立体几何公式定理大全
- 格式:docx
- 大小:30.62 KB
- 文档页数:2
立体几何所有定理和判定立体几何是数学中的一个重要分支,研究的是三维空间中的图形和物体的性质。
在立体几何中,有许多重要的定理和判定,它们帮助我们理解和解决与立体图形相关的问题。
本文将介绍一些主要的定理和判定。
一、平行线与平面的关系1. 平行线定理:如果两条线与第三条线平行,则这两条线也互相平行。
2. 平行线截割定理:如果一对平行线被一组截线截割,则所得的对应线段成比例。
3. 平行线的垂直定理:如果两条平行线被一条截线垂直截断,则所得的对应线段也相互垂直。
二、线段与角的关系1. 点到直线的距离定理:一个点到一条直线的距离等于这条直线上任意一点到该点的距离。
2. 线段相等定理:如果两个线段的长度相等,则它们是相等的。
3. 角的平分线定理:如果一条直线将一个角分成两个相等的角,则这条直线是该角的平分线。
三、平面图形的性质1. 三角形内角和定理:三角形的三个内角的和等于180度。
2. 直角三角形定理:如果一个三角形的一个角是直角,则它是直角三角形。
3. 等腰三角形定理:如果一个三角形的两边相等,则它是等腰三角形。
4. 等边三角形定理:如果一个三角形的三边都相等,则它是等边三角形。
四、立体图形的性质1. 正方体的性质:正方体是一种六个面都是正方形的立体图形。
2. 立方体的性质:立方体是一种六个面都是正方形且相互平行的立体图形。
3. 正四面体的性质:正四面体是一种四个面都是等边三角形的立体图形。
五、空间图形的判定1. 平行四边形的判定:如果四边形的对边平行,则它是平行四边形。
2. 正多面体的判定:如果一个多面体的每个面都是正多边形且每个顶点的相邻边相等,则它是正多面体。
3. 立体图形的对称性判定:如果一个立体图形可以通过某种变换与自身完全重合,则它具有对称性。
以上只是立体几何中的一部分定理和判定,它们是我们理解和解决立体图形问题的基础。
通过运用这些定理和判定,我们可以更好地分析和推导立体图形的性质,从而解决各种与立体图形相关的问题。
点,线,面之间的位置关系
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论1:经过一条直线和这条直线外一点,有且只有一个平面.
推论2:经过两条相交直线,有且只有一个平面.
推论3:经过两条平行直线,有且只有一个平面.
空间两条直线的位置关系
公理四:平行于同一条直线的两条直线平行.
定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.
定理:过平面内一点与平面外一点的直线,和这个平面内不过该点的直线是异面直线.
直线与平面的位置关系
直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.
直线与平面垂直的判定定理如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直与这个平面.
直线与平面垂直的性质定理如果两条直线垂直于同一个平面,那么这两条直线平行.
平面与平面的位置关系
两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行.
平面与平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
平面与平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的垂线垂直于另一个平面.。
线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行a图形语言:符号语言:abb a //a // b作用:线线平行线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
图形语言:l //ll l // m 符号语言:m m作用:线面平行线线平行三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:aba b A //a∥b∥作用:线线平行面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交, 那么所得的两条交线平行图形语言://符号语言: a a // bb作用: 面面平行线线平行1五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma nm n A m ,n amAn作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行图形语言:符号语言:ab aba// b作用:线面垂直线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
图形语言:符号表示:aaa注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:All符号语言:ABABBAB l作用:面面垂直线面垂直2。
线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行a 图形语言:符号语言:a ⊄α⎫⎪b ⊂α⎬⇒a //αa //b ⎪⎭αb作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
图形语言:β⎫⎪符号语言:l ⊂β⎬⇒l //mα⋂β=m ⎪⎭作用:线面平行⇒线线平行三、平面与平面平行的判定定理l //αl m α文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:a ⊂αb ⊂αa I b =a ∥βb ∥β⎫⎪⎪⎪A ⎬⇒α//β⎪⎪⎪⎭作用:线线平行⇒面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行图形语言:α//β⎫⎪符号语言:α⋂γ=a ⎬⇒a //bβ⋂γ=b ⎪⎭作用:面面平行⇒线线平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma nam n Am,n作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行图形语言:符号语言:Amnabaa//bb作用:线面垂直线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
图形语言:a符号表示:aa注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:I l符号语言:ABABAB l作用:面面垂直线面垂直Al B。
立体几何公理汇总一.平面的性质公理
公理1:
自然语言:
符号语言:
公理2:
自然语言:
符号语言:
公理3:
自然语言:
符号语言:
推论1:
推论2:
推论3:
公理4:
自然语言:
符号语言:
二:直线与平面的平行
定义:
判定定理自然语言:
判定定理符号语言:
性质定理自然语言:
判定定理符号语言:三:直线与平面的垂直定义:
判定定理自然语言:判定定理符号语言:性质定理自然语言:判定定理符号语言:四:平面与平面的平行定义:
判定定理自然语言:判定定理符号语言:性质定理自然语言:判定定理符号语言:五:平面与平面的垂直定义:
判定定理自然语言:判定定理符号语言:性质定理自然语言:判定定理符号语言:。
高中立体几何八大定理
1、直线与平面平行的判定定理
如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。
2、直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
3、平面与平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
4、平面与平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
5、直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
6、直线与平面垂直的性质定理
若两条直线垂直于同一个平面,则这两条直线平行。
7、平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
8、平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。
立体几何证明8条定理立体几何是几何学的一个分支,研究的是在三维空间中的图形和体的性质。
在立体几何中有许多定理,其中一些重要的定理包括平行线定理、垂直线定理、欧拉定理、等角定理、切线定理、割线定理、同位角定理和三角形内角和定理等。
下面将详细讨论这些定理:1.平行线定理:如果两条平行线被一组平行线截断,那么它们的对应线段成比例。
这个定理可以用于证明两条线平行。
2.垂直线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交处的四个角都是直角。
这个定理可以用于证明两条线垂直。
3.欧拉定理:在任意一个凸多面体中,顶点数、棱数和面数之间存在一个关系:顶点数加上面数等于棱数加上2、这个定理被应用于立体几何中的多面体的计算。
4.等角定理:如果两条线分别与一条平行线相交,且其中一对内错角(相对于平行线的两条线之间的两个角)或一个内错角和一个外错角(与平行线的两条线相交形成的一对内角和一对外角)相等,那么这两条线是平行线。
这个定理可以用于证明平行线。
5.切线定理:给定一个圆和一个与圆相切且通过切点的直线,那么切线的切点与切线所跨越的弦的两个端点之间的角是直角。
这个定理可以用于证明圆的性质。
6.割线定理:给定一个圆和一个与圆相交的直线,那么直线与圆的切线所跨越的弦的两个端点之间的角相等。
这个定理也可以用于证明圆的性质。
7.同位角定理:如果两条平行线被一条截线截断,那么同位角(相对于平行线的两条线的每一对内角)相等。
这个定理可以用于证明平行线。
8.三角形内角和定理:三角形的三个内角的度数之和等于180度。
这个定理是三角形的基本性质,可以用于证明其他三角形的性质。
这些定理是立体几何中的一些基本定理,通过运用它们可以推导出其他一些更复杂的定理。
这些定理不仅在几何学中有重要的应用,而且在物理学、工程学等其他学科中也有广泛的应用。
线面地址关系的八大定理一、直线与平面平行的判判定理:文字语言:若是平面外的一条直线与平面内的一条直线平行,那么这条直线与平面平行a图形语言:符号语言:a bb a //a // b作用:线线平行线面平行二、直线与平面平行的性质定理:文字语言:若是一条直线和一个平面平行,经过这条直线的平面和这个平面订交,那么这条直线就和交线平行。
图形语言:l //l符号语言: l l // mm m作用:线面平行线线平行三、平面与平面平行的判判定理文字语言:若是一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:aba Ib A//a∥b∥作用:线线平行面面平行四、平面与平面平行的性质定理:文字语言:若是两个平行平面同时和第三个平面订交, 那么所得的两条交线平行图形语言 ://符号语言 :a a // bb作用 :面面平行线线平行五、直线与平面垂直的判判定理:文字语言:若是一条直线和一个平面内的两条订交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma na m n Am, nAn m作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:假设两条直线垂直于同一个平面,那么这两条直线平行图形语言:符号语言:aa //b b ab作用:线面垂直线线平行七、平面与平面垂直的判判定理:文字语言:若是一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
图形语言:a a符号表示:a注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:若是两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:I l符号语言:ABABAB l Al B作用:面面垂直线面垂直。
高中立体几何公式长方形的周长=(长+宽)×2 正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长、h-a边上的高、s-周长的一半、A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长、h-a边的高、α-两边夹角S=ah =absinα菱形a-边长、α-夹角、D-长对角线长、d-短对角线长S=Dd/2 =a2sinα梯形a和b-上、下底长、h-高、m-中位线长S=(a+b)h/2 =mh圆r-半径、d-直径C=πd=2πrS=πr2 =πd2/4扇形r—扇形半径、a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长、b-弦长、h-矢高、r-半径、α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径、r-内圆半径、D-外圆直径、d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴、d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长、b-宽、c-高S=2(ab+ac+bc)V=abc棱柱S-底面积、h-高V=Sh棱锥S-底面积、h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径、h-高、C—底面周长、S底—底面积、S侧—侧面积、S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h =πr2h空心圆柱R-外圆半径、r-内圆半径、h-高V=πh(R2-r2)直圆锥r-底半径、h-高V=πr2h/3圆台r-上底半径、R-下底半径、h-高V=πh(R2+Rr+r2)/3球r-半径、d-直径V=4/3πr3=πd2/6球缺h-球缺高、r-球半径、a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径、h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径、D-环体直径、r-环体截面半径、d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径、d-桶底直径、h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
立体几何公理、定理推论汇总一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈I I 且作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。
公理3 经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
公理4 平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。
二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。
(1) 符号语言://////a b a c c b ⎫⇒⎬⎭ 图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭ 图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭I图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。
几何计算公式大全一、平面几何公式:1.周长和面积公式:-矩形:周长=2*(长+宽),面积=长*宽-正方形:周长=4*边长,面积=边长^2-圆:周长=2*π*半径,面积=π*半径^2-三角形:周长=边1+边2+边3,面积=(底边*高)/2-梯形:周长=边1+边2+边3+边4,面积=(上底+下底)*高/22.角度和三角函数公式:-弧度和角度的转换关系:度=弧度*(180/π),弧度=度*(π/180)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c是三角形的三条边,A、B、C是对应的角度。
- 余弦定理:c^2 = a^2 + b^2 - 2ab*cos(C),其中c是三角形的斜边,a、b是两个相邻角的边长,C是这两个边对应的夹角。
3.直线和平面的方程公式:-点斜式方程:y-y1=斜率(x-x1),其中(x1,y1)是直线上的一点,斜率可以用两点之间的高度差除以水平距离表示。
-两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。
-一般式方程:Ax+By+C=0,其中A、B、C是常数,表示直线上的所有点。
二、立体几何公式:1.体积和表面积公式:-立方体:体积=边长^3,表面积=6*边长^2-正方体:体积=边长^3,表面积=6*边长^2-圆柱体:体积=π*半径^2*高,曲面积=2*π*半径*高,总表面积=2*π*半径*(半径+高)-圆锥体:体积=(π*半径^2*高)/3,曲面积=π*半径*侧面长度,总表面积=π*半径*(侧面长度+半径)-球体:体积=(4/3)*π*半径^3,表面积=4*π*半径^22.直角三角形的性质:-毕达哥拉斯定理:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2- 直角三角形的角度关系:直角的两个锐角的正弦、余弦和正切函数值满足sin(A) = cos(B) = a/c,sin(B) = cos(A) = b/c,tan(A) =a/b,tan(B) = b/a。
立体几何点线面定理1.公理一:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
2.公理二:如果两个平面有两个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上。
3.公理三:经过不在同一直线上的三点有且只有一个平面。
4.推论一:经过直线和直线外一点有且只有一个平面。
5.推论二:经过两条相交直线有且只有一个平面。
6.推论三:经过两条平行直线有且只有一个平面。
7.异面直线判定定理:平面内一点与平面外一点的确定的直线,与此平面内不经过该点的直线是异面直线。
8.公理四:平行于同一条直线的两条直线平行。
9.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
10.等角定理推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
11.直线与平面垂直的判定定理一:过平面外一点有且只有一条直线与已知平面垂直。
12.直线与平面垂直的判定定理二:过直线上一点,有且只有一个平面与已知直线垂直。
13.直线与平面垂直的判定定理三:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
14. 直线与平面垂直的性质定理四:如果一条直线垂直于已知平面,另一条直线平行于这条直线,那么另一条直线也垂直于已知平面。
15.直线与平面垂直的性质定理五:如果两条直线同垂直于一个平面,那么这两条直线平行。
16.射影长定理:从平面外一点向这个平面所引的垂线段和斜线段中,斜线段相等的射影相等,射影相等的斜线段相等,斜线段较长的射影也较长,射影较长的斜线段也较长,垂线段最短。
17.最小角定理:斜线与平面所成的角是斜线与平面内任意一条直线中所成的角中最小的。
18.三垂线定理:平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
19.三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
立体几何的计算定理立体几何是研究空间物体的形状、大小、位置和运动等性质的一门数学学科。
在立体几何中,存在着一些重要的计算定理,它们能够帮助我们准确计算立体图形的各种参数和性质。
本文将介绍一些常用的立体几何计算定理。
一、体积计算定理体积是描述立体图形容积大小的量。
在立体几何中,我们常用以下定理来计算体积。
1. 平行四边形棱柱的体积计算定理:平行四边形棱柱的体积等于底面积与高的乘积。
2. 直方体的体积计算定理:直方体的体积等于底面积与高的乘积。
3. 圆柱体的体积计算定理:圆柱体的体积等于底面积与高的乘积。
4. 锥体的体积计算定理:锥体的体积等于底面积与高的乘积的三分之一。
5. 球体的体积计算定理:球体的体积等于四分之三乘以半径的立方。
二、表面积计算定理表面积是描述立体图形外部覆盖的面积的量。
在立体几何中,我们常用以下定理来计算表面积。
1. 正方体的表面积计算定理:正方体的表面积等于底面积的六倍。
2. 矩形长方体的表面积计算定理:矩形长方体的表面积等于底面积的两倍加上底面积形成的四个侧面的面积。
3. 圆柱体的表面积计算定理:圆柱体的表面积等于底面积的两倍加上底面积与高的乘积的两倍。
4. 球体的表面积计算定理:球体的表面积等于四乘以半径的平方。
三、欧拉定理欧拉定理是立体几何中的一个重要定理,它描述了一个立体图形的顶点、棱边和面的关系。
欧拉定理可以表述为:一个立体图形的顶点数加上面的数目,再减去边的数目等于2。
欧拉定理在立体几何的计算中具有重要的作用,可以用来检验计算结果的准确性,或者通过已知的参数来计算未知的参数。
四、平行四边形定理平行四边形定理是立体几何中关于平行四边形的性质和关系的定理。
其中一条重要的定理是平行四边形的对角线等分的定理,即平行四边形的对角线相交于一个点,且该点把对角线分成两段,两段长度相等。
平行四边形定理可以用来证明或计算平行四边形的各种性质,例如四边形的面积、周长、对角线长等。
五、球面上的计算定理在球面上,也存在一些与计算相关的定理。
数学立体几何八大定理
1. 柿子定理:一个作为平面多边形底面的凸多面体的侧面积等
于这个凸多面体表面积的一半加上这个多面体面数目乘以它的底面积。
2. 欧拉定理:一个简单凸多面体的面数、顶点数和边数满足公式:面
数+顶点数=边数+2。
3. 狄利克雷定理:如果一个立体角的每个边界面都可以划分成互不相
交有限个平凡的平面角,则这个立体角为平凡的。
一个立体角被称为
平凡的,当且仅当它可以被划分成三角形。
4. 菲赫斯定理:一个多面体的每条棱所在的平面相交于一点(称为多
面体的菲赫斯点)。
5. 球冠切割定理:一个球的表面可以被三个平面分割成球冠。
6. 萨公定理:任何一个超过120度的立体角可以被切割成平凡的立体角。
7. 凸多面体的交角定理:凸多面体中任意两个面交角的余角的总和等
于360度。
8. 柯西・切比雪夫定理:如果两个凸多面体的交集不为空,则它们的
交界面至少有一点。
立体几何公式定理大全立体几何是研究空间中各种图形的性质和关系的分支学科,其主要研究对象是立体图形的特征、构造和性质。
在立体几何的学习过程中,我们需要掌握一些重要的公式和定理,以便解决与立体图形相关的问题。
下面是一些常用的立体几何公式和定理的详细介绍:1.体积公式:-直角三棱柱的体积公式:体积=底面积×高-正方体的体积公式:体积=边长^3-直角三角柱的体积公式:体积=面积×高-圆柱的体积公式:体积=底面积×高-锥体的体积公式:体积=1/3×底面积×高-球体的体积公式:体积=4/3×π×半径^32.表面积公式:-正方体的表面积公式:表面积=6×边长^2-正方体的棱长公式:棱长=根号下(表面积/6)-正方体的对角线长度:对角线长度=边长×根号下(3)-直角三角柱的表面积公式:表面积=(底面积+两倍底面积的开方)+2×底面积-圆柱的表面积公式:表面积=2×π×半径×高+2×π×半径^2-锥体的表面积公式:表面积=π×半径×斜高+π×半径^2-球体的表面积公式:表面积=4×π×半径^23.空间几何定理:-平行线截立体的定理:如果两组平行线截取同一直线的长度成比例,那么这两组平行线截取的其他直线的长度也成比例。
-空间角平分线的定理:空间中的角可由角平分线平分为两个等角。
-立体的等分线定理:平面将一个立体分为两个等体积的立体时,它将该立体的底面分为两个等面积的底面,并且过底面上的任意一点,以该点为顶点作平行于底面的面将该立体分为两个等体积的立体。
-线与面的关系定理:一条不等于底面的直线与底面所围的锥交于一点,但与底面围成的锥不是等体积的。
-垂直平分面定理:垂直与一条直线的平面把这条直线平分为两段,它把这条直线的平面所围的任一立体分为两个等体积的立体。
立体几何公式定理大全
一、公理定理
(一)平面基本性质
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为(]0,90︒︒
两异面直线间距离: 公垂线段(有且只有一条)
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面
(三)平行关系
1.线面平行
定义:直线和平面没有公共点
判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线
平行。
2.面面平行
定义:空间两平面没有公共点
判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系
1.线面垂直
定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
2.二面角的有关定义
半平面的定义:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]
二面角的棱:这一条直线叫做二面角的棱。
二面角的面:这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
直二面角:平面角是直角的二面角叫做直二面角。
3.面面垂直
定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
4.三垂线定理相关
平面的斜线:和平面相交但不垂直的直线叫平面的斜线,斜线和平面交点叫斜足。
斜线在平面上的射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线在这个平面上的射影
三垂线定理:平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
斜线和平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三余弦定理:设A为面上一点,过A的斜线AO在面上的射影
为AB,AC为面上的一条直线,那么
∠OAC,∠BAC,∠OAB三角的余弦关系为:
cos∠OAC=cos∠BAC×cos∠OAB(∠BAC和∠
OAB只能是锐角)。