 , p + ρu 2 2 全压 ,

相关主题
文本预览