当前位置:文档之家› 高锰钢中的碳

高锰钢中的碳

高锰钢中的碳
高锰钢中的碳

高锰钢中的碳

1碳在奥氏体中的溶解度随温度的降低而不断下降,当各种化学成分的高锰钢冷却到ES线是,钢中开始析出碳化物。碳含量1.3%的钢开始析出碳化物的温度约为960℃左右,碳含量不同,其析出温度不同,碳含量越高,其析出温度越高。碳化物的析出使组织出现第二相,当冷却速度较快时,碳化物的析出温度可能降低。析出的数量和冷却速度有关,冷速越慢,越接近平衡状态,碳化物的析出数量越多。随着温度的降低,奥氏体中不断析出碳化物,奥氏体的碳含量不断下降。当达到A1时发生共析分解。奥氏体的分解产物是α和碳化物(FeMn)3C。在这样平衡条件下得到的金相组织为铁素体和碳化物。但在铸造条件下,高锰钢结晶过程中的冷却速度大于平衡条件,因此组织转变不能按平衡条件进行,而是共析转化来不及发生,得到的金相组织是由奥氏体和碳化物组成的。

2碳在高锰钢中的作用:一是促进形成单项奥氏体组织;二是固溶强化以保证钢的力学性能。

3高锰钢铸态时,随着钢中碳含量的增加,钢的强度,在一定的范围内是增加的,硬度随含碳量的增加而不断的提高;钢的塑性、韧性则明显降低。碳含量达到1.3%左右时,铸态钢的韧性降到零。这是随含碳量增加,铸态组织在碳化物数量增加,甚至在晶界形成连续网状碳化物,大大降低了晶界的强度和钢的塑性、韧性。

4碳含量在0.8-1.15%的范围是对冲击韧性影响很少,大于1.15%以后,冲击韧性明显降低。碳含量每增加0.1%,常温下的ak值降低

高锰钢工艺(学术参考)

高锰钢工艺 1.高锰钢有哪几种?其性能如何? 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P 含量<0.03%,S含量<0.05%。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏 体钢。其力学性能为:σ b =980 MPa,σs=392 MPa,HB210,δ=80%,α k =2.94 MJ /m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点? 高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为 HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能? 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料?

高锰钢分类及简介

一、高锰钢分类及简介 1、高锰钢的来源 1882年第一次获得奥氏体组织的高锰钢,1883年英国人哈德菲尔德(R.A.Hadfield)取得了高锰钢专利。高锰钢依其用途的不同可分为两大类: 2、耐磨钢 这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ0.2340~470MPa ζ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~ 1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件, ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬

耐磨高锰钢铸件的各类热处理

.耐磨高锰钢铸件的铸态余热热处理 为缩短热处理周期,可利用铸态余热进行高锰钢水韧处理。其工艺为:铸件于ll00~1180。C时自铸型中取出,经除芯清砂后,铸件温度允许冷却到900~1000。C,然后装入加热到l050。1080。C的炉内保温3~5h后水冷。该处理工艺简化了热处理工艺,减少了铸件在型内的冷N啪3,但ue产操作上有一定难度。表11—18为不同热处理工艺的高锰钢试样的力学性能。 2.耐磨高锰钢铸件的沉淀强化热处理 耐瞎高锰钢沉淀强化热处理的目的,是在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理方法在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点,强化奥氏体基体,提高高锰钢的抗磨性能。但这种热处理工艺较复杂,并使生产成本增加。 3.耐磨高锰钢铸件的固溶热处理——水韧处理耐磨高锰钢的铸态组织中有大量析出的碳化物,因而其韧度较低,使用中易断裂。 高锰钢铸件固溶热处理的主要目的,是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织,提高高锰钢的强度和韧度,扩大其应用范围。 要消除其铸态组织的碳化物,须将钢加热至1040。C以上,并保温适当时间,使其碳化物完全固溶于单相奥氏体中,随后快速冷却得到奥氏体固溶体组织。这种固溶热处理又称为水韧处理。 (1)水韧处理的温度:水韧温度取决于高锰钢成分,通常为1050~1100。含碳量高或者合金含量高的高锰钢应取水韧温度的上限,如ZGMnl3钢和GXl20Mnl7钢。但过高的水韧温度会导致铸件表面严重脱碳,并促使高锰钢的晶粒迅速长大,影响高锰钢的使用性能。图ll-25为高锰钢在1100保温2h后铸件表面碳和锰元素的变化。 (2)加热速率:高锰钢比一般碳钢的导热性差,高锰钢铸件在加热时应力较大而易开裂,因此其加热速率应根据铸件的壁厚和形状而定。一般薄壁简单铸件可采用较快速率加热;厚壁铸件则宜缓慢加热。为减少铸件在加热过程中变形或开裂,生产上常采用预先在650左右保温,使厚壁铸件内外温差减小,炉内温度均匀,之后再快速升到水韧温度的处理工艺。图ll—26为典型高锰钢件的热处理工艺规范。 (3)保温时间:保温时间主要取决于铸件壁厚,以确保铸态组织中的碳化物完全溶解和奥氏体的均匀化。通常保温时间可按铸件壁厚25mm保温lh计算。图ll—27为保温时间对高锰钢表面脱碳层深度的影响。 (4)冷却:冷却过程对铸件的性能指标及组织状态有很大的影响。 水韧处理时铸件入水前的温度在950必上,以免碳化物重新析出。为此,铸件从出炉到A水时间不应超过30s;水温保持在30度以下.淬火后最高水温不超过60度。水温较高时高锰钢的力学性能显著下降。水韧处理时水量须达到铸件和吊栏重量的8倍以上,若用非循环水需定期增加水量.暑好使用水质干净的循环水或采用压缩空气搅动池水。用吊篮吊淬时,可采用摆动吊篮的方式加速铸件的冷却。 高锰钢水韧处理多用台车式.热处理炉。铸件人水常用自动倾翻或吊篮吊淬方式。前者对大件及形状复杂的薄壁件易引起变形,淬火后铸件从水池中取出也较为困难;后者淬火后取出铸件方便,但吊篮消耗大。 4.耐磨中铬钢铸件的热处理耐磨中铬钢铸件热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以提高钢的强度、韧度及耐磨性。

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

高锰钢抗磨性提高的方法

高锰钢抗磨性提高的方法 摘要:采用细化晶粒和沉淀硬化的方法来提高高锰钢抗磨性。 关键词:高锰钢抗磨性细化晶粒沉淀硬化 对于承受较大冲击负荷的磨粒磨损条件下,通常采用奥氏体锰钢。因为这种具有高的韧性和高的应变硬化能力,在高冲击载荷下具有高的耐磨性。适宜制作具有抵抗凿削磨损的耐磨件。但在很多磨料磨损的情况下,如高锰钢齿板、碎煤机环锤、衬板未能表现出较高的抗磨粒性能,甚至还出现了早期失效。为此,本工作采用细化晶粒和沉淀硬化的方法来解决这个问题,提高奥氏体锰钢的抗磨性,适应工况条件的要求。 1、实验内容 采用两种实验方案:细化奥氏体晶粒,以提高奥氏体锰钢的强韧性;进行沉淀硬化处理,进一步强化锰钢基体,改善屈服强度,获得弥散分布的碳化物组织,提高抗磨性。 1.1 细化晶粒 ZGMn13钢的化学成分如表1所示。 快速循环热处理工艺:用基尔试块制作金相及夏氏冲击试样,用梅花试样制作拉伸试样。其热处理工艺如下表2所示。 通过快速循环热处理,可使高锰钢奥氏体晶粒获得细化。显微组织的观察表明,阶梯加热,循环加热和交替加热等三种热处理方法,均可获得比普通水韧处理细得多的奥氏体晶粒。图1为循环热处理后的组织,晶粒度为6-8级。图2为普通水韧处理的组织,晶粒度1-3级。 1.2 沉淀硬化处理 在原循环热处理工艺基础上,分别进行低温和中温长时间失效,温度为350℃、450℃和540℃,时间为6小时,8小时和10小时,通过不同工艺处理后,得出下列结果。其工艺方案如表3所列。机械性能如表4所列。(如表3) 高锰钢在细化奥氏体晶粒后,再经过450℃×8小时的失效处理,使其碳化物不论在晶内或晶界都达到了弥散分布,而且呈粒状。而经1080℃×3小时固溶,再经过450℃×8小时失效的高锰钢,则未能得到弥散分布的碳化物,并且碳化物呈块状、针状、且聚集于晶界附近。通过比较可以看出,高锰钢细化晶粒后,进行沉淀硬化处理,可以得到比较满意的奥氏体+弥散分布的细粒状碳化物组织。 当时效温度超过450℃时,碳化物则逐渐由粒状变成针状,而且逐渐粗大。组织变脆,但硬度达到失效峰值为HRC45-47。(如表4) 2、工业实验 工业试验在HSZ300的小型破碎机上进行的。破碎矿物主要是煤矿,其中有部分煤矸石,粒度不规则,硬度为7-8(f),破碎比为1/10。环锤已破碎11000小时矿物,还没有明显磨损,仍在继续使用。原普通水韧处理的锤头,平均破碎8000多小时就磨损得磨损。另外,经过快速循环热处理的齿板,其耐磨性也得到较大的提高。 3、结语 (1)通过快速循环热处理等强韧化方法,明显地细化了高锰钢奥氏体组织,使其晶粒度分别达到5-8级(普通水韧处理可达1-3级)。提高了钢的强韧性。(2)在细化的奥氏体锰钢基体上,进行沉淀硬化处理。既得奥氏体+弥散分布粒状碳化

高锰钢分类及简介

高锰钢分类及简介 一、高锰钢分类及简介 、高锰钢的来源1年英国人哈德菲尔德1883 1882年第一次获得奥氏体组织的高锰钢,

取得了高锰钢专利。高锰钢依其用途的不同可分为两大Hadfield)A.(R.类:、耐磨钢2%,大部1.500.90%~10%~15%,碳含量较高,一般为这类钢含锰 )%:.0%以上。其化学成分为(分在10 15.1.50Mn10.0~ C0.90~这类高锰钢的用量最多,常用来制作30~1.0 S ≤0.05 P≤0.10 Si0. 挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组 成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的保温消除铸态组织,~1100℃,即将钢加热到热处理方法是固溶处理,1050得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。%0.2340~470MPa ζ15%~85热处理后力学性能为:σb615~1275MPa σ 225 ~/cm2 HBl80%ψ15%~45 aKl96~294J高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符 合检验标准时,仍可使用。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变 强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。~,高

冲击载荷时,可以达到HB500低冲击载荷时,可以达到HB300~400。高硬度的 硬化层~20mm800。随冲击载荷的不同,表面硬化层深度可达10可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。%~1(C 1.10中国常用的高锰钢的牌 号及其适用范围是:ZGMn13— 用于普通件,%)%~ZGMn13—2(C1.001.40用于低冲击件,1.50%)用%~1.20)用于复杂件,%~3(C0.901.30%)ZGMn13-4(C0.90%—ZGMn13 14.0%~%。11.04于高冲击件。以上种牌号钢的锰含量均为在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交 割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬 化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易马氏 体的形成和形变孪晶的产生创造了条件。常出现堆垛层错,从而为ε规成分的 高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。马氏体和形 变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述ε各种因素都使 高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。 高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻 14()()℃),钢的压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为50℃),钢的导热性低,因此钢水流动性约为液、固相线温度间隔较小,(2的5倍,为 碳素钢好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.倍,故铸造时体

高锰钢的耐磨性

高锰钢的耐磨性

高锰钢的耐磨性 高锰钢铸件在受到冲击截荷和压应力时,金属表面发生塑性变形,迅速产生加工硬化并诱发产生马氏体及ε相,从而形成硬而耐磨的表面层,而心部仍是奥氏体组织。表面层硬度由原来的200HB左右提高到500HB以上,硬化层厚度可达到10~20mm,甚至更多。在表面逐渐被磨损掉的同时,在冲击载荷的作用下硬化层不断地向内发展。在低冲击载荷和低应力磨损情况下,由于不能在表面产生足够的加工硬化,这时高锰钢的耐磨性往往不一定比相当硬度的其他钢种好。 为适应不同工况的要求,调整基本成分和加入其他合金元素,以提高钢的耐磨性,发展了一些改进型高锰钢。国内外一部分改进型高锰钢的化学成分和用途见下表。 改进型高锰钢的化学成分和用途 国别钢种 化学成分质量分数(%) 用途举例C Si Mn Mo Cr其他 中国Mn6Mo 1.2~1.40.4~0.7 5.5~7.00.8~1.2 1.5 (小截面 件) (大截面 件) - 适用于冲击不 很大的粉煤设 备和工程机械 的耐磨件 美国 Climax 6Mn-1Mo Grade A 1.05~1.350.40~0.70 5.75~ 6.75 0.90~ 1.20 残余-Grade B 0.80~1.000.40~0.70 6.00~ 7.00 0.90~ 1.20 残余- 中国 5Cr5Mn90.54-8.86- 4.94-破碎机的轧臼 壁、破碎壁, 电铲铲齿 60Cr5Mn110.58-11.0- 4.7- Mn9Cr2------ 45Mn17Al30.34~0.420.27~0.57 17.2~ 18.0 -- Al:2.97~ 3.20 Ti:0.078~ 0.098 承受高应力冲 击的工件,如 落锤及其底座7Mn130.7~0.8≤0.5 12.5~ 14.5 --Ti:≤0.1 铸态下使用。 大型挖掘机铲 斗、复杂结构 的格子板、衬 板等

耐磨金属材料的最新研究现状

耐磨金属材料的最新研究现状 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况和资源情况,研制出多种新型耐磨材料。主要有改性高锰钢、中锰钢、超高锰钢

高锰钢

高锰钢分为两大类,一类是耐磨钢,一类是无磁钢。这里主要涉及耐磨钢。这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从

高锰钢的耐磨性

高锰钢的耐磨性 高锰钢铸件在受到冲击截荷和压应力时,金属表面发生塑性变形,迅速产生加工硬化并诱发产生马氏体及ε相,从而形成硬而耐磨的表面层,耐心部仍是奥氏体组织。表面层硬度由原来的200HB左右提高到500HB以上,硬化层浓度可达到10~20mm,甚至更多。在表面逐渐被磨损掉的同时,在冲击载荷的作用下硬化层不断地向内发展。在低冲击载荷和低应力磨损情况下,由于不能在表面产生足够的加工硬化,这时高锰钢的耐磨性往往不一定比相当硬度的其他钢种好。 为适应不同工况的要求,调整基本成分和加入其他合金元素,以提高钢的耐磨性,发展了一些改进型高锰钢。国内外一部分改进型高锰钢的化学成分和用途见下表。 改进型高锰钢的化学成分和用途

园锥破碎机轧臼壁的研制应用 本课题研制的轧臼壁是选矿厂碎矿车间碎矿系统园锥破碎机重要的备件之一、在实际工况条件下,该工件承受着极强烈的、高周次的、反复交变应力的作用(冲击、磨擦、挤压,剪切等),其质量的好坏,将直接到选矿厂能否进行正常的生产经营活动。 1.轧白壁工件的选材分析 根据轧臼壁工件在实际工况条件下的受力状态,服役特点(高周次的强烈冲击、磨擦、挤压、剪切的反复),结合国内目前使用耐磨材料现状,经一系列对比分析、反复试验我们选择了在强烈冲击、磨擦、挤压,剪切工况条件下具有强大潜能(加工硬化能力)的高锰钢作为制作轧臼壁工件的材质。 1.1轧臼壁工件化学成份的确定 高锰钢的耐磨性由钢的化学成份、钢中夹杂物含量、钢中碳化物的溶解与偏析度、钢的晶粒度和铸造质量的优劣等决定。 高锰钢中各元素对其性能的影响 硅:含硅量高,降低碳在奥氏体中的溶解度,碳化物在晶界上析出增多且肥大,水韧处理后,在晶界上留下较大的显微疏松,但为了完全消除,钢中的含硅量,控制在—%最佳,含硅量>%对高锰钢各项性能无明显影响。 锰:高锰钢由于含锰量高,钢的铸态组织为奥氏体及碳化物,经1000℃左右加热水淬处理(通常称水韧处理)后。绝大部分碳化物固溶

材料X120Mn12性能资料

zgmn13 国标的ZGMn13,也就是德标X120Mn12。几年前上海已有人开发生产了Mn13的轧制钢板,各种性能均高于ZGMn13很多。在强冲击、大压力的环境下,Mn13轧制钢板的耐磨性能非常优良。经预加工处理后的Mn13轧制钢板在无冲击或较小压力的环境下,耐磨性能也远高于进口低合金耐磨钢,当然比国产耐磨钢NM420也要强很多。而且切割焊接性能也非常好。目前在抛丸机行业应用非常广泛,价格也比几年前低了很多。 Mn13特性及适用范围: 具有高的抗拉强度、塑性和韧性以及无磁性,即使零件磨损到很薄, 仍能承受较大的冲击载荷而不致破裂,可用于铸造各种耐冲击的磨损件, 如球磨机衬板、挖掘机斗齿、破碎机牙板等。一般用于结构简单, 要求以耐磨为主的低冲击铸件,如衬板、齿板、破碎壁、轧臼壁、辊套和铲齿。 这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%):C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45%aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件, ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从

高锰钢工艺

高锰钢工艺 1.高锰钢有哪几种其性能如何 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分 为:Mn含量11%~14%,c含量%~%,Si含量%~%,P含量<%,S含量<%。高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧 性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏体钢。其力学性能为:σb=980 MPa,σs=392 MPa,HB210,δ=80%,αk= MJ/m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。 2.高锰钢有哪些切削加工特点

高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200~220,加工后表面硬度可达HB450~550,硬化层深度~mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料 高锰钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高锰钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。目前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热

影响高锰钢力学性能的几个因素

影响高锰钢力学性能的几个因素 【摘要】论述了影响高锰钢力学性能的因素有碳化物、夹杂物、化学成分、晶粒度。经实践摸索,我们认为碳化物、夹杂物是影响高锰钢力学性能的主要因素,在检验过程中应严格控制。根据我厂实际情况,对成分控制比较严格,一般都能达到成分要求,所以对性能影响也不会太大。当不存在穿晶现象时,晶粒度对高锰钢的力学性能影响较小,在检验过程中可做为一般检验项目。 高锰钢是历史最悠久,也是世界各国通用的一种抗磨钢。这种钢适用于在重力冲击或挤压的工作条件下经受摩擦的零件,这种奥氏体钢具有加工硬化性质,在冲击或重力挤压下,其表层发生加工硬化现象,硬度比原来大幅提高,可达到450~550HBW,而冲击韧度相应有所降低。这种具有高硬度的表层使铸件具有良好的抗磨性,至于铸件的内部则由于没有受到加工硬化,仍旧保持其原有的硬度和良好的韧性。当铸件的工作表面被磨掉一层后,显露出来的新的一层又被加工硬化,而同样获得了高的硬度,由于表层具有高硬度而内部具有良好的韧性这两方面很好的结合,所以铁路道岔中高锰钢辙叉铸件就是利用这一特性制造的。为了保证高锰钢的这种力学性能,必须严格检查其关键项点,使产品保质保量,避免生产过程中出现废品。 一、高锰钢的铸态组织 含Mn=11%~14%、C=0.9%~1.4%的钢,在900℃以上时,具有单一奥氏体组织,当温度降低到约900℃以下时将有碳化物Fe3C析出,

当温度继续下降至620℃左右时,开始共析转化,并一直持续到约300℃时终了,在这样平衡条件下得到的金相组织为铁素体和碳化物。但在铸造条件下,高锰钢结晶过程中的冷却速度大于平衡条件,因此组织转变不能按平衡条件进行,而是共析转化来不及发生,得到的金相组织是由奥氏体和碳化物组成的。 二、对影响高锰钢力学性能的因素探讨 1.碳化物对高锰钢性能的影响:无论是构成网状的析出碳化物还是未熔碳化物,对高锰钢力学性能的影响非常大,使其冲击值及抗拉强度大大降低,远远低于标准规定的数值,Rm≥750MPa,ak≥147j/cm2,所以,碳化物会严重影响高锰钢的力学性能,在检查时应严格控制。 2.非金属夹杂物对高锰钢性能的影响:碳化物不仅影响高锰钢的力学性能,非金属夹杂物的含量对钢的性能也有显著影响。高锰钢由于含大量的锰,因而在钢液中会产生大量的氧化锰(MnO),由于氧化锰在钢液中的溶解度很大,而在固态钢中的溶解度极小,因此在钢液凝固时,大量的氧化锰以非金属夹杂物的形式析出在钢的晶界上,降低钢的冲击韧度,并使铸件的热裂纹倾向增大。因为在冶炼高锰钢时,要求钢液脱氧良好,尽量降低钢液中氧化锰的含量。另外,由于非金属夹杂物的强度和塑性都很低,它们在钢液中的作用有如空洞或裂纹一样,割裂钢的本体,降低钢的性能。非金属夹杂物越多,对钢的本体割裂作用越大,显著降低钢的性能,且随着钢中夹杂物数量的增多,钢的性能大幅降低。

高锰钢工艺

1<高猛钢有哪几种其性能如何 猛含量约为11%?18%的钢称高镒钢。常用的铸造高镭钢ZMnl3的化学成分为:Mn含量11%?14%, C含量%?%,Si含量%?%, P含量<%, S含量<%。 高猛钢是一种耐磨钢,经过水韧处理的高镭钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到IOOO O C?1100°C,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出, 从而保持了 单一的均匀的奥氏体组织。经过水韧处理的高镭钢称为高猛奥氏体钢。其力学性能为:O b=980MPa, σs=392 MPa, HB210, δ =80%, Qk=MJ / 高猛钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点OS较低, 只有Ob的40%,因此具有较高的塑性和韧性。高镭钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450?550,因此有了较高的耐磨性。 高镒钢可分为高碳高猛耐磨钢、中碳高猛无磁钢、低碳高猛不锈钢和高猛耐热钢。儿种高镭钢的牌号和性能见表54。 1 2. 高链钢有哪些切削加工特点 高猛钢猛含量高达11%?18%,具有较高的塑性和韧性,在切削加工中有以下特点:

(1) 加工硬化严重:高猛钢在切削过程中,山于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200?220,加工后表面硬度可达HB450?550,硬化层深度?mm,其硬化程度和深度要比45号钢高儿倍。严重的加工*更化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2) 切削温度高:山于切削功率大,产生的热量多,而高镒钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高镭钢的切削温度比45号钢拓200。C?250 °C,因此,刀具磨损严重,耐用度降低。 ⑶断屑困难:高猛钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高镒钢的线膨胀系数与黃铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高猛钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3. 怎样通过热处理改善高锈钢的切削性能 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高猛钢的切削性能可以通过高温回火来实现。将高镭钢加热至600°C?650o C,保温两小时后冷却,使高镭钢的奥氏体组织转变为索氏体组织,其加工硕化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4. 切削高猛钢时怎样选择刀具材料 高猛钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高镭钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。□前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。YG类硬质合金的磨加工性较好,可以磨出锐利的刃口。一般情况下,刀具的耐用度取决于刀具材料的红硬性、耐磨性和冲击韧性。YG类硬质合金中含钻量较多时,抗弯强度和冲击韧性好,特别是提高了疲劳强度,因此适于在受冲击和震动的条件下作粗加工用;含钻量较少时,其硬度、耐磨性和耐热性较高,适合作连续切削的精加工。 YT类硬质合金具有较高的硬度和较高的耐热性,但与YG类硬质合金相比,其强

高锰钢简介

锰 锰最重要的用途就是制造合金----锰钢 锰钢的脾气十分古怪而有趣:如果在钢中加入2.5—3.5%的锰,那么所制得的低锰钢简直脆得象玻璃一样,一敲就碎。然而,如果加入13%以上的锰,制成高锰钢,那么就变得既坚硬又富有韧性。高锰钢加热到淡橙色时,变得十分柔软,很易进行各种加工。另外,它没有磁性,不会被磁铁所吸引。现在,人们大量用锰钢制造钢磨、滚珠轴承、推土机与掘土机的铲斗等经常受磨的构件,以及铁锰锰轨、桥梁等。 高锰钢 高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为14()()℃),钢的液、固相线温度间隔较小,(约为50℃),钢的导热性低,因此钢水流动性好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.5倍,为碳素钢的2倍,故铸造时体积收缩和线收缩率均较大,容易出现应力和裂纹。为提高高锰钢的性能进行过很多合金化、微合金化、碳锰含量调整和沉淀强化处理等方面的研究,并在生产实践中得到应用。介稳奥氏体锰钢的出现则可较局gao大幅度降低钢中碳、锰含量并使钢的形变强化速度提高,可适用于高和中低冲击载荷的工况条件,这是高锰钢的新发展。 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是0.75%-1.45%。受冲击大,碳含量低。锰含量在11.0%-14.0%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于0.5%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于0.07%。铬是提高抗磨性的,一般在2.0%左右。 无磁钢 这类钢含锰大于17%,碳含量一般均在1.0%以下,常在电机工业中用于制作护环等。这类钢的密度为7.87~7.98g/cm3。由于碳、锰含量均高,钢的导热能力差。导热系数为12.979W/(m?℃),约为碳素钢的1/3。由于钢是奥氏体组织,无磁性,其磁导率μ为1.003~1.03(H/m)。 Mn13奥氏体高锰钢是碳含量为0.9%~1.3%、锰含量为11%~14%的高合金钢。奥氏体高锰钢经过热处理后,具有很高的韧性,是一种非常强韧的非磁性合金,在冲击载荷作用下,表面

高锰钢造型材料

高锰钢造型材料 目前,内许多厂家在应用消失模工艺生产高锰钢铸件时,多采用石英砂作为造型材料,所用的涂料大都是水基镁砂粉,刚玉粉、锆英粉等涂料,不仅成本高,而且许多性能也不够理想。因此,必须开发与研制性能优良,成本低廉,而且适用于消失模铸造生产高锰钢铸件的涂料及造型材料。 经过试验,采用镁橄榄石粉作为骨料配制的水基镁橄榄石粉涂料以及用镁橄榄石砂作为造型材料生产高锰钢铸件取得了较好的效果。 1 镁橄榄石砂(粉)的性能 镁橄榄石砂与传统的石英砂相比有如下特点: (1)导热性能好,热膨胀缓慢均匀,不易产生夹砂。 (2)无游离的SiO 存在,无硅尘危害,浇注时无CO气体产生,生产环境良 2 好。 (3)耐火度高(1 700 ℃),抗金属氧化物侵蚀能力强,特别对高锰钢铸件有很高的化学稳定性,能有效防止铸件的化学粘砂和机械粘砂,铸件表面光洁,轮廓清晰,尺寸准确,合格率高。 (4)回收利用率高。 此外,用镁橄榄石粉作为涂料具有触变性好,屈服值适宜、悬浮率高,易涂挂,涂层强度高,高温爆热不开裂、抗粘砂性强、铸件表面光洁、涂层烧结成壳自行剥离等优良性能。 镁橄榄石砂(粉)属碱性,抗碱性熔渣能力强,而且耐火度高,能抵御高锰钢金属液体的冲刷,同时成本较低,将其应用于高锰钢铸件的消失模铸造中已显示出优越性。 2 镁橄榄石粉涂料 随着消失模铸造工艺的发展和应用,涂料技术在整个工艺中的地位显得越来越重要。涂料能提高泡沫塑料模样的强度和刚度,防止在填砂振动时模样破坏或变形,防止金属液渗入型砂或铸型塌陷,保证铸件的表面光洁。涂料性能的好坏及成本的高低直接影响到铸件的品质以及产品的经济效益。经过无数次的试验,选定了1个比较合理的配制方法,效果十分理想。高锰钢属碱性金属液,因此需配制碱性较强的涂料。 2.1 混制工艺 粘结剂+镁橄榄石粉 无水碳酸钠+膨润土搅匀入罐+CMC+乳白胶搅拌4 h出料。 2.2 涂敷工艺 采用浸涂及刷涂相结合的方法涂敷涂料。先用浸涂的方法进行大面积浸涂,局部涂挂不良之处,再进行刷涂,然后将其平稳地放入烘房进行烘烤,烘干温度为45~50 ℃。烘干后再刷第2遍,使涂层厚度在1~2 mm以内。第1遍涂料稍稀一点,第2遍、第3遍涂料里应适当加入发泡剂以增加涂层的透气性。

相关主题
文本预览
相关文档 最新文档