(教案)空间向量及其运算
- 格式:doc
- 大小:1.36 MB
- 文档页数:16
教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
空间向量及其加减运算【教课目的】1.认识向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。
【教课要点】点在已知平面内的充要条件。
共线、共面定理及其应用。
【教课难点】对点在已知平面内的充要条件的理解与运用。
【讲课种类】新讲课【课时安排】1课时【教课过程】一、复习引入:1.空间向量的观点:在空间,我们把拥有大小和方向的量叫做向量注:(1)空间的一个平移就是一个向量;(2)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量;(3)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算定义:与平面向量运算同样,空间向量的加法、减法与数乘向量运算以下(如图)CbaBb baAOD' C'OB OA AB a b ; BA OA OB a b ;OPa(R)A' B'运算律:( 1)加法互换律:ab b aaD CA B(2)加法联合律: (ab )c a (b c)(3)数乘分派律: (a b)ab3.平行六面体:平行四边形 ABCD 平移向量 a到 A B C D的轨迹所形成的几何体, 叫做平行六面体,并记作:ABCD - A B C D它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。
4.平面向量共线定理方向同样或许相反的非零向量叫做平行向量。
因为任何一组平行向量都能够平移到同一条直线上,所以平行向量也叫做共线向量。
向量 b 与非零向量 a共线的充要条件是有且只有一个实数 λ ,使 b =λ a。
这个定理称为平面向量共线定理,要注意此中对向量a的非零要求。
二、解说新课:1.共线向量与平面向量同样,假如表示空间向量的有向线段所在的直线相互平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于 b 记作 a // b。
和上节我们学习的空间向量的定义、 表示方法、空间向量的相等以及空间向量的加减与数乘运算和运算律都是平面向量的推行同样, 空间向量共线(平行)的定义也是平面向量有关知识的推行。
《1.3 空间向量及其运算的坐标表示》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习空间向量及其运算的坐标表示。
通过类比平面向量及其运算的坐标表示,从而引入空间向量及其运算的坐标表示,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间,在学生学习了空间向量的几何形式和运算,以及在空间向量基本定理的基础上进一步学习空间向量的坐标运算及其规律,是平面向量的坐标运算在空间推广和拓展,为运用向量坐标运算解决几何问题奠定了知识和方法基础。
【教学目标与核心素养】【教学重点】:理解空间向量的坐标表示及其运算【教学难点】:运用空间向量的坐标运算解决简单的立体几何问题【教学过程】一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.1.画空间直角坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°.三个坐标平面把空间分成八个部分.2.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.本书建立的都是右手直角坐标系.创设问题情境,引导学生体会运用坐标法,实现将空间几何问题代数化的基本思想2.点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA ⃗⃗⃗⃗⃗ ,且点A 的位置由向量OA ⃗⃗⃗⃗⃗ 唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA ⃗⃗⃗⃗⃗ =x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA⃗⃗⃗⃗⃗ 对应的有序实数组(x ,y ,z ),叫做点A 在空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.3.向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA⃗⃗⃗⃗⃗ =a 由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,可简记作a =(x ,y ,z ).小试牛刀1.若a =3i +2j -k ,且{i ,j ,k }为空间的一个单位正交基底,则a 的坐标为 . (3,2,-1)答案:向量OP ⃗⃗⃗⃗⃗ 的坐标恰好是终点P 的坐标,这就实现了空间基底到空间坐标系的转换.思考:在空间直角坐标系中,向量OP ⃗⃗⃗⃗⃗ 的坐标与终点P 的坐标有何关系? 二、空间向量运算的坐标表示 1.空间向量的坐标运算法则|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |= .√a 12+a 22+a 32;a 1b 1+a 2b 2+a 3b 3√a 12+a 22+a 32√b 12+b 22+b 32;√(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2.小试牛刀1.已知空间向量m =(1,-3,5),n =(-2,2,-4),则有m +n = ,3m -n = ,(2m )·(-3n )= . (-1,-1,1) ;(5,-11,19) ;168 解析:m +n =(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m -n =3(1,-3,5)-(-2,2,-4)=(5,-11,19),(2m )·(-3n )=(2,-6,10)·(6,-6,12)=168.2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a ∥b,则λ= ,若a ⊥b,则 λ= . 4 ;-23解析:若a ∥b ,则有2λ=λ8=-1λ-6,解得λ=4.若a ⊥b ,则a ·b =2λ+8λ-λ+6=0,解得λ=-23.3.已知a =(-√2,2,√3),b =(3√2,6,0),则|a |= ,a 与b 夹角的余弦值等于 . 答案:3√69解析:|a |=√a ·a =√(-√2)2+22+(√3)2=3,a 与b 夹角的余弦值cos <a ,b >=a ·b|a ||b |=-6+12+03×3√6=√69. 例1在直三棱柱ABO-A 1B 1O 1中,∠AOB=π2,AO=4,BO=2,AA 1=4,D 为A 1B 1的中点,建立适当的空间直角坐标系,求DO ⃗⃗⃗⃗⃗ ,A 1B ⃗⃗⃗⃗⃗⃗⃗ 的坐标.思路分析先在空间几何体中找到两两垂直的三条直线建立空间直角坐标系,再根据空间向量基本定理,将DO ⃗⃗⃗⃗⃗ ,A 1B ⃗⃗⃗⃗⃗⃗⃗ 用基底表示,即得坐标. 解:由已知AO ⊥OB ,O 1O ⊥OA ,O 1O ⊥OB ,从而建立以OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ 方向上的单位向量i ,j ,k 为正交基底的空间直角坐标系Oxyz ,如图,则OA ⃗⃗⃗⃗⃗ =4i ,OB ⃗⃗⃗⃗⃗ =2j ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ =4k ,DO ⃗⃗⃗⃗⃗⃗ =-OD ⃗⃗⃗⃗⃗⃗ =-(OO 1⃗⃗⃗⃗⃗⃗⃗⃗ +O 1D ⃗⃗⃗⃗⃗⃗⃗⃗ )=-[OO 1⃗⃗⃗⃗⃗⃗⃗⃗ +12(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )]=-OO 1⃗⃗⃗⃗⃗⃗⃗⃗ −12OA ⃗⃗⃗⃗⃗ −12OB⃗⃗⃗⃗⃗ =-2i-j-4k ,故DO ⃗⃗⃗⃗⃗⃗ 的坐标为(-2,-1,-4). A 1B ⃗⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ -(OA ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ )=OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ −AA 1⃗⃗⃗⃗⃗⃗⃗ =-4i+2j-4k , 故A 1B ⃗⃗⃗⃗⃗⃗⃗ 的坐标为(-4,2,-4). 即DO ⃗⃗⃗⃗⃗⃗ =(-2,-1,-4),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(-4,2,-4).用坐标表示空间向量的步骤如下:跟踪训练1.如图,在长方体ABCD-A 1B 1C 1D 1中,E,F 分别为D 1C 1,B 1C 1的中点,若以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ }为基底,则向量AE ⃗⃗⃗⃗⃗ 的坐标为 ,向量AF ⃗⃗⃗⃗⃗ 的坐标为 ,向量AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标为 .答案:(12,1,1) (1,12,1) (1,1,1)解析:因为AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +D 1E ⃗⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AE ⃗⃗⃗⃗⃗ 的坐标为(12,1,1). 因为AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AF ⃗⃗⃗⃗⃗ 的坐标为(1,12,1). 因为AC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标为(1,1,1).例2已知在空间直角坐标系中,A(1,-2,4),B(-2,3,0),C(2,-2,-5). (1)求AB⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ -2BA ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ ; (2)若点M 满足AM⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ ,求点M 的坐标; (3)若p =CA⃗⃗⃗⃗⃗ ,q =CB ⃗⃗⃗⃗⃗ ,求(p +q )·(p -q ). 思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.解:(1)因为A (1,-2,4),B (-2,3,0),C (2,-2,-5),所以AB⃗⃗⃗⃗⃗ =(-3,5,-4),CA ⃗⃗⃗⃗⃗ =(-1,0,9). 所以AB⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =(-4,5,5),又CB ⃗⃗⃗⃗⃗ =(-4,5,5),BA ⃗⃗⃗⃗⃗ =(3,-5,4), 所以CB⃗⃗⃗⃗⃗ -2BA ⃗⃗⃗⃗⃗ =(-10,15,-3),又AB ⃗⃗⃗⃗⃗ =(-3,5,-4),AC ⃗⃗⃗⃗⃗ =(1,0,-9), 所以AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3+0+36=33. (2)由(1)知,AM ⃗⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ =12(-3,5,-4)+34(1,0,-9)=(-34,52,-354),若设M (x ,y ,z ),则AM ⃗⃗⃗⃗⃗⃗ =(x-1,y+2,z-4),(2)∵|a |=√5,且a ⊥c ,∴{(λ+1)2+12+(2λ)2=5,(λ+1,1,2λ)·(2,-2λ,-λ)=0,化简,得{5λ2+2λ=3,2-2λ2=0,解得λ=-1.因此,a =(0,1,-2).例4如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,M ,N 分别是AA 1,CB 1的中点.(1)求BM ,BN 的长. (2)求△BMN 的面积.思路分析建立空间直角坐标系,写出B ,M ,N 等点的坐标,从而得BM ⃗⃗⃗⃗⃗⃗ ,BN⃗⃗⃗⃗⃗⃗ 在此处键入公式。
《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
1.1 空间向量及其运算本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习空间向量及其运算。
平面向量是重要的数学概念,它是链接代数与几何的桥梁。
将平面向量拓展到空间,进一步提升了向量的应用。
本节是在学习了简单的立体几何与平面向量及其运算的基础上进行教学的。
通过本节课的学习,既可以对向量的知识进一步巩固和深化,又可以为后面解决立体几何问题打下基础,所以学好这节内容是尤为重要的。
1.教学重点:理解空间向量的概念2.教学难点:掌握空间向量的运算及其应用多媒体一、情境导学 章前图展示的是一个做滑翔运动员的场景,可以想象在滑翔过程中,飞行员会受到来自不同方向大小各异的力,例如绳索的拉力,风力,重力等,显然这些力不在同一个平内,联想用平面向量解决物理问题的方法,能否把平面向量推广到空间向量,从而利用向量研究滑翔运动员呢,下面我们类比平面向量,研究空间向量,先从空间上的概念和表示开始。
二、探究新知知识点一 空间向量的概念思考 类比平面向量的概念,给出空间向量的概念. 答案 在空间,把具有大小和方向的量叫做空间向量.(1)在空间,把具有_____和_____的量叫做空间向量,向量的大小叫做向量的_____或___.空间向量用有向线段表示,有向线段的_____表示向量的模,a 的起点是A ,终点是B ,则a 也可记作AB ―→,其模记为__________. 方向;大小;长度;模;长度;|a |或|AB ―→| (2)几类特殊的空间向量名称 定义及表示零向量 规定长度为0的向量叫_______,记为0单位向量______的向量叫单位向量相反向量与向量a 长度_____而方向_____的向量,称为a 的相反向量,记为-a相等向量方向_____且模_____的向量称为相等向量,_____且_____的有向线段表示同一向量或相等向量零向量;模为1;相等;相反;相同;相等;同向;等长创设问题情境,引导学生通过平面向量知识类比学习空间向量由回顾知识出发,提出问题,让学生感受到平面向量与空间向量的联系。
空间向量及其运算【基础知识必备】一、必记知识精选1.空间向量的定义(1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量.(2)向量的表示有三种形式:a,AB,有向线段.2.空间向量的加法、减法及数乘运算.(1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A+32A A+…1A A n=0.(2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意OA-OB=BA的逆应用.(3)空间向量的数量积.注意其结果仍为一向量.3.共线向量与共面向量的定义.(1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b⇔a=λb,若A、B、P三点共线,则对空间任意一点O,存在实数t,使得OP=(1-t)OA+t OB,当t=1时,P是线段AB的中点,则中点2公式为OP=1(OA+OB).2(2)如果向量a所在直线O A 平行于平面α或a在α内,则记为a∥α,平行于同一个平面的向量,叫作共面向量,空间任意两个向量,总是共面的.如果两个向量a、b不共线.则向量p与向量a、b共面的充要条件是存在实数对x、y.使p=xa+yb.对于空间任一点O和不共线的三点A、B、C,A、B、C、P共面的充要条件是OP=x OA+y OB+z OC (其中x+y+z=1).共面向量定理是共线向量定理在空间中的推广,共线向量定理证三点共线,共面向量定理证四点共面.4.空间向量基本定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个惟一的有序实数组x、y、z,使p=xa+yb+zc.特别的,若a、b、c不共面,且xa+yb+zc=O,则x=y=z=0.常以此列方程、求值.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,隐含着三向量都不是0.空间任意三个不共面向量都可以作为空间向量的一个基底.要注意,一个基底是一个向量组,一个基向量是指基底中的某一向量.5.两个向量的数量积.a·b=|a|·|b|·cos(a,b),性质如下:(1)a·e=|a|·cos<a,e>;(2)a⊥b a·b=0.(3)|a|2=a·a;(4)|a|·|b|≥a·b.二、重点难点突破(一)重点空间向量的加法、减法运算法则和运算律;空间直线、平面向量参数方程及线段中点的向量公式.空间向量基本定理及其推论,两个向量的数量积的计算方法及其应用.(二)难点空间作图,运用运算法则及运算律解决立体几何问题,两个向量数量积的几何意义以及把立体几何问题转化为向量计算问题.对于重点知识的学习要挖掘其内涵,如从向量等式的学习中可以挖掘出:(1)向量等式也有传递性;(2)向量等式两边加(减)相同的量,仍得等式.即“移项法则”仍成立;(3)向量等式两边同乘以相等的数或点乘相等的向量,仍是等式.这样知识掌握更加深刻.用空间向量解决立体几何问题.一般可以按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化为向量表示,则它们分别易用哪个未知向量表示?这些未知向量与已知条件转化而来的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到所需要的结论?三、易错点和易忽略点导析两个向量的夹角应注意的问题:①(a,b)=(b,a);②(a,b)与表示点的符号(a,b)不同;③如图9-5-1(a)中的∠AOB=<OA,OB>.图(b)中的∠A O B=π-(AO ,OB ),<-OA ,OB >=<OA ,-OB >=π-(AO ,OB). 【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知两个非零向量e 1、e 2不共线,如果=e 1+e 2,AC =2e 1+8e 2,AD=3e 1-3e 2.求证:A 、B 、C 、D 共面.思维入门指导:要证A 、B 、C 、D 四点共面,只要能证明三向量AB 、AC 、共面,于是只要证明存在三个非零实数λ、μ、υ使λAB +μAC +υAD=0即可.证明:设λ(e 1+e 2)+μ(2e 1+8e 2)+υ(3e 1-3e 2)=0.则(λ+2μ+3υ)e 1+(λ+8μ-3υ)e 2=0.∵e 1、e 2不共线,∴⎩⎨⎧=-+=++.038,032υμλυμλ上述方程组有无数多组解,而λ=-5,μ=1,υ=1就是其中的一组,于是可知-5AB +AC +AD=0. 故AB 、AC 、AD共面,所以A 、B 、C 、D 四点共面.点拨:寻找到三个非零实数=-5,μ=1,υ=1使三向量符合共面向量基本定理的方法是待定系数法.二、应用思维点拨【例2】某人骑车以每小时α公里的速度向东行驶,感到风从正北方向吹来,而当速度为2α时,感到风从东北方向吹来.试求实际风速和风向.思维入门指导:速度是矢量即为向量.因而本题先转化为向量的数学模型,然后进行求解,求风速和风向实质是求一向量.解:设a表示此人以每小时α公里的速度向东行驶的向量.在无风时,此人感到风速为-a,设实际风速为v,那么此人感到的风速向量为v-a.如图9-5-2.设=-a,=-2a.由于+=,从而PA=v-a.这就是感受到的由正北方向吹来的风.其次,由于PO+OB=PB,从而v-2=PB.于是,当此人的速度是原来的2倍时感受到由东北方向吹来的风就是PB.由题意,得∠PB O=45°, PA⊥B O,BA=A O,从而△PB O为等腰直角三角形.故P O=PB=2α.即|v|=2α.答:实际吹来的风是风速为2α的西北风.点拨:向量与物理中的矢量是同样的概念,因而物理中的有关矢量的求解计算在数学上可化归到平面向量或空间向量进行计算求解.知识的交叉点正是高考考查的重点,也能体现以能力立意的高考方向.三、创新思维点拨【例3】如图9-5-3(1),已知E、F、G、H分别是空间四边形ABCD边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明BD∥平面EFGH.思维入门指导:(1)要证E、F、G、H四点共面,根据共面向量定理的推论,只要能找到实数x,y,使EG=x EF+y EH即可;(2)要证BD∥平面EFGH,只需证向量BD与EH共线即可.证明:(1)如图9-5-3(2),连结BG,则EG=EB +BG=EB+21(BC+BD)=EB+BF+EH=EF+EH.由共面向量定理推论知,E、F、G、H四点共面.(2)∵=-=21-21=21(-)=21,∴EH∥BD.又EH⊂面EFGH,BD⊄面EFGH,∴BD∥平面EFGH.点拨:利用向量证明平行、共面是创新之处,比较以前纯几何的证明,显而易见用向量证明比较简单明快.这也正是几何问题研究代数化的特点.【例4】如图9-5-4,在正方体ABCD—A1B1C1D1中,E为D1C1的中点,试求A1C1与DE所成角.思维入门指导:在正方体AC1中,要求A 1C 1与DE 所成角,只需求11C A 与DE 所成角即可.要求11C A 与DE所成角,则可利用向量的数量积,只要求出11C A ·DE 及|11C A |和|DE|即可. 解:设正方体棱长为m,=a,=b,1AA =c. 则|a |=|b |=|c |=m ,a ·b =b ·c =c ·a =0. 又∵11C A =11B A +11C B =AB +AD=a +b , =1DD +D 1=1DD +2111C D =c +21a , ∴11C A ·=(a+b)(c+21a)=a ·c +b ·c +21a 2+21a ·b =21a 2=21m 2.又∵|11C A |=2m,||=25m, ∴cos<11C A ,||||1111DE C A ∙m m m 252212∙=1010. ∴<11C A ,DE >=arccos 1010.即A 1C 1与DE 所成角为arccos 1010. 点拨:A 1C 1与DE 为一对异面直线.在以前的解法中求异面直线所成角要先找(作),后求.而应用向量可以不作或不找直接求.简化了解题过程,降低了解题的难度.解题过程中先把11C A 及DE 用同一组基底表示出来,再去求有关的量是空间向量运算常用的手段.四、高考思维点拨【例5】 (2000,全国,12分)如图9-5-5,已知平行六面体ABCD 一A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB=∠C 1CD=∠BCD.(1)求证:C 1C ⊥BD ;(2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD?请给出证明.思维入门指导:根据两向量的数量积公式a ·b =|a |·|b |cos<a,b >知,两个向量垂直的充要条件是两向量的数量积为0,即a ⊥b ⇔a ·b =0, 所以要证明两直线垂直,只要证明两直线对应的向量数量积为零即可.(1)证明:设CD =a ,CB =b ,1CC =c .由题可知|a |=|b |.设CD 、CB 、1CC 中两两所成夹角为θ,于是BD =CD -CB =a -b ,1CC ·BD=c ·(a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0, ∴C 1C ⊥BD.(2)解:若使A 1C ⊥平面C 1BD,只须证A 1C ⊥BD,A 1C ⊥DC 1,由于:1CA ·C 1=(+1AA )·(-1CC )=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2+|b |·|a |·cos θ-|b |·|c |c os θ-|c |2=0,得 当|a |=|c |时A 1C ⊥DC 1.同理可证当|a |=|c |时,A 1C ⊥BD. ∴1CC CD=1时,A 1C ⊥平面C 1BD. 点拨:对于向量数量积的运算一些结论仍是成立的.(a -b )·(a +b )=a 2-b 2;(a±b)2=a2±2a·b+b2.五、经典类型题思维点拨【例6】证明:四面体中连接对棱中点的三条直线交于一点,且互相平分.(此点称为四面体的重心)思维入门指导:如图9-5-6所示四面体ABCD中,E、F、G、H、P、Q分别为各棱中点.要证明EF、GH、PQ相交于一点O,且O为它们的中点.可以先证明两条直线EF、GH相交于一点O,然后证明P、O、Q三点共线,即OP、共线.从而说明PQ直线也过O点.证明:∵E、G分别为AB、AC 的中点,∴EG∥1BC.同理HF∥21BC.∴EG2∥HF.从而四边形EGFH为平行四边形,故其对角线EF、GH相交于一点O,且O为它们的中点,连接O P、O Q.∵OP=OG+GP,OQ=OH+HQ,而O为GH的中点,∴OG +OH =0,GP ∥21CD ,21CD. ∴GP =21CD ,QH =21CD . ∴OP +OQ =OG +OH +GP +HQ =0+21-21=0. ∴OP =-OQ. ∴PQ 经过O 点,且O 为PQ 的中点.点拨:本例也可以用共线定理的推论来证明,事实上,设EF 的中点为O .连接O P 、O Q,则FQ =EQ -EF ,而EQ =21=-FP ,EF =-2,则FQ =-FP +2,∴FO =21(+),从而看出O 、P 、Q 三点共线且O 为PQ 的中点,同理可得GH边经过O点且O为GH的中点,从而原命题得证.六、探究性学习点拨【例7】如图9-5-7所示,对于空间某一点O,空间四个点A、B、C、D(无三点共线)分别对应着向量a=OA,b=OB,c=OC,d=OD.求证:A、B、C、D四点共面的充要条件是存在四个非零实数α、β、γ、δ,使αa+βb+γc+δd=0,且α+β+γ+δ=0.思维入门指导:分清充分性和必要性,应用共面向量定理.证明:(必要性)假设A、B、C、D共面,因为A、B、C三点不共线,故AB,AC两向量不共线,因而存在实数x、y,使AD=x AB+y AC,即d-a=x(b-a)+y(c-a),∴(x+y-1)a -xb-yc+d=0.令α=x+y-1, β=-x,γ=-y,δ=1.则αa+βb+γc+δd=0,且α+β+γ+δ=0.(充分性)如果条件成立,则δ=-(α+β+γ),代入得αa+βb+γc+δd=αa+βb+γc-(α+β+γ)d=0.即α(a-d)+ β(b-d)+γ(c-d)=0.又∵a-d=-=,b-d=,c-d=,∴α+β+γ=0.∵α、β、γ为非零实数,不妨设γ≠0.则DC=-α-γβ.γ∴DC与DA、DB共面,即A、B、C、D共面.点拨:在讨论向量共线或共面时,必须注意零向量与任意向量平行,并且向量可以平移,因而不能完全按照它们所在直线的平行性、共面关系来确定向量关系.【同步达纲训练】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.点O 、A 、B 、C 为空间四个点,又OA 、OB 、OC 为空间一个基底,则下列结论不正确的是()A.O、A、B、C四点不共线B. O、A、B、C四点共面,但不共线C. O、A、B、C四点中任三点不共线D. O、A、B、C四点不共面2.在正方体ABCD-A1B1C1D1中,下列各式中运算的结果为的共有( )①(AB+BC)+1CC②(1AA+11D A)+11C D③(AB+1BB)+11C B④(1AA+11B A)+11C BA.1个B.2个C.3个D.4个3.设命题p:a、b、c是三个非零向量;命题q:{a,b,c}为空间的一个基底,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.设A、B、C、D是空间不共面的四点,且满足AB·AC=0,AC·AD=0,·=0,则△BCD是()A.钝角三角形B.锐角三角形C.直角三角形D.不确定5.下列命题中,正确的是()A.若a与b共线,则a与b所在直线平行B.若a∥平面β,a所在直线为a,则a∥βC.若{a,b,c }为空间的一个基底,则{a-b,b-c,c-a}构成空间的另一个基底D.若OP =21OA +21OB ,则P 、A 、B 三点共线6.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3,且d =x a+y b+z c ,则x 、y 、z 分别为( ) A.25,-21,-1 B.25,21,1 C.-25,21,1 D.25,-21,1二、填空题(每小题4分,共16分)7.设向量a与b互相垂直,向量c与它们构成的角都是60°,且|a|=5,|b|=3,|c|=8,那么(a+3c)·(3b-2a);(2a+b-3c)2= .8.已知向量n A A1=2a,a与b的夹角为30°,且|a|=3,则21A A+32A A+…+n n A A1 在向量b的方向上的射影的模为 .9.如图9-5-8,已知空间四边形O ABC,其对角线为O B、AC,M 是边O A的中点,G是△ABC的重心,则用基向量OA、OB、OC表示向量MG的表达式为 .10.已知P、A、B、C四点共面且对于空间任一点O都有OP=2OA +34OB+λOC,则λ= .三、解答题(每小题7分,共14分)11.如图9-5-9,已知点O是平行六面体ABCD—A1B1C1D1体对角线的交点,点P是空间任意一点.求证:PA +PB +PC +PD +1PA +1PB +1PC +1PD =8PO. 12.如图9-5-10,已知线段AB在平面α内,线段AC ⊥α,线段BD ⊥AB,且与α所成角是30°.如果AB=a,AC=BD=b,求C 、D 间的距离.B 卷:综合应用创新练习题(90分 90分钟)一、学科内综合题(10分)1.如图9-5-11所示,已知□ABCD ,O 是平面AC 外一点,1OA =2,1OB =2,1OC =2,1OD =2OD.求证:A 1、B 1、C 1、D 1四点共面.二、应用题(10分)2.在△ABC 中,∠C=60°,CD 为∠C 的平分线,AC=4,BC=2,过B 作BN ⊥CD 于N 延长交CA 于E ,将△BDC 沿CD 折起,使∠BNE=120°,求折起后线段AB 的长度.三、创新题(60分)(一)教材变型题(10分)3.(P 35练习2变型)如图9-5-12已知空间四边形ABCD 的每条边和对角线的长都等于a ,求AB 与CD 的夹角. (二)一题多解(15分)4.已知矩形ABCD,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD成定比1,求满足=x +y +z 的实数x 、y 、z 的值. (三)一题多变(15分)5.设a ⊥b,<a,c>=3π,<b,c>=6π,且|a |=1,|b |=2,|c |=3,求|a +b +c |.(1)一变:设a⊥b,<a,c>=π,3<b,c>=π,且|a|=1,|b|=2,|c|=3,6求|a+2b-c|.(2)二变:设a⊥b,<a,c>=π,3且|a|=1,|b|=2,|c|=3,|a+b+c|=3617+,求-b与c的夹角.(四)新解法题(10分)6.如图9-5-13,正方形ABCD 和正方形ABEF交于AB,M、N分别是BD、AE上的点,且AN=DM,试用向量证明MN∥平面EBC.7.O为空间任意一点,A、B、C是平面上不共线的三点,动点P 满足OP=OA+λ),λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心四、高考题(10分)8.(2002,上海,5分)若a、b、c为任意向量,m∈R,则下列等式不一定成立的是( )A.(a+b)+c=a+(b+c)B.(a+b)·c=a·c+b·cC.m(a+b)=ma+m bD.(a·b)·c=a·(b·c)加试题:竞赛趣味题(10分)证明:ab b a-+22+ac c a-+22>bc c b-+22(a,b,c为正实数).【课外阅读】用向量表示三角形的四心由高中数学新教材中的向量知识出发,利用定比分点的向量表达式,可以简捷地导出三角形的重心、内心、垂心、外心这四心的向量表达式.【例】 如图9-5-14,在△ABC 中,F 是AB 上的一点,E 是AC 上的一点,且FBAF=l m ,EC AE =ln (通分总可以使两个异分母分数化为同分母分数),连结CF 、BE 交于点D.求D 点的坐标.解:在平面上任取一点O ,连结O A 、O B 、O C 、O D 、O E 、O F ,由定比分点的向量表达式,得:OF=(OA+lm ·OB)÷(1+lm )=ml m l +∙+∙ ①=ln OC l nOA +∙+1=nl OCn OA l +∙+∙ ② 又OD=λλ+∙+1OCOF =uOE u OB +∙+1 ③(其中DCFD =λ,u DEBD=).整理①、②、③式得λ=1+m n . 所以OD=nm l l++OA+nm l m++OB+nm l n++OC④由④式出发,可得三角形四心的向量表达式:(1)若BE 、CF 是△ABC 两边上的中线,交点G 为重心.由④式可得重心G 的向量表达式:OG=31(OA+OB+OC).(2)若BE 、CF 是△ABC 两内角的平分线,交点I 是内心.因为FBAF=a b ,EC AE =ac ,由④式可得内心I 的向量表达式:OI=cb a a++OA+cb a b++OB+cb a c++OC.(3)若BE 、CF 是△ABC 两边上的高,交点H 是垂心.ECAE =Ca A c cos cos ∙∙=Aa C c cos cos .同理FBAF =Aa Bb cos cos .由④式可得垂心H 的向量表达式:=OA CcB b A aC a cos cos cos cos +++OB CcB b A aC b cos cos cos cos +++OC CcB b A aC c cos cos cos cos ++.(4)若BE 、CF 的交点O ′是△ABC 的外心,即三边中垂线交点,则O ′A=O ′B=O ′C.根据正弦定理:ECAE =CBE CBEEBA A BE∠∙∠∙sin sin sin sin =)(21sin sin )(21sinsin C BO A B AO C '∠-∙'∠-∙ππ=AA C C cos sin cos sin ∙∙=AC 2sin 2sin .同理FBAF =AB 2sin 2sin .由④式可得外心O ′的向量表达式:OO=CB A A2sin 2sin 2sin 2sin ++OA+CB A B2sin 2sin 2sin 2sin ++OB+OCCB A C2sin 2sin 2sin 2sin ++.这四个向量表达式,都由④式推出,都有着各自轮换对称的性质.好记,好用!新教材的优越性,由此可见.参考答案A 卷一、1.B 点拨:空间向量的一组基底是不共面的.2.D 点拨:+BC+1CC =AC+1CC =1AC ,同理根据空间向量的加法运算法则可知(2)、(3)、(4)的计算结果也为1AC.3.B 点拨:当三个非零向量a、b、c共面时,a、b、c不能构成空间的一个基底,但是{a,b,c}为空间的一个基底时,必有a、b、c都是非零向量.因此由P推不出q,而由q可推出P.4.B 点拨:AC·AB=0⇒AC⊥AB.同理可得AC⊥AD,AB⊥AD.设AB=a,AC=b,AD=c.则BC=22b a+,CD=22c b+,BD=22c a+.∵cos∠BCD=CDBC BD CD BC ∙-+2222>0,故△BCD 为锐角.同理∠CBD 、∠BDC 亦为锐角.则△BCD 为锐角三角形.5.D 点拨:向量共线则其所在直线平行或重合,故A 错误;向量平行于平面,则向量在面内或所在直线与面平行,故B 错误;取λ1=λ2=λ3=1,则λ1(a-b)+λ2(b-c)+λ3(c-a)=0,即a-b,b-c,c-a 是共面向量,不能构成空间的基底,故C 错.x+y+z=1x=5,26.A 点拨: x-y+z=2 ⇒y=-1,2x-y=3 z=-1.二、7.-62,373 点拨:(a+3c)·(3b-2a)=3a·b-2a2+9c·b-6a·c=3|a|·|b|·cos90°-2|a|2+9|c|·|b|·cos60°-6|a|·|c|·c os60°=-62.8.3 点拨:∵21A A+32A A+…+n n A A1-=n A A1,。
空间向量及其运算3.1.1 空间向量及其加减运算教学目标:(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
能力目标:(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识教学重点:(1)空间向量的有关概念(2)空间向量的加减运算及其运算律、几何意义。
(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解。
考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。
易错点:空间向量的加减运算及其几何意义在空间几何体中的应用教学用具:多媒体教学方法:研讨、探究、启发引导。
教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维教学过程:(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?(学生):矢量,由大小和方向确定(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?(学生)向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生)这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?(学生)举例(老师):然后再演示(课件)几种常见的空间向量身影。
空间向量及其运算 教案教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 教学重、难点:共线、共面定理及其应用. 教学过程:(一)复习:空间向量的概念及表示; (二)新课讲解: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
读作:a 平行于b ,记作://a b.2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ= (λ唯一).推论:如果l 为经过已知点,且平行于已知向量a的直线,那么对任一点O ,点在直线l 上的充要条件是存在实数,满足等式OP OA t AB =+ ①,其中向量a叫做直线l 的方向向量。
在l 上取AB a = ,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+②当12t =时,点是线段AB 的中点,此时1()2OP OA OB =+ ③①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行:已知平面和向量a,作OA a = ,如果直线OA 平行于或在内,那么我们说向量a 平行于平面,记作://a α .说明:空间任意的两向量都是共面的.4.共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的充要条件是存在实数,x y 使alPBAOap xa yb =+.推论:空间一点位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+ 或对空间任一点O ,有OP OM xMA yMB =++ ①上面①式叫做平面MAB 的向量表达式. (三)例题分析:例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++ ,试判断:点与,,A B C 是否一定共面?解:由题意:522OP OA OB OC =++ ,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+ ,即22PA PB PC =-- , 所以,点与,,A B C 共面.说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++(其中1x y z ++=)的四点,,,P A B C 是否共面? 解:∵(1)OP z y OA yOB zOC =--++, ∴()()OP OA y OB OA z OC OA -=-+-, ∴AP y AB z AC =+,∴点与点,,A B C 共面.例2.已知ABCD,从平面AC 外一点O 引向量 ,,,OE kOA OF KOB OG kOC OH kOD ==== , (1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG .E解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+, ∵EG OG OE =- ,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OEEF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅ , ∴//,//EF AB EG AC 所以,平面//AC 平面EG .五、课堂练习:课本第96页练习第1、2、3题.六、课堂小结:1.共线向量定理和共面向量定理及其推论; 2.空间直线、平面的向量参数方程和线段中点向量公式. 七、作业:1.已知两个非零向量21,e e 不共线,如果21AB e e =+ ,2128AC e e =+,2133AD e e =- ,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠ ,若//a b ,求实数,x y 的值。
(教案)空间向量及其运算空间向量及其运算【基础知识必备】⼀、必记知识精选1.空间向量的定义(1)向量:在空间中具有⼤⼩和⽅向的量叫作向量,同向且等长的有向线段表⽰同⼀向量或相等向量.(2)向量的表⽰有三种形式:a ,AB ,有向线段.2.空间向量的加法、减法及数乘运算.(1)空间向量的加法.满⾜三⾓形法则和平⾏四边形法则,可简记为:⾸尾相连,由⾸到尾.求空间若⼲个向量之和时,可通过平移将它们转化为⾸尾相接的向量.⾸尾相接的若⼲个向量若构成⼀个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0.(2)空间向量的减法.减法满⾜三⾓形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向⼀定”,另外要注意-=的逆应⽤.(3)空间向量的数量积.注意其结果仍为⼀向量.3.共线向量与共⾯向量的定义.(1)如果表⽰空间向量的有向线段在直线互相平⾏或重合,那么这些向量叫做共线向量或平⾏向量.对于空间任意两个向量a ,b(b≠0),a∥b ?a=λb,若A 、B、P 三点共线,则对空间任意⼀点O ,存在实数t ,使得OP =(1-t )OA +t OB ,当t=21时,P 是线段A B的中点,则中点公式为OP =21(OA +OB ).(2)如果向量a 所在直线OA 平⾏于平⾯α或a 在α内,则记为a∥α,平⾏于同⼀个平⾯的向量,叫作共⾯向量,空间任意两个向量,总是共⾯的.如果两个向量a 、b 不共线.则向量p 与向量a 、b共⾯的充要条件是存在实数对x 、y.使p=xa+y b.对于空间任⼀点O 和不共线的三点A 、B 、C,A 、B 、C 、P共⾯的充要条件是OP =x OA +y OB +zOC (其中x+y+z=1).共⾯向量定理是共线向量定理在空间中的推⼴,共线向量定理证三点共线,共⾯向量定理证四点共⾯.4.空间向量基本定理如果三个向量a 、b 、c 不共⾯,那么对空间任⼀向量p ,存在⼀个惟⼀的有序实数组x 、y 、z,使p=x a+yb+zc.特别的,若a 、b、c 不共⾯,且xa+yb+zc=O,则x=y =z=0.常以此列⽅程、求值.由于0可视为与任意⼀个⾮零向量共线,与任意两个⾮零向量共⾯,所以三个向量不共⾯,隐含着三向量都不是0.空间任意三个不共⾯向量都可以作为空间向量的⼀个基底.要注意,⼀个基底是⼀个向量组,⼀个基向量是指基底中的某⼀向量.5.两个向量的数量积.a·b =|a |·|b |·co s(a,b ),性质如下:(1)a·e =|a|·cos;(2)a⊥b ?a ·b =0.(3)|a |2=a ·a ;(4)|a |·|b |≥a·b .⼆、重点难点突破(⼀)重点空间向量的加法、减法运算法则和运算律;空间直线、平⾯向量参数⽅程及线段中点的向量公式.空间向量基本定理及其推论,两个向量的数量积的计算⽅法及其应⽤.(⼆)难点空间作图,运⽤运算法则及运算律解决⽴体⼏何问题,两个向量数量积的⼏何意义以及把⽴体⼏何问题转化为向量计算问题.对于重点知识的学习要挖掘其内涵,如从向量等式的学习中可以挖掘出:(1)向量等式也有传递性;(2)向量等式两边加(减)相同的量,仍得等式.即“移项法则”仍成⽴;(3)向量等式两边同乘以相等的数或点乘相等的向量,仍是等式.这样知识掌握更加深刻.⽤空间向量解决⽴体⼏何问题.⼀般可以按以下过程进⾏思考:(1)要解决的问题可⽤什么向量知识来解决?需要⽤到哪些向量?(2)所需要的向量是否已知?若未知,是否可⽤已知条件转化成的向量直接表⽰?(3)所需要的向量若不能直接⽤已知条件转化为向量表⽰,则它们分别易⽤哪个未知向量表⽰?这些未知向量与已知条件转化⽽来的向量有何关系?(4)怎样对已经表⽰出来的所需向量进⾏运算,才能得到所需要的结论?三、易错点和易忽略点导析两个向量的夹⾓应注意的问题:①(a ,b)=(b,a );②(a,b)与表⽰点的符号(a,b )不同;③如图9-5-1(a)中的∠AOB =.图(b)中的∠A O B=π-(AO ,OB ),<-OA ,OB >=【综合应⽤创新思维点拨】⼀、学科内综合思维点拨【例1】已知两个⾮零向量e 1、e 2不共线,如果=e 1+e 2,=2e 1+8e 2,=3e 1-3e 2.求证:A 、B 、C 、D共⾯.思维⼊门指导:要证A 、B 、C、D 四点共⾯,只要能证明三向量AB 、、AD 共⾯,于是只要证明存在三个⾮零实数λ、µ、υ使λ+µ+υ=0即可.证明:设λ(e 1+e 2)+µ(2e 1+8e 2)+υ(3e 1-3e2)=0.则(λ+2µ+3υ)e1+(λ+8µ-3υ)e 2=0. ∵e 1、e 2不共线,∴?=-+=++.038,032υµλυµλ上述⽅程组有⽆数多组解,⽽λ=-5,µ=1,υ=1就是其中的⼀组,于是可知-5AB ++AD =0.故AB、AC、AD共⾯,所以A、B、C、D四点共⾯.点拨:寻找到三个⾮零实数 =-5,µ=1,υ=1使三向量符合共⾯向量基本定理的⽅法是待定系数法.⼆、应⽤思维点拨【例2】某⼈骑车以每⼩时α公⾥的速度向东⾏驶,感到风从正北⽅向吹来,⽽当速度为2α时,感到风从东北⽅向吹来.试求实际风速和风向.思维⼊门指导:速度是⽮量即为向量.因⽽本题先转化为向量的数学模型,然后进⾏求解,求风速和风向实质是求⼀向量.解:设a表⽰此⼈以每⼩时α公⾥的速度向东⾏驶的向量.在⽆风时,此⼈感到风速为-a,设实际风速为v,那么此⼈感到的风速向量为v-a.如图9-5-2.设OA=-a,OB=-2a.由于PO+OA=PA,从⽽PA=v-a.这就是感受到的由正北⽅向吹来的风.其次,由于PO+OB=PB,从⽽v-2=PB.于是,当此⼈的速度是原来的2倍时感受到由东北⽅向吹来的风就是PB.由题意,得∠PBO=45°, PA⊥B O,BA=A O,从⽽△PB O为等腰直⾓三⾓形.故PO =PB=2α.即|v|=2α.答:实际吹来的风是风速为2α的西北风.点拨:向量与物理中的⽮量是同样的概念,因⽽物理中的有关⽮量的求解计算在数学上可化归到平⾯向量或空间向量进⾏计算求解.知识的交叉点正是⾼考考查的重点,也能体现以能⼒⽴意的⾼考⽅向.三、创新思维点拨【例3】如图9-5-3(1),已知E、F、G、H分别是空间四边形ABCD边AB、BC、CD、D A的中点.(1)⽤向量法证明E、F、G、H四点共⾯;(2)⽤向量法证明BD∥平⾯EFGH.思维⼊门指导:(1)要证E、F、G、H四点共⾯,根据共⾯向量定理的推论,只要能找到实数x,y,使EG=x+y即可;(2)要证BD∥平⾯EFGH,只需证向量与共线即可.证明:(1)如图9-5-3(2),连结BG,则 EG =EB +BG =EB +21(BC +BD )=EB+BF +EH =EF +EH . 由共⾯向量定理推论知,E 、F、G 、H 四点共⾯. (2)∵EH =AH -AE =21AD -21AB =21(AD -AB )=21BD , ∴EH ∥B D.⼜EH ?⾯EFG H,BD ?⾯EFG H,∴BD ∥平⾯EF GH.点拨:利⽤向量证明平⾏、共⾯是创新之处,⽐较以前纯⼏何的证明,显⽽易见⽤向量证明⽐较简单明快.这也正是⼏何问题研究代数化的特点.【例4】如图9-5-4,在正⽅体AB CD —A1B 1C 1D 1中,E 为D 1C 1的中点,试求A 1C1与D E所成⾓.思维⼊门指导:在正⽅体AC 1中,要求A 1C1与D E所成⾓,只需求11C A 与所成⾓即可.要求11C A 与DE 所成⾓,则可利⽤向量的数量积,只要求出11C A ·DE 及|11C A |和|DE |即可.解:设正⽅体棱长为m,=a,=b ,1AA =c. 则|a|=|b |=|c |=m,a ·b =b·c =c ·a =0.⼜∵11C A =11B A +11C B =+=a +b ,DE =1DD +E D 1=1DD +2111C D =c +21a,∴11C A ·DE =(a +b )(c +21a)=a·c +b ·c+21a 2+21a ·b =21a 2=21m 2. ⼜∵|11C A |=2m ,|DE |=25m, ∴cos<11C A ,DE >1111m m m 252212?=1010. ∴<11C A ,>=a rccos 1010.即A 1C 1与D E所成⾓为arc cos 1010.点拨:A 1C1与DE 为⼀对异⾯直线.在以前的解法中求异⾯直线所成⾓要先找(作),后求.⽽应⽤向量可以不作或不找直接求.简化了解题过程,降低了解题的难度.解题过程中先把11C A 及DE ⽤同⼀组基底表⽰出来,再去求有关的量是空间向量运算常⽤的⼿段.四、⾼考思维点拨【例5】(2000,全国,12分)如图9-5-5,已知平⾏六⾯体ABCD ⼀A 1B 1C1D1的底⾯AB CD 是菱形,且∠C 1CB=∠C1CD =∠BCD.(1)求证:C 1C⊥BD;(2)当1CC CD 的值为多少时,能使A 1C ⊥平⾯C 1BD?请给出证明. 思维⼊门指导:根据两向量的数量积公式a ·b =|a |·|b|cos知,两个向量垂直的充要条件是两向量的数量积为0,即a ⊥b ?a ·b=0, 所以要证明两直线垂直,只要证明两直线对应的向量数量积为零即可.(1)证明:设CD =a ,CB =b ,1CC =c.由题可知|a |=|b |.设CD 、CB 、1CC 中两两所成夹⾓为θ,于是BD =CD -CB =a -b,1CC ·=c·(a -b )=c·a -c ·b =|c |·|a |cos θ-|c |·|b |c os θ=0,∴C 1C ⊥BD.(2)解:若使A1C ⊥平⾯C1BD ,只须证A 1C ⊥BD,A 1C⊥DC 1,由于:1CA ·D C 1=(CA +1AA )·(CD -1CC )=(a +b +c )·(a -c )=|a |2+a ·b-b·c-|c |2=|a |2+|b|·|a |·cos θ-|b |·|c |cos θ-|c|2=0,得当|a|=|c|时A 1C ⊥DC1.同理可证当|a |=|c |时,A 1C ⊥BD. ∴1CC CD =1时,A 1C⊥平⾯C 1BD. 点拨:对于向量数量积的运算⼀些结论仍是成⽴的.(a-b )·(a +b )=a2-b2;(a ±b )2=a2±2a ·b +b 2.五、经典类型题思维点拨【例6】证明:四⾯体中连接对棱中点的三条直线交于⼀点,且互相平分.(此点称为四⾯体的重⼼)思维⼊门指导:如图9-5-6所⽰四⾯体AB CD 中,E 、F 、G 、H 、P 、Q分别为各棱中点.要证明EF 、GH 、P Q相交于⼀点O ,且O为它们的中点.可以先证明两条直线EF 、G H相交于⼀点O ,然后证明P 、O 、Q 三点共线,即OP 、OQ 共线.从⽽说明PQ 直线也过O 点.证明:∵E 、G 分别为AB、AC 的中点, ∴EG ∥21B C.同理HF ∥21BC.∴EG ∥HF. 从⽽四边形EGFH 为平⾏四边形,故其对⾓线EF 、GH 相交于⼀点O ,且O 为它们的中点,连接O P、OQ .∵OP =OG +GP ,OQ =OH +HQ ,⽽O 为GH 的中点,∴OG +OH =0,GP ∥21CD,QH ∥21C D. ∴GP =21CD ,QH =21CD .∴OP +OQ =OG +OH +GP +HQ =0+21CD -21CD =0.∴OP =-OQ .∴P Q经过O 点,且O 为PQ 的中点.点拨:本例也可以⽤共线定理的推论来证明,事实上,设EF 的中点为O .连接O P 、O Q ,则FQ =EQ -EF ,⽽EQ =21AC =-FP ,EF =-2FO ,则FQ =-FP +2FO ,∴FO =21(FQ +FP ),从⽽看出O 、P 、Q 三点共线且O 为PQ的中点,同理可得GH 边经过O 点且O 为G H的中点,从⽽原命题得证.六、探究性学习点拨【例7】如图9-5-7所⽰,对于空间某⼀点O ,空间四个点A、B、C 、D(⽆三点共线)分别对应着向量a =OA ,b =OB ,c =OC ,d =OD .求证:A 、B、C 、D 四点共⾯的充要条件是存在四个⾮零实数α、β、γ、δ,使αa+βb +γc+δd =0,且α+β+γ+δ=0.思维⼊门指导:分清充分性和必要性,应⽤共⾯向量定理.证明:(必要性)假设A 、B 、C 、D 共⾯,因为A、B 、C 三点不共线,故,两向量不共线,因⽽存在实数x 、y ,使=x +yAC ,即d-a =x(b -a)+y(c-a ),∴(x+y -1)a-xb -yc +d=0.令α=x+y-1, β=-x,γ=-y,δ=1.则αa+βb+γc+δd=0,且α+β+γ+δ=0.(充分性)如果条件成⽴,则δ=-(α+β+γ),代⼊得αa +βb +γc +δd =αa +βb+γc -(α+β+γ)d=0.即α(a-d)+ β(b-d )+γ(c -d )=0.⼜∵a-d=OA -OD =DA ,b-d=DB ,c-d =DC , ∴αDA +βDB +γDC =0.∵α、β、γ为⾮零实数,不妨设γ≠0.则DC =-γαDA -γβDB .∴DC 与DA 、DB 共⾯,即A 、B 、C 、D 共⾯.点拨:在讨论向量共线或共⾯时,必须注意零向量与任意向量平⾏,并且向量可以平移,因⽽不能完全按照它们所在直线的平⾏性、共⾯关系来确定向量关系.【同步达纲训练】A 卷:教材跟踪练习题 (60分 45分钟)⼀、选择题(每⼩题5分,共30分)1.点O 、A 、B 、C为空间四个点,⼜OA 、OB 、OC 为空间⼀个基底,则下列结论不正确的是( )A.O 、A、B 、C四点不共线B. O 、A、B、C 四点共⾯,但不共线C. O 、A 、B 、C 四点中任三点不共线 D. O 、A、B 、C 四点不共⾯2.在正⽅体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为的共有( )①(+BC )+1CC ②(1AA +11D A )+11C D③(AB +1BB )+11C B ④(1AA +11B A )+11C BA.1个B.2个 C.3个 D .4个3.设命题p :a 、b 、c 是三个⾮零向量;命题q:{a ,b ,c }为空间的⼀个基底,则命题p 是命题q 的( )A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分⼜不必要条件4.设A 、B 、C 、D是空间不共⾯的四点,且满⾜·AC =0,AC ·=0,·=0,则△BC D是( )A .钝⾓三⾓形 B.锐⾓三⾓形 C.直⾓三⾓形 D.不确定5.下列命题中,正确的是( )A.若a与b 共线,则a 与b 所在直线平⾏B.若a ∥平⾯β,a 所在直线为a,则a ∥βC.若{a,b,c}为空间的⼀个基底,则{a-b,b-c ,c-a}构成空间的另⼀个基底D.若OP =21OA +21OB ,则P 、A 、B三点共线6.若a=e 1+e 2+e 3,b=e 1-e 2-e 3,c =e 1+e2,d =e 1+2e 2+3e 3,且d =x a+yb +z c,则x、y 、z 分别为()A.25,-21,-1 B .25,21,1 C.-25,21,1 D.25,-21,1 ⼆、填空题(每⼩题4分,共16分)7.设向量a 与b 互相垂直,向量c与它们构成的⾓都是60°,且|a |=5,|b |=3,|c|=8,那么(a+3c)·(3b -2a ) ;(2a +b -3c )2= .8.已知向量n A A 1=2a ,a 与b的夹⾓为30°,且|a|=3,则21A A +32A A +…+n n A A 1-在向量b的⽅向上的射影的模为 .9.如图9-5-8,已知空间四边形O AB C,其对⾓线为O B 、AC ,M 是边O A 的中点,G 是△ABC 的重⼼,则⽤基向量OA 、OB 、OC 表⽰向量MG 的表达式为 .10.已知P、A、B、C 四点共⾯且对于空间任⼀点O 都有OP =2OA +34OB +λOC ,则λ= .三、解答题(每⼩题7分,共14分)11.如图9-5-9,已知点O 是平⾏六⾯体ABC D—A 1B1C 1D 1体对⾓线的交点,点P是空间任意⼀点.求证:PA +PB +PC +PD +1PA +1PB +1PC +1PD =8PO .12.如图9-5-10,已知线段A B在平⾯α内,线段AC ⊥α,线段BD ⊥AB,且与α所成⾓是30°.如果A B=a,AC=BD =b,求C、D 间的距离.B卷:综合应⽤创新练习题(90分 90分钟)⼀、学科内综合题(10分)1.如图9-5-11所⽰,已知□ABCD,O 是平⾯AC外⼀点,1OA =2OA ,1OB =2OB ,1OC =2OC ,1OD =2OD .求证:A 1、B 1、C 1、D 1四点共⾯.⼆、应⽤题(10分)2.在△ABC 中,∠C=60°,CD 为∠C 的平分线,A C=4,B C=2,过B 作BN ⊥CD 于N 延长交CA 于E,将△BDC 沿CD 折起,使∠BNE=120°,求折起后线段AB 的长度.三、创新题(60分)(⼀)教材变型题(10分)3.(P 35练习2变型)如图9-5-12已知空间四边形ABCD 的每条边和对⾓线的长都等于a,求AB 与CD 的夹⾓.(⼆)⼀题多解(15分)4.已知矩形ABCD,P为平⾯ABCD 外⼀点,且PA ⊥平⾯AB CD,M 、N 分别为PC 、PD 上的点,且M 分成定⽐2,N 分PD 成定⽐1,求满⾜=x AB +y AD +z AP 的实数x 、y 、z 的值.(三)⼀题多变(15分)5.设a ⊥b,=6π,且|a |=1,|b |=2,|c |=3,求|a +b +c |. (1)⼀变:设a ⊥b,=3π,<b ,c>=6π,且|a|=1,|b|=2,|c|=3,求|a+2b-c|.(2)⼆变:设a ⊥b,=3π,且|a|=1,|b|=2,|c|=3,|a+b+c|=3617+,求-b 与c的夹⾓.(四)新解法题(10分)6.如图9-5-13,正⽅形A BCD 和正⽅形ABEF 交于A B,M 、N 分别是BD 、AE 上的点,且AN=DM ,试⽤向量证明MN ∥平⾯EB C.7.O 为空间任意⼀点,A 、B、C 是平⾯上不共线的三点,动点P 满⾜OP =OA +λ(||||AC AB +),λ∈[0,+∞),则P 的轨迹⼀定通过△ABC 的( )A.外⼼B.内⼼ C.重⼼ D.垂⼼四、⾼考题(10分) 8.(2002,上海,5分)若a 、b、c为任意向量,m∈R ,则下列等式不⼀定成⽴的是( )A.(a +b )+c =a +(b +c ) B.(a+b)·c=a ·c +b·cC.m(a +b )=ma+m bD.(a ·b)·c =a ·(b·c )加试题:竞赛趣味题(10分)证明:ab b a -+22+ac c a -+22>bc c b -+22(a,b,c 为正实数).【课外阅读】⽤向量表⽰三⾓形的四⼼由⾼中数学新教材中的向量知识出发,利⽤定⽐分点的向量表达式,可以简捷地导出三⾓形的重⼼、内⼼、垂⼼、外⼼这四⼼的向量表达式.【例】如图9-5-14,在△ABC 中,F 是A B上的⼀点,E 是AC 上的⼀点,且FB AF =l m ,EC AE =ln (通分总可以使两个异分母分数化为同分母分数),连结C F、BE 交于点D.求D 点的坐标.解:在平⾯上任取⼀点O ,连结O A、OB 、O C、O D 、OE 、OF,由定⽐分点的向量表达式,得:OF =(OA +l m ·OB )÷(1+lm ) =ml OB m OA l +?+? ①=ln OC l n OA +?+1=n l OC n OA l +?+? ②⼜=λλ+?+1OC OF =u OE u OB +?+1 ③(其中DCFD =λ,u DE BD =). 整理①、②、③式得λ=1+m n . 所以OD =n m l l ++OA +n m l m ++OB +nm l n ++OC ④由④式出发,可得三⾓形四⼼的向量表达式:(1)若BE 、CF是△A BC两边上的中线,交点G 为重⼼.由④式可得重⼼G 的向量表达式:OG =31(OA +OB +OC ). (2)若BE 、CF 是△AB C两内⾓的平分线,交点I是内⼼.因为FB AF =a b ,EC AE =a c , 由④式可得内⼼I 的向量表达式:OI =c b a a ++OA +c b a b ++OB +cb ac ++OC . (3)若BE 、CF 是△AB C两边上的⾼,交点H是垂⼼.EC AE =Ca A c cos cos ??=Aa C ccos cos . 同理FBAF =Aa B bcos cos . 由④式可得垂⼼H 的向量表达式:OH =OA C c B b A a C a cos cos cos cos +++OB C c B b A a C b cos cos cos cos +++OC Cc B b A a C ccos cos cos cos ++.(4)若BE 、C F的交点O ′是△A BC 的外⼼,即三边中垂线交点,则O ′A=O ′B=O′C.根据正弦定理:EC AE =CBE C BE EBA A BE ∠?∠?sin sin sin sin =)(21sin sin )(21sin sin C BO A B AO C '∠-?'∠-?ππ =A A C C cos sin cos sin ??=AC 2sin 2sin .同理FB AF =A B 2sin 2sin .由④式可得外⼼O ′的向量表达式:OO =C B A A 2sin 2sin 2sin 2sin ++OA +CB A B 2sin 2sin 2sin 2sin ++OB +OC CB AC 2sin 2sin 2sin 2sin ++. 这四个向量表达式,都由④式推出,都有着各⾃轮换对称的性质.好记,好⽤!新教材的优越性,由此可见.参考答案A 卷⼀、1.B 点拨:空间向量的⼀组基底是不共⾯的.2.D点拨:++1CC =+1CC =1AC ,同理根据空间向量的加法运算法则可知(2)、(3)、(4)的计算结果也为1AC .3.B 点拨:当三个⾮零向量a 、b 、c共⾯时,a 、b 、c 不能构成空间的⼀个基底,但是{a,b,c }为空间的⼀个基底时,必有a 、b 、c 都是⾮零向量.因此由P 推不出q,⽽由q 可推出P.4.B 点拨:·AB =0?AC ⊥A B.同理可得A C⊥AD,AB ⊥AD.设AB=a ,AC =b,AD=c.则BC=22b a +,CD=22c b +,B D=22c a +.∵c os∠BCD =CDBC BD CD BC ?-+2222>0,故△BCD 为锐⾓. 同理∠CBD 、∠B DC 亦为锐⾓.则△BC D为锐⾓三⾓形.5.D 点拨:向量共线则其所在直线平⾏或重合,故A错误;向量平⾏于平⾯,则向量在⾯内或所在直线与⾯平⾏,故B 错误;取λ1=λ2=λ3=1,则λ1(a-b )+λ2(b-c)+λ3(c-a)=0,即a-b,b-c,c -a 是共⾯向量,不能构成空间的基底,故C 错.x+y +z=1 x=25, 6.A 点拨: x-y+z=2 ? y=-21, x-y=3 z =-1.⼆、7.-62,373 点拨:(a+3c)·(3b -2a )=3a ·b-2a2+9c ·b -6a ·c=3|a。
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
3.1空间向量及其运算教学设计教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b , OA OB AB -=(指向被减向量), =OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证)⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.课堂练习课本P92练习Ⅳ.课时小结平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P106 1、2、⒉预习课本P92~P96,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?。
3.1空间向量及其运算教学设计教案第一篇:3.1空间向量及其运算教学设计教案教学准备1.教学目标(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。
2.教学重点/难点【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用3.教学用具多媒体4.标签3.1.1空间向量及其加减运算教学过程课堂小结 1.空间向量的概念: 2.空间向量的加减运算课后习题第二篇:3.1空间向量及其运算教学设计教案教学准备1.教学目标1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。
2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。
3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。
2.教学重点/难点重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示;难点:理解空间向量基本定理;3.教学用具多媒体设备4.标签教学过程教学过程设计(一).复习引入1、共线向量定理:2、共面向量定理:3、平面向量基本定理:4、平面向量的正交分解:(二)、新课探究:探究一.空间向量基本定理2、空间向量基本定理3、注意:对于基底{a,b,c},除了应知道向量a,b,c不共面,还应明确(1)任意不共面的三个向量都可做为空间的一个基底。
(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是零向量。
(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念。
《空间向量及其运算》教学设计1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 重点:理解共线向量定理和共面向量定理及它们的推论;难点:掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. (一)复习:空间向量的概念及表示; (二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.读作:a 平行于b ,记作://a b .2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ=(λ唯一). 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+①,其中向量a 叫做直线l 的方向向量.在l 上取AB a =,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+② 当12t =时,点P 是线段AB 的中点,此时1()2OP OA OB =+③ ①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行: 如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+.推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++① 上面①式叫做平面MAB 的向量表达式.(三)例题分析:al PBA O例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++, 试判断:点P 与,,A B C 是否一定共面?解:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+,即22PA PB PC =--,所以,点P 与,,A B C 共面. 说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++ (其中1x y z ++=)的四点,,,P A B C 是否共面?解:∵(1)OP z y OA yOB zOC =--++,∴()()OP OA y OB OA z OC OA -=-+-,∴AP yAB zAC =+,∴点P 与点,,A B C 共面.例2.已知ABCD ,从平面AC 外一点O 引向量,,,OE kOA OF KOB OG kOC OH kOD ====,(1)求证:四点,,,E F G H 共面;(2)平面AC //平面EG . 解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+,∵EG OG OE =-,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OEEF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅,∴//,//EF AB EG AC所以,平面//AC 平面EG .五、课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.六、作业: E1.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值.。
《空间向量及其运算》教案9(新人教A版选修2-1)第三课时3.1.2空间向量的数乘运算(二)教学要求:了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知平面内的充要条件;会用上述知识解决立几中有关的简单问题.教学重点:点在已知平面内的充要条件.教学难点:对点在已知平面内的充要条件的理解与运用.教学过程:一、复习引入1. 空间向量的有关知识--共线或平行向量的概念、共线向量定理及其推论以及空间直线的向量表示式、中点公式.2. 必修④《平面向量》,平面向量的一个重要定理--平面向量基本定理:如果e1、e2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中不共线向量e1、e2叫做表示这一平面内所有向量的一组基底.二、新课讲授1. 定义:如果表示空间向量a的有向线段所在直线与已知平面α平行或在平面α内,则称向量a平行于平面α,记作a//α.向量与平面平行,向量所在的直线可以在平面内,而直线与平面平行时两者是没有公共点的.2. 定义:平行于同一平面的向量叫做共面向量.共面向量不一定是在同一平面内的,但可以平移到同一平面内.3. 讨论:空间中任意三个向量一定是共面向量吗?请举例说明.结论:空间中的任意三个向量不一定是共面向量.例如:对于空间四边形ABCD,、、这三个向量就不是共面向量.4. 讨论:空间三个向量具备怎样的条件时才是共面向量呢?5. 得出共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得p= xa+yb .证明:必要性:由已知,两个向量a、b不共线.∵ 向量p与向量a、b共面∴ 由平面向量基本定理得:存在一对有序实数对x,y,使得 p= xa+yb.充分性:如图,∵xa,yb分别与a、b共线,∴xa,yb都在a、b确定的平面内.又∵xa+yb是以|xa|、|yb|为邻边的平行四边形的一条对角线所表示的向量,并且此平行四边形在a、b确定的平面内,∴ p= xa+yb在a、b确定的平面内,即向量p与向量a、b共面.说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内.6. 共面向量定理的推论是:空间一点P在平面MAB内的充要条件是存在有序实数对x,y,使得,① 或对于空间任意一定点O,有.②分析:⑴推论中的x、y是唯一的一对有序实数;⑵由得:,∴ ③公式①②③都是P、M、A、B四点共面的充要条件.7. 例题:课本P95例1 ,解略.→ 小结:向量方法证明四点共面三、巩固练习1. 练习:课本P96 练习3题.2. 作业:课本P96 练习2题.。
第6讲 空间向量及其运算【复习指导】1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义.基础梳理1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)相等向量:方向相同且模相等的向量.(3)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (4)共面向量:平行于同一个平面的向量. 2.空间向量的线性运算及运算律(1)定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如下:OB→=OA →+AB →=a +b ;BA →=OA →-OB →=a -b ;OP →=λa (λ∈R ). (2)运算律:(1)加法交换律:a +b =b +a .(3)加法结合律:(a +b )+c =a +(b +c ). (4)数乘分配律:λ(a +b )=λa +λb . 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA→=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b. ②两向量的数量积已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,即a·b =|a||b|cos 〈a ,b 〉. (2)空间向量数量积的运算律①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c .4.基本定理(1)共线向量定理:空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,p 与向量a ,b 共面的充要条件是存在实数x ,y 使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .双基自测1.已知向量a ∥平面β,向量a 所在直线为a ,则( ). A .a ∥β B .a ⊂β C .a 交β于一点 D .a ∥β或a ⊂β答案 D 2.下列命题:①若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;④对空间任意一点O 与不共线的三点A 、B 、C ,若OP→=xOA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.其中不正确命题的个数是( ). A .1 B .2 C .3 D .4解析 ①中四点恰好围成一封闭图形,正确; ②中当a 、b 同向时,应有|a |+|b|=|a +b|; ③中a 、b 所在直线可能重合;④中需满足x +y +z =1,才有P 、A 、B 、C 四点共面. 答案 C 3. a =λb (λ是实数)是a 与b 共线的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 a =λb ⇒a ∥b 但⎩⎪⎨⎪⎧b =0,a ≠0,则a ∥b ,a ≠λb . 答案 A4.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →、AD →、AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( ).A .5B .6C .4D .8 解析 设AB →=a ,AD →=b ,AA1→=c ,则AC 1→=a +b +c , AC 1→2=a 2+b 2+c 2+2a·b +2b·c +2c·a =25,因此|AC 1→|=5.答案 A 5.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 解析 如图,OE→=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .答案 12a +14b +14c考向一 空间向量的线性运算【例1】►在平行六面体ABCDA 1B 1C 1D 1中G 为△A 1BD 的重心,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示AC 1→,AG →. 解 AC 1→=AB →+BC →+CC 1→=AB →+AD →+AA 1→=a +b +c . AG →=AA 1→+A 1G →=AA 1→+13(A 1D →+A 1B →)=AA 1→+13(AD →-AA 1→)+13(AB →-AA 1→) =13AA 1→+13AD →+13AB →=13a +13b +13c . 【训练1】已知M 、N 分别为四面体ABCD 的面BCD 与面ACD 的重心,且G 为AM 上一点,且GM ∶GA =1∶3.设AB →=a ,AC →=b ,AD →=c ,试用a ,b ,c 表示BG →,BN→. 解 BG→=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c , BN →=BA →+AN →=BA →+13(AC →+AD →)=-a +13b +13c .考向二 共线共面定理的应用【例2】►如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面. 证明 取ED ′→=a 、EF →=b 、EH →=c ,则HG →=HB →+BC →+CG →=D ′F →+2ED ′→+12AA ′→=b -a +2a +12(AH →+HE →+EA ′→)=b +a +12(b -a -c -a )=32b-12c ,∴H G →与b 、c 共面.即E 、F 、G 、H 四点共面. 【训练2】 如图在三棱柱ABC -A 1B 1C 1中,D 为BC 边上的中点,试证A 1B ∥平面AC 1D .证明 设BA →=a ,BB 1→=c ,BC →=b ,则 BA 1→=BA →+AA 1→=BA →+BB 1→=a +c , AD→=AB →+BD →=AB →+12BC →=-a +12b , AC 1→=AC →+CC 1→=BC →-BA →+BB 1→=b -a +c ,BA 1→=AC 1→-2AD →,∵AB ⊄平面AC 1D , 因此A 1B ∥平面AC 1D .考向三 空间向量数量积的应用【例3】►在四面体S -ABC 中,若SA ⊥BC ,SB ⊥AC ,试证SC ⊥AB . 证明 取SA→=a ,SB →=b ,SC →=c ,由已知SA ⊥BC ,SB ⊥AC , 即⎩⎨⎧a ·(c -b )=0 ①b ·(c -a )=0 ② ②-①得c ·(b -a )=0, 则SC ⊥AB .【训练3】 已知如右图所示,平行六面体ABCD -A1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°. (1)求证:C 1C ⊥BD ;(2)当CDCC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明.(1)证明 取CD →=a ,CB →=b ,CC 1→=c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, BD →=CD →-CB →=a -b ,CC 1→·BD →=c·(a -b )=c·a -c·b =12|c ||a |-12|c ||b |=0,∴C 1C →⊥BD →,即C 1C ⊥BD .(2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,CA 1→=a +b +c ,C 1D →=a -c . ∴CA 1→·C 1D →=0,即(a +b +c )·(a -c )=0.整理得:3a 2-|a||c|-2c 2=0, (3|a|+2|c|)(|a|-|c|)=0,∴|a|-|c|=0,即|a|=|c|.即当CD CC 1=|a||c|=1时,A 1C ⊥平面C 1BD .考向四 利用空间向量证明平行或垂直问题【例4】►如图,四棱锥SABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的正弦值.[解答示范] 以C 为坐标原点,射线CD 为x 正半轴,建立如图所示的空间直角坐标系Cxyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 A S →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ),由|AS →|=|BS→|得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,故x =1. 由|DS→|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0,故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S ,所以SD ⊥平面SAB .(2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,∴a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎨⎧m -32n +32p =0,2n =0.(9分)取p =2得a =(-3,0,2).又AB →=(-2,0,0),cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成角的正弦值为217.(12分) 【试一试】 设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.求使p ∨q 为真,p ∧q 为假的实数m 的取值范围.[尝试解答] 由⎩⎨⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m <-1.∴p :m <-1;由Δ2=4(m -2)2-4(-3m +10)<0,知-2<m <3,∴q :-2<m <3. 由p ∨q 为真,p ∧q 为假可知,命题p ,q 一真一假, 当p 真q 假时,⎩⎨⎧m <-1,m ≥3或m ≤-2,此时m ≤-2;当p 假q 真时,⎩⎨⎧m ≥-1,-2<m <3,此时-1≤m <3.∴m 的取值范围是{m |m ≤-2,或-1≤m <3}.课后作业:1.设命题p :a ,b ,c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是q 的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】:只有不共面的三个非零向量才能作为空间的一个基底.2.如图所示,长方体ABCD —A 1B 1C 1D 1中,AC 与BD 的交点为M ,设11B A =a ,11A D =b ,A A 1 =c ,则下列向量中与M B 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 【答案】A 【解析】M B 1 =B B 1+BM =A A 1+ 21(11D A -11B A )=c +21(b -a )=-21a +21b +c .3.下面几项中,代表与向量a =(1,-3,2)平行的一个向量的坐标的是( )A.( 13,1,1)B.(-1,-3,2)C.(- 12,32,-1) D.( 2,-3,-22)【答案】 C 【解析】 由题意可知-12a =(-12,32,-1).故选C.4.平行六面体ABCD —A ′B ′C ′D ′中,设'AC =x AB +2y BC +3z 'CC ,则x +y +z 为( ) A.611 B.65 C.32 D.67【答案】A 【解析】∵在平行六面体中, 'AC =AB +BC +'CC ,又'AC =x AB +2y BC +3z 'CC ,∴⎪⎩⎪⎨⎧===.13,12,1z y x ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===,31,21,1z y x ∴x +y +z =611.5.已知点A (-3,5,-2),a =(-1,1,1),在yOz 面上找一点B ,使得AB ∥a ,则点B 的坐标为__________.【答案】(0,2,-5)【解析】设B (0,y ,z ),则AB =(3,y -5,z +2).∵AB ∥a ,∴存在一个实数λ,使得AB =λa ,即(3,y -5,z +2)=λ(-1,1,1),∴⎪⎩⎪⎨⎧=+=--=.2,5,3λλλz y 解得λ=-3,y =2,z =-5.∴点B 的坐标为(0,2,-5). 6.在平行六面体ABCD —A ′B ′C ′D ′中,向量'AB 、'AD 、BD 是( ) A.有相同起点的向量B.等长的向量C.共面向量D.不共面向量【答案】C 【解析】∵'AD -'AB =''D B =BD ,∴'AB 、'AD 、BD 共面. 7.下面几项中,代表与向量a =(1,-1,-2)垂直的一个向量的坐标的是( ) A.(13,1,1) B.(-1,-3,2) C.(- 12,32,-1) D.( 2,-3,-22)【答案】 C【解析】 由两向量垂直的充要条件可得.8.已知空间四边形ABCD 中,G 为CD 的中点,则AB +12(BD +BC )等于( )A. AGB.12 AG C. BC D. 12BC 【答案】 A 【解析】 依题意有AB u u u r +12(BD u u u r + BC uuu r )= AB u u u r + BG u u ur = AG u u u r .9.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为98,则λ等于( )A.2B.-2C.-2或552D.2或-552【答案】:C 【解析】由已知得98=||||b a ba ⋅=95422⋅++-λλ,∴825λ+=3(6-λ),解得λ=-2或λ=552. 10.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.762 B.763 C.760D.765【答案】D 【解析】由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎪⎩⎪⎨⎧-=+-=-=.23,45,27μλμμt t t ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===.765,717,733λμt11.已知直线AB 、CD 是异面直线,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为( )A.30°B.45°C.60°D.75° 【答案】C 【解析】∵cos 〈AB ,CD 〉=||||CD AB CDAB ⋅=212)(2CDCD DB CD AC =⨯⋅++= 21,∴AB 与CD 所成角为60°. 12.在正方体ABCD —A 1B 1C 1D 1中,给出以下向量表达式:① (11A D u u u u r -1A A u u u r )-AB u u u r;②(BC uuu r +1BB u u u r )-11DC u u u u r ;③(AD u u u r - AB u u u r )-21DD u u u u r ;④(11B D u u u u r +1A A u u u r )+1DD u u u u r .1BD u u u u r的是( )A.①②B.②③C.③④D.①④ 【答案】 A 【解析】 ①(11A D u u u u r -1A A u u u r )- AB u u u r =1AD u u u u r - AB u u u r =1BD u u u u r ;② (BC uuu r +1BB u u u r )-11DC u u u u r =1BC u u u u r-11DC u u u u r =1BD u u u u r ; ③ (AD u u u r - AB u u u r )-21DD u u u u r = BD u u u r -21DD u u u u r 1BD u u u u r ;④ (11B D u u u u r +1A A u u u r )+1DD u u u u r =1B D u u u u r +1DD u u u u r =11B D u u u u r 1BD u u u u r .综上,①②符合题意.13.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =__________.【答案】7【解析】∵(k a -b )⊥b ,∴(k a -b )·b =0.∴k a ·b -b 2=0.∴k =b a b ⋅2=311)1(321222⨯+⨯-++=7.14.已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为__________.【答案】1或-3【解析】∵a ⊥b 且|a |=6,∴⎪⎩⎪⎨⎧=++=++⨯64202422222x x y ⎩⎨⎧=-=⎩⎨⎧-==⇒.1,4,3,4y x y x 或 ∴x +y =1或x +y =-3.15.已知点A(1,2,1),B(-1,3,4),D(1,1,1),若AP u u u r =2 PB u u u r ,则| PD u u u r|的值是 . 【答案】773【解析】 设P(x,y,z),则AP u u u r =(x-1,y-2,z-1),PB u u u r=(-1-x,3-y,4-z),由AP u u u r =2PB u u u r 知x=-13,y=83,z=3.|PD u u u r |=773.16.求同时垂直于a =(2,2,1),b =(4,5,3)的单位向量.【解】设所求向量c =(x ,y ,z ),则⎪⎩⎪⎨⎧=++=++=++.0354,022,1222z y x z y x z y x 所以y =-z,x 2z =.于是42z +z 2+z 2=1.所以z =±32,x =±31,y =32.所以c =( 31,-32,32)或c =(-31,32,-32). 17.已知向量a =(1,-3,2), b =(-2,1,1),点A(-3,-1,4),B(-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E,使得OE uuu r⊥b ?(O 为原点)【解】 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),|2a +b |=2220(5)5+-+=52.(2) OE uuu r = OA u u u r + AE u u u r = OA u u u r +t AB u u u r=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),若OE uuu r ⊥b ,则OE uuu r·b =0.所以-2(-3+t)+(-1-t)+(4-2t)=0,t=95, 因此存在点E,使得OE uuu r⊥b ,E 点的坐标为(-65,-145,25). 18.直三棱柱ABC -A ′B ′C ′中,AC=BC=AA ′,∠ACB=90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D;(2)求异面直线CE 与AC ′所成角的余弦值.【解】 (1)证明:设CA u u u r =a , CB u u u r =b ,CC 'u u u u r=c ,根据题意,| a |=|b |=|c |且a ·b =b ·c =c ·a=0,∴CE u u u r =b +12c ,A D 'u u u u r =-c +12b -12a .CE u u u r ·A D 'u u u u r =-12c 2+12b 2=0.∴CE u u u r ⊥A D 'u u u u r,即CE ⊥A ′D. (2)∵AC 'u u u u r=-a +c ,|AC 'u u u u r |=2|a |,| CE u u u r|=52|a |. AC 'u u u u r ·CE u u u r =(-a +c )·(b +12c )=12c 2=12|a |2,∴cos 〈AC 'u u u u r ,CE u u u r 〉= 2212522g |a ||a |=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
3. 1.1空間向量及其運算(一)教學目標:㈠知識目標:⒈空間向量;⒉相等的向量;⒊空間向量的加減與數乘運算及運算律;㈡能力目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;⒊能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.㈢德育目標:學會用發展的眼光看問題,認識到事物都是在不斷的發展、進化的,會用聯繫的觀點看待事物.教學重點:空間向量的加減與數乘運算及運算律.教學難點:應用向量解決立體幾何問題.教學方法:討論式.教學過程:Ⅰ.複習引入[師]在必修四第二章《平面向量》中,我們學習了有關平面向量的一些知識,什麼叫做向量?向量是怎樣表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向線段表示;②用字母a、b等表示;③用有向線段的起點與終點字母:AB.[師]數學上所說的向量是自由向量,也就是說在保持向量的方向、大小的前提下可以將向量進行平移,由此我們可以得出向量相等的概念,請同學們回憶一下.[生]長度相等且方向相同的向量叫相等向量.[師]學習了向量的有關概念以後,我們學習了向量的加減以及數乘向量運算:⒈向量的加法:⒉向量的減法:⒊實數與向量的積:實數λ與向量a的積是一個向量,記作λa,其長度和方向規定如下:(1)|λa|=|λ||a|(2)當λ>0時,λa 與a 同向; 當λ<0時,λa 與a 反向; 當λ=0時,λa =0.[師]關於向量的以上幾種運算,請同學們回憶一下,有哪些運算律呢? [生]向量加法和數乘向量滿足以下運算律 加法交換律:a +b =b +a加法結合律:(a +b )+c =a +(b +c ) 數乘分配律:λ(a +b )=λa +λb[師]今天我們將在必修四第二章平面向量的基礎上,類比地引入空間向量的概念、表示方法、相同或向等關係、空間向量的加法、減法、數乘以及這三種運算的運算率,並進行一些簡單的應用.請同學們閱讀課本Ⅱ.新課講授[師]如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量.例如空間的一個平移就是一個向量.那麼我們怎樣表示空間向量呢?相等的向量又是怎樣表示的呢?[生]與平面向量一樣,空間向量也用有向線段表示,並且同向且等長的有向線段表示同一向量或相等的向量.[師]由以上知識可知,向量在空間中是可以平移的.空間任意兩個向量都可以用同一平面內的兩條有向線段表示.因此我們說空間任意兩個向量是共面的.[師]空間向量的加法、減法、數乘向量各是怎樣定義的呢?[生]空間向量的加法、減法、數乘向量的定義與平面向量的運算一樣:AB OA OB +==a +b ,OA OB AB -=(指向被減向量), =OP λa )(R ∈λ[師]空間向量的加法與數乘向量有哪些運算律呢?請大家驗證這些運算律.[生]空間向量加法與數乘向量有如下運算律: ⑴加法交換律:a + b = b + a ;⑵加法結合律:(a + b ) + c =a + (b + c );(課件驗證) ⑶數乘分配律:λ(a + b ) =λa +λb .[師]空間向量加法的運算律要注意以下幾點:⑴首尾相接的若干向量之和,等於由起始向量的起點指向末尾向量的終點的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空間若干向量之和時,可通過平移使它們轉化為首尾相接的向量. ⑵首尾相接的若干向量若構成一個封閉圖形,則它們的和為零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶兩個向量相加的平行四邊形法則在空間仍然成立.因此,求始點相同的兩個向量之和時,可以考慮用平行四邊形法則. 例1已知平行六面體''''D C B A ABCD -(如圖),化簡下列向量運算式,並標出化簡結果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 說明:平行四邊形ABCD 平移向量 a 到A’B’C’D’的軌跡所形成的幾何體,叫做平行六面體.記作ABCD —A’B’C’D’.平行六面體的六個面都是平行四邊形,每個面的邊叫做平行六面體的棱.說明:由第2小題可知,始點相同且不在同一個平面內的三個向量之和,等於以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量,這是平面向量加法的平行四邊形法則向空間的推廣.例2、如圖中,已知點O 是平行六面體ABCD -A 1B 1C 1D 1體對角線的交點,點P 是任意一點,則.分析:將要證明等式的左邊分解成兩部分:與,第一組向量和中各向量的終點構成平行四邊形ABCD,第二組向量和中的各向量的終點構成平行四邊形A1B1C1D1,於是我們就想到了應該先證明:將以上所述結合起來就產生了本例的證明思路.解答:設E,E1分別是平行六面體的面ABCD與A1B1C1D1的中心,於是有點評:在平面向量中,我們證明過以下命題:已知點O是平行四邊形ABCD對角線的交點,點P是平行四邊形ABCD所在平面上任一點,則,本例題就是將平面向量的命題推廣到空間來.Ⅲ.鞏固練習Ⅳ.教學反思平面向量僅限於研究平面圖形在它所在的平面內的平移,而空間向量研究的是空間的平移,它們的共同點都是指“將圖形上所有點沿相同的方向移動相同的長度”,空間的平移包含平面的平移.關於向量算式的化簡,要注意解題格式、步驟和方法.Ⅴ.課後作業⒈課本1、2、⒉預習下一節:⑴怎樣的向量叫做共線向量?⑵兩個向量共線的充要條件是什麼?⑶空間中點在直線上的充要條件是什麼?⑷什麼叫做空間直線的向量參數表示式?⑸怎樣的向量叫做共面向量?⑹向量p與不共線向量a、b共面的充要條件是什麼?⑺空間一點P在平面MAB內的充要條件是什麼?3.1.1空間向量及其運算(一)課前預習學案預習目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;預習內容:1.———————————————叫空間向量.空間向量的表示方法有: -------------------2. --------------------------叫相等向量3.空間向量的運算法則:—————————————————— 提出疑惑:同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點 疑惑內容課內探究學案 學習目標:㈠知識目標:⒈空間向量;⒉相等的向量;⒊空間向量的加減與數乘運算及運算律; ㈡能力目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律; ⒊能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.學習重點:空間向量的加減與數乘運算及運算律. 學習難點:應用向量解決立體幾何問題. 學習過程:例1已知平行六面體''''D C B A ABCD -(如圖),化簡下列向量運算式,並標出化簡結果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 例2、如圖中,已知點O 是平行六面體ABCD -A 1B 1C 1D 1體對角線的交點,點P 是任意一點,則.當堂檢測:1、下列說法中正確的是( )A .兩個有共同起點且相等的向量,其終點可能不同B .若非零向量與是共線向量,則A 、B 、C 、D 四點共線C .若D .四邊形ABCD 是平行四邊形的充要條件是=2、已知空間四邊形ABCD ,連AC ,BD ,設M 、G 分別是BC 、CD 中點,則( )A .B .C .D .3、如圖:在平行六面體1111D C B A ABCD -中,M 為11C A 與11D B 的交點。
教案)空间向量及其运算教案内容:一、教学目标1. 了解空间向量的概念,理解向量的几何表示和坐标表示。
2. 掌握空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够应用空间向量的运算解决实际问题。
二、教学重点与难点1. 空间向量的概念及其几何表示。
2. 空间向量的坐标表示及其运算。
3. 空间向量的应用问题。
三、教学准备1. 教师准备PPT或黑板,用于展示向量的图形和运算过程。
2. 准备一些实际问题,用于引导学生应用向量知识解决。
四、教学过程1. 引入:通过展示一些实际问题,如物体运动、几何图形等,引导学生思考向量的概念和作用。
2. 讲解:向学生介绍空间向量的概念,讲解向量的几何表示和坐标表示。
通过示例和图形,让学生理解向量的加法、减法、数乘和点乘运算。
3. 练习:让学生通过练习题的方式,巩固对向量运算的理解和掌握。
可以提供一些选择题和填空题,以及一些应用问题。
4. 应用:引导学生将向量知识应用到实际问题中,如物体运动、几何图形等。
可以让学生分组讨论和展示解题过程。
5. 总结:对本节课的主要内容和知识点进行总结,强调重点和难点。
五、作业布置1. 完成课后练习题,包括选择题、填空题和应用问题。
2. 准备下一节课的预习内容,了解空间向量的线性组合和叉乘。
六、教学反思在课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
根据学生的反馈和表现,调整教学方法和策略,以便更好地进行后续教学。
六、教学评价1. 评价方式:通过课堂讲解、练习题和实际问题解决,评价学生对空间向量的概念理解和运算掌握程度。
2. 评价标准:学生能准确地描述空间向量的概念,理解向量的几何表示和坐标表示;能熟练地进行向量的加法、减法、数乘和点乘运算;能将向量知识应用到实际问题中,解决问题。
七、拓展与延伸1. 向量的线性组合:向学生介绍空间向量的线性组合概念,讲解线性组合的性质和运算规律。
2. 向量的叉乘:向学生介绍空间向量的叉乘概念,讲解叉乘的性质和运算规律。
空间向量及其运算( 一 )教课目标:1.理解空间向量的观点,掌握空间向量的加法、减法和数乘运算.2.用空间向量的运算意义和运算律解决立几问题..教课要点:空间向量的加法、减法和数乘运算及运算律.教课难点:用向量解决立几问题.讲课种类:新讲课 .课时安排: 1 课时 .教具:多媒体、实物投影仪.教课过程:一、复习引入:1.向量的观点(1)向量的基本因素:大小和方向 .(2) 向量的表示:几何表示法uuur r r rAB ,a;坐标表示法 a xi yj ( x, y) .(3)向量的长度:即向量的大小,记作| a |.(4)特别的向量:零向量 a =0|a|= 0.单位向量 a0为单位向量| a0|=1.(5)相等的向量:大小相等,方向同样( x1 , y1 )( x2 , y2 )x1x2 y1y2(6)平行向量 ( 共线向量 ) :方向同样或相反的向量,称为平行向量. 记作a∥b . 因为向量能够进行随意的平移( 即自由向量 ) ,平行向量总能够平移到同向来线上,故平行向量也称为共线向量.2.向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运算种类几何方法坐标方法运算性质向a b b a量1.平行四边形法例a b( a b)c a (b c)的2.三角形法例( x1x2 , y1y2 )加uuur uuur uuur法AB BC AC向a b a( b)量a b uuur uuur的三角形法例( x1x2 , y1y2 )AB BA减uuur uuur uuur法OB OA AB向 1. a 是一个向量,知足:量 2.>0 时 , a与a同a ( x, y)( a) ()a的向 ;()a a a 乘<0 时, a 与a异法向 ;( a b)a b=0 时 , a =0.a ∥b a ba ?b b ? a向 a ? b 是一个数( a) ? b a ? (b)(a ?b)量 1. a 0或b0 时,的a? b =0 a ?b( a b) ? c a ? c b ? c数 2. a 0且b0 时,x1 x2y1 y2量 a ? b | a || b | cos(a,b) a 2 | a |2| a |x2y2积| a ? b | | a || b |3.重要定理、公式:(1)平面向量基本定理e1 ,e2是同一平面内两个不共线的向量,那么,关于这个平面内任一直量,有且仅有一对实数 1 ,2,使a1e1 2 e2(2)两个向量平行的充要条件a ∥b a =λb x1 y2x2 y10 .(3)两个向量垂直的充要条件a ⊥b a ·b=O x1 x2y1 y20 .(4)线段的定比分点公式设点 P分有向线段uuur uuur所成的比为λ,即PP=λ PP,则12uuur1uuur1uuur( 线段的定比分点的向量公式 ) OP =OP +OP1112x x1x2,1( 线段定比分点的坐标公式 )y y1y2. 1当λ=1时,得中点公式:uuur1uuur uuur x x1x2 ,2OP =2( OP1+ OP2)或y1y2y.2(5)平移公式设点 P( x, y) 按向量 a(h, k) 平移后获得点uuur uuur x x h, P (x , y ) ,则 OP = OP+ a或y,y k.曲线 y f (x) 按向量 a(h, k) 平移后所得的曲线的函数分析式为:y k f (x h)(6)正、余弦定理正弦定理:a b c2R. sin A sin B sin C余弦定理: a2b2c22bc cos A cos A b2 c 2a22bcb2 c 2a22ac cos B cos B c2 a 2b22cac2a2b22ab cosC cosC a 2b2c2.2ab二、解说新课:1.空间向量的观点:在空间,我们把拥有大小和方向的量叫做向量.注:⑴空间的一个平移就是一个向量.⑵向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量.⑶空间的两个向量可用同一平面内的两条有向线段来表示.2.空间向量的运算定义:与平面向量运算同样,空间向量的加法、减法与数乘向量运算以下(如图)uuur uuur uuur r vOB OA AB a bD'C'CbA'B'a aB bb D CaO AA Buuur uuur uuur r rBA OA OB a buuur rR)OP a(运算律:⑴加法互换律: a b b a⑵加法联合律:( a b ) c a (b c)⑶数乘分派律:( a b)a b3.平行六面体:平行四边形 ABCD 平移向量 a 到 A B C D 的轨迹所形成的几何体,叫做平行六面体, 并记作:ABCD - A B C D .它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 .三、解说典范:例 1.已知平行六面体 ABCD - A B C D 化简以下向量表达式,标出化简结果的向量.uuur uuur uuur uuur uuur ⑴ AB BC ;⑵ AB AD AA ;uuur uuur1 uuuur1 uuur uuur uuurD'C'⑶AB ADCC;⑷3( AB ADAA).2A'B'M解:如图:uuur uuur uuur ⑴ ABBC AC ;uuur uuur uuur uuur uuur uuuur ⑵ ABADAA =AC AA AC ;GDCABuuur uuur1 uuuuruuur uuuur uuuur⑶设 M 是线段 CC 的中点,则 ABADCCACCMAM ;2⑷设 G 是线段 AC 的三等份点,则1 uuur uuur uuur1 uuuuruuur3 (ABADAA )ACAG .3uuur uuuur uuuur uuur向量 AC, AC , AM , AG 以下图 :例 2 已知空间四边形ABCD ,连接 AC, BD ,设 M ,G 分别是 BC ,CD 的中点,化简以下各表uuur uuur uuur达式,并标出化简结果向量:(1) ABBCCD ;uuur 1 uuur uuur uuur 1 uuur uuur(2) AB ( BD BC) ;( 3) AG (AB AC).A2 2解:如图, uuur uuur uuur uuur uuuruuur(1) AB BC CD AC CD AD ;uuur uuur uuur uuur uuur uuurB(2) AB 1 (BD BC ) AB 1 BC 1 BDDuuur 2uuuur uuuur uuur 2 2MGAB BM MG AG ;uuur 1 uuuruuur uuur uuuur uuuur C(3) AG ( ABAC) AG AM MG .2四、讲堂练习 :1.如图,在空间四边形ABCD 中, E, F 分别是 AD 与 BC 的中点,uuur1 uuur uuur求证: EF(AB DC).21 uuur1 uuuruuur uuur uuur uuuruuur证明: EF ED DC CF2 ADDC2CBA1 uuur uuur uuur1 uuur2( ABBD )DCCB2EBDFC1uuur uuur1uuur uuur2AB DC2(CB BD )1 uuur uuur1uuur2AB DC2CD1uuur uuur2( AB DC )r r r r r r r r r r r r r rr2.已知2x3y3a b4c ,3x y8a5b c ,把向量 x, y 用向量 a,b , c 表示.r r r r r r r r r r解 : ∵2x 3y3a b4c, 3x y8a5b cr r r r r r r r∴ x3a2b c , y a b2c uuur r uuur r uuur r3 .如图,在平行六面体ABCD ABCD 中,设AB a , AD b, AA c , E, F 分别是AD , BD 中点,uuuur uuur D' r r r;C'( 1)用向量a, b,c表示D B, EFuuur uuur uuur uuuur uuuur ( 2 )化简:AB BB BC C D2DE;uuuur uuuur uuuur uuur r r r 解 : ( 1)D B D A A B B Bb a cuuur uuur uuur uuur1 uuur r1 uuurEF EA AB BF D A a BDr 2r21r r 1 r1r r ( b c) a( a b )(a c ) 222A'B'EDCFA B五、小结:空间向量的有关的观点及空间向量的表示方法;平行六面体的观点;向量加法、减法和数乘运算 .六、课后作业:如图设 A 是△BCD 所在平面外的一点,G 是△BCD 的重心.求证:uuur 1 uuur uuur uuurAG(AB AC AD) .3A七、板书设计(略).八、课后记:BG DC3.1《空间向量及其运算》教案(新人教选修2-1)。
空间向量及其运算第一章:空间向量的概念1.1 向量的定义介绍向量的定义和表示方法解释向量的方向和大小1.2 向量的图形表示绘制向量的起点和终点展示向量的箭头表示法1.3 向量的坐标表示介绍坐标系的概念解释如何用坐标表示向量第二章:空间向量的运算2.1 向量的加法介绍向量加法的定义和性质演示向量加法的图形表示法2.2 向量的减法介绍向量减法的定义和性质演示向量减法的图形表示法2.3 向量的数乘介绍向量数乘的定义和性质解释数乘对向量大小和方向的影响第三章:空间向量的线性组合3.1 线性组合的概念介绍线性组合的定义和表示方法解释线性组合的性质3.2 线性相关的向量组介绍线性相关的定义和判定条件展示线性相关向量组的例子3.3 线性无关的向量组介绍线性无关的定义和判定条件解释线性无关向量组的重要性第四章:空间向量的线性变换4.1 线性变换的概念介绍线性变换的定义和表示方法解释线性变换的性质4.2 矩阵与线性变换介绍矩阵的概念和表示方法解释矩阵与线性变换的关系4.3 线性变换的矩阵表示解释线性变换的矩阵表示方法演示如何求解线性变换的矩阵第五章:空间向量的内积和外积5.1 内积的概念介绍内积的定义和表示方法解释内积的性质和几何意义5.2 内积的计算公式介绍内积的计算公式和推导过程演示如何计算两个向量的内积5.3 外积的概念介绍外积的定义和表示方法解释外积的性质和几何意义5.4 外积的计算公式介绍外积的计算公式和推导过程演示如何计算两个向量的外积第六章:空间向量的投影6.1 投影的概念介绍向量投影的定义和表示方法解释投影的性质和几何意义6.2 投影的计算方法介绍投影的计算方法和推导过程演示如何计算一个向量在另一个向量上的投影6.3 投影的应用解释投影在几何和物理中的应用展示投影在坐标变换和图像处理中的应用第七章:空间向量的正交性7.1 正交性的概念介绍正交性的定义和表示方法解释正交性的几何意义和重要性7.2 正交向量组介绍正交向量组的定义和判定条件展示正交向量组的例子7.3 施密特正交化解释施密特正交化的概念和推导过程演示如何将一组向量正交化第八章:空间向量的范数8.1 范数的概念介绍范数的定义和表示方法解释范数的性质和几何意义8.2 常见范数介绍常见范数的概念和计算方法演示如何计算向量的不同范数8.3 范数与向量空间解释范数与向量空间的关系展示范数对向量空间结构的限制第九章:空间向量的角度和距离9.1 角度的概念介绍向量角度的定义和表示方法解释向量角度的几何意义9.2 角度的计算方法介绍向量角度的计算方法和推导过程演示如何计算两个向量之间的角度9.3 距离的概念介绍向量距离的定义和表示方法解释向量距离的几何意义9.4 距离的计算方法介绍向量距离的计算方法和推导过程演示如何计算两个向量之间的距离第十章:空间向量的应用10.1 向量在几何中的应用解释向量在几何中的作用和应用展示向量在证明几何定理和解决问题中的应用10.2 向量在物理中的应用介绍向量在物理中的基本概念和应用解释向量在力学和电磁学中的应用10.3 向量在工程和计算机科学中的应用介绍向量在工程和计算机科学中的应用展示向量在图像处理、机器学习和数据可视化等方面的应用第十一章:空间向量的分解11.1 向量分解的概念介绍向量分解的定义和表示方法解释向量分解的意义和几何意义11.2 向量的线性组合分解介绍向量的线性组合分解方法和步骤演示如何将一个向量分解为线性组合11.3 向量的正交分解解释向量的正交分解的概念和推导过程演示如何将一个向量正交分解为两个正交向量的和第十二章:空间向量组的极大线性无关组12.1 极大线性无关组的概念介绍极大线性无关组的定义和判定方法解释极大线性无关组的意义和重要性12.2 基底的概念介绍基底的概念和表示方法解释基底的作用和几何意义12.3 基底的选取方法介绍基底的选取方法和策略展示如何选择合适的基底第十三章:空间向量空间和子空间13.1 向量空间的概念介绍向量空间的概念和性质解释向量空间的作用和重要性13.2 子空间的概念介绍子空间的概念和判定方法解释子空间的意义和几何意义13.3 子空间的性质和运算介绍子空间的性质和运算规则演示如何计算子空间的交集和并集第十四章:空间向量的线性映射14.1 线性映射的概念介绍线性映射的定义和表示方法解释线性映射的性质和几何意义14.2 线性映射的矩阵表示解释线性映射的矩阵表示方法和推导过程演示如何求解线性映射的矩阵14.3 线性映射的性质和运算介绍线性映射的性质和运算规则展示线性映射的图像和特点第十五章:空间向量的应用案例分析15.1 向量在几何中的应用案例分析向量在几何中的经典应用案例解释向量在解决几何问题中的作用和方法15.2 向量在物理中的应用案例分析向量在物理中的经典应用案例解释向量在解决物理问题中的作用和方法15.3 向量在工程和计算机科学中的应用案例分析向量在工程和计算机科学中的经典应用案例解释向量在解决工程和计算机科学问题中的作用和方法重点和难点解析1. 向量的概念及其表示方法:向量是具有大小和方向的量,可以用箭头表示法、坐标表示法等方法表示。
空间向量及其运算【高考导航】本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分.【学法点拨】本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.【基础知识必备】一、必记知识精选1.空间向量的定义(1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量.(2)向量的表示有三种形式:a ,AB ,有向线段.2.空间向量的加法、减法及数乘运算.(1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0.(2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意-=的逆应用.(3)空间向量的数量积.注意其结果仍为一向量.3.共线向量与共面向量的定义.(1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ⇔a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=21时,P 是线段AB 的中点,则中点公式为OP =21(OA +OB ). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的向量,叫作共面向量,空间任意两个向量,总是共面的.如果两个向量a、b不共线.则向量p 与向量a、b共面的充要条件是存在实数对x、y.使p=xa+yb.对于空间任一点O和不共线的三点A、B、C,A、B、C、P共面的充要条件是OP=x OA+y OB+z OC(其中x+y+z=1).共面向量定理是共线向量定理在空间中的推广,共线向量定理证三点共线,共面向量定理证四点共面.4.空间向量基本定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个惟一的有序实数组x、y、z,使p=xa+yb+zc.特别的,若a、b、c不共面,且xa+yb+zc=O,则x=y=z=0.常以此列方程、求值.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,隐含着三向量都不是0.空间任意三个不共面向量都可以作为空间向量的一个基底.要注意,一个基底是一个向量组,一个基向量是指基底中的某一向量.5.两个向量的数量积.a·b=|a|·|b|·cos(a,b),性质如下:(1)a·e=|a|·cos<a,e>;(2)a⊥b a·b=0.(3)|a|2=a·a;(4)|a|·|b|≥a·b.二、重点难点突破(一)重点空间向量的加法、减法运算法则和运算律;空间直线、平面向量参数方程及线段中点的向量公式.空间向量基本定理及其推论,两个向量的数量积的计算方法及其应用.(二)难点空间作图,运用运算法则及运算律解决立体几何问题,两个向量数量积的几何意义以及把立体几何问题转化为向量计算问题.对于重点知识的学习要挖掘其内涵,如从向量等式的学习中可以挖掘出:(1)向量等式也有传递性;(2)向量等式两边加(减)相同的量,仍得等式.即“移项法则”仍成立;(3)向量等式两边同乘以相等的数或点乘相等的向量,仍是等式.这样知识掌握更加深刻.用空间向量解决立体几何问题.一般可以按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化为向量表示,则它们分别易用哪个未知向量表示?这些未知向量与已知条件转化而来的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到所需要的结论?三、易错点和易忽略点导析两个向量的夹角应注意的问题:①(a,b)=(b,a);②(a,b)与表示点的符号(a,b)不同;③如图9-5-1(a)中的∠AOB=<OA,OB>.图(b)中的∠A O B=π-(AO,OB),<-OA,OB>=<OA,-OB>=π-(AO,OB).【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知两个非零向量e 1、e 2不共线,如果AB =e 1+e 2,AC =2e 1+8e 2,AD =3e 1-3e 2.求证:A 、B 、C 、D 共面.思维入门指导:要证A 、B 、C 、D 四点共面,只要能证明三向量AB 、AC 、AD 共面,于是只要证明存在三个非零实数λ、μ、υ使λAB +μAC +υAD =0即可. 证明:设λ(e 1+e 2)+μ(2e 1+8e 2)+υ(3e 1-3e 2)=0.则(λ+2μ+3υ)e 1+(λ+8μ-3υ)e 2=0.∵e 1、e 2不共线,∴⎩⎨⎧=-+=++.038,032υμλυμλ上述方程组有无数多组解,而λ=-5,μ=1,υ=1就是其中的一组,于是可知-5AB +AC +AD =0.故AB 、AC 、AD 共面,所以A 、B 、C 、D 四点共面.点拨:寻找到三个非零实数λ=-5,μ=1,υ=1使三向量符合共面向量基本定理的方法是待定系数法.二、应用思维点拨【例2】 某人骑车以每小时α公里的速度向东行驶,感到风从正北方向吹来,而当速度为2α时,感到风从东北方向吹来.试求实际风速和风向.思维入门指导:速度是矢量即为向量.因而本题先转化为向量的数学模型,然后进行求解,求风速和风向实质是求一向量.解:设a 表示此人以每小时α公里的速度向东行驶的向量.在无风时,此人感到风速为-a ,设实际风速为v ,那么此人感到的风速向量为v-a .如图9-5-2.设OA =-a ,OB =-2a .由于PO +OA =PA ,从而PA =v-a .这就是感受到的由正北方向吹来的风.其次,由于PO +OB =PB ,从而v-2=PB .于是,当此人的速度是原来的2倍时感受到由东北方向吹来的风就是PB .由题意,得∠PB O =45°, PA ⊥B O ,BA=A O ,从而△PB O 为等腰直角三角形.故P O =PB=2α.即|v|=2α.答:实际吹来的风是风速为2α的西北风.点拨:向量与物理中的矢量是同样的概念,因而物理中的有关矢量的求解计算在数学上可化归到平面向量或空间向量进行计算求解.知识的交叉点正是高考考查的重点,也能体现以能力立意的高考方向.三、创新思维点拨【例3】 如图9-5-3(1),已知E 、F 、G 、H 分别是空间四边形ABCD 边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E 、F 、G 、H 四点共面;(2)用向量法证明BD ∥平面EFGH.思维入门指导:(1)要证E 、F 、G 、H 四点共面,根据共面向量定理的推论,只要能找到实数x,y,使EG =x EF +y EH 即可;(2)要证BD ∥平面EFGH,只需证向量BD 与EH 共线即可. 证明:(1)如图9-5-3(2),连结BG,则EG =EB +BG =EB +21(BC +BD )=EB +BF +EH =EF +EH . 由共面向量定理推论知,E 、F 、G 、H 四点共面. (2)∵EH =AH -AE =21AD -21AB =21(AD -AB )=21BD , ∴EH ∥BD.又EH ⊂面EFGH ,BD ⊄面EFGH ,∴BD ∥平面EFGH.点拨:利用向量证明平行、共面是创新之处,比较以前纯几何的证明,显而易见用向量证明比较简单明快.这也正是几何问题研究代数化的特点.【例4】 如图9-5-4,在正方体ABCD —A 1B 1C 1D 1中,E 为D 1C 1的中点,试求A 1C 1与DE 所成角.思维入门指导:在正方体AC 1中,要求A 1C 1与DE 所成角,只需求11C A 与所成角即可.要求11C A 与DE 所成角,则可利用向量的数量积,只要求出11C A ·DE 及|11C A |和|DE |即可.解:设正方体棱长为m,AB =a,AD =b,1AA =c.则|a |=|b |=|c |=m ,a ·b =b ·c =c ·a =0.又∵11C A =11B A +11C B =AB +AD =a +b ,=1DD +D 1=1DD +2111C D =c +21a ,∴11C A ·DE =(a+b)(c+21a)=a ·c +b ·c +21a 2+21a ·b =21a 2=21m 2. 又∵|11C A |=2m,|DE |=25m, ∴cos<11C A ,DE >=||||1111DE C A •=m m m 252212•=1010. ∴<11C A ,DE >=arccos 1010.即A 1C 1与DE 所成角为arccos 1010. 点拨:A 1C 1与DE 为一对异面直线.在以前的解法中求异面直线所成角要先找(作),后求.而应用向量可以不作或不找直接求.简化了解题过程,降低了解题的难度.解题过程中先把11C A 及DE 用同一组基底表示出来,再去求有关的量是空间向量运算常用的手段.四、高考思维点拨【例5】 (2000,全国,12分)如图9-5-5,已知平行六面体ABCD 一A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB=∠C 1CD=∠BCD.(1)求证:C 1C ⊥BD ;(2)当1CC CD 的值为多少时,能使A 1C ⊥平面C 1BD?请给出证明. 思维入门指导:根据两向量的数量积公式a ·b =|a |·|b |cos<a,b >知,两个向量垂直的充要条件是两向量的数量积为0,即a ⊥b ⇔a ·b =0, 所以要证明两直线垂直,只要证明两直线对应的向量数量积为零即可.(1)证明:设=a ,=b ,1CC =c .由题可知|a |=|b |.设、、1CC 中两两所成夹角为θ,于是BD =-=a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD.(2)解:若使A 1C ⊥平面C 1BD,只须证A 1C ⊥BD,A 1C ⊥DC 1,由于:1CA ·D C 1=(+1AA )·(-1CC )=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2+|b |·|a |·cos θ-|b |·|c |cos θ-|c |2=0,得当|a |=|c |时A 1C ⊥DC 1.同理可证当|a |=|c |时,A 1C ⊥BD.∴1CC CD =1时,A 1C ⊥平面C 1BD. 点拨:对于向量数量积的运算一些结论仍是成立的.(a -b )·(a +b )=a 2-b 2;(a ±b )2=a 2±2a ·b +b 2.五、经典类型题思维点拨【例6】 证明:四面体中连接对棱中点的三条直线交于一点,且互相平分.(此点称为四面体的重心)思维入门指导:如图9-5-6所示四面体ABCD 中,E 、F 、G 、H 、P 、Q 分别为各棱中点.要证明EF 、GH 、PQ 相交于一点O ,且O 为它们的中点.可以先证明两条直线EF 、GH 相交于一点O ,然后证明P 、O 、Q 三点共线,即OP 、OQ 共线.从而说明PQ 直线也过O 点.证明:∵E 、G 分别为AB 、AC 的中点,∴EG ∥21BC.同理HF ∥21BC.∴EG ∥HF. 从而四边形EGFH 为平行四边形,故其对角线EF 、GH 相交于一点O ,且O 为它们的中点,连接O P 、O Q.∵OP =OG +GP ,OQ =OH +HQ ,而O 为GH 的中点, ∴+=0,GP ∥21CD ,QH ∥21CD. ∴=21,=21. ∴OP +OQ =OG +OH +GP +HQ =0+21CD -21CD =0. ∴=-.∴PQ 经过O 点,且O 为PQ 的中点.点拨:本例也可以用共线定理的推论来证明,事实上,设EF 的中点为O .连接O P 、O Q,则=-EF ,而=21=-FP ,EF =-2,则=-FP +2,∴=21(+FP ),从而看出O 、P 、Q 三点共线且O 为PQ 的中点,同理可得GH 边经过O 点且O 为GH 的中点,从而原命题得证.六、探究性学习点拨【例7】 如图9-5-7所示,对于空间某一点O ,空间四个点A 、B 、C 、D (无三点共线)分别对应着向量a =OA ,b =OB ,c =OC ,d =OD .求证:A 、B 、C 、D 四点共面的充要条件是存在四个非零实数α、β、γ、δ,使αa +βb +γc +δd =0,且α+β+γ+δ=0.思维入门指导:分清充分性和必要性,应用共面向量定理.证明:(必要性)假设A 、B 、C 、D 共面,因为A 、B 、C 三点不共线,故AB ,AC 两向量不共线,因而存在实数x 、y ,使AD =x AB +y AC ,即d-a=x(b -a )+y(c -a ),∴(x+y -1)a -xb -yc +d =0.令α=x+y-1, β=-x,γ=-y,δ=1.则αa+βb+γc+δd=0,且α+β+γ+δ=0.(充分性)如果条件成立,则δ=-(α+β+γ),代入得αa +βb +γc +δd =αa+βb+γc-(α+β+γ)d=0.即α(a-d)+ β(b-d)+γ(c-d)=0.又∵a -d=OA -OD =DA ,b-d=DB ,c-d=DC , ∴αDA +βDB +γDC =0.∵α、β、γ为非零实数,不妨设γ≠0. 则DC =-γαDA -γβDB . ∴DC 与DA 、DB 共面,即A 、B 、C 、D 共面.点拨:在讨论向量共线或共面时,必须注意零向量与任意向量平行,并且向量可以平移,因而不能完全按照它们所在直线的平行性、共面关系来确定向量关系.【同步达纲训练】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.点O 、A 、B 、C 为空间四个点,又、、为空间一个基底,则下列结论不正确的是( )A.O 、A 、B 、C 四点不共线B. O 、A 、B 、C 四点共面,但不共线C. O 、A 、B 、C 四点中任三点不共线D. O 、A 、B 、C 四点不共面2.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为的共有( )①(+)+1CC ②(1AA +11D A )+11C D③(+1BB )+11C B ④(1AA +11B A )+11C BA.1个B.2个C.3个D.4个3.设命题p :a 、b 、c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.设A 、B 、C 、D 是空间不共面的四点,且满足AB ·AC =0,AC ·AD =0,AB ·AD =0,则△BCD 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定5.下列命题中,正确的是( )A.若a 与b 共线,则a 与b 所在直线平行B.若a ∥平面β,a 所在直线为a ,则a ∥βC.若{a,b,c }为空间的一个基底,则{a-b,b-c,c-a}构成空间的另一个基底D.若OP =21OA +21OB ,则P 、A 、B 三点共线 6.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3,且d =x a+y b+z c ,则x 、y 、z 分别为( )A.25,-21,-1B.25,21,1 C.-25,21,1 D.25,-21,1 二、填空题(每小题4分,共16分)7.设向量a 与b 互相垂直,向量c 与它们构成的角都是60°,且|a |=5,|b |=3,|c |=8,那么(a +3c )·(3b -2a ) ;(2a +b -3c )2= .8.已知向量n A A 1=2a ,a 与b 的夹角为30°,且|a|=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为 .9.如图9-5-8,已知空间四边形O ABC ,其对角线为O B 、AC ,M 是边O A 的中点,G 是△ABC 的重心,则用基向量OA 、OB 、OC 表示向量MG 的表达式为 .10.已知P 、A 、B 、C 四点共面且对于空间任一点O 都有=2+34+λ,则λ= .三、解答题(每小题7分,共14分)11.如图9-5-9,已知点O 是平行六面体ABCD —A 1B 1C 1D 1体对角线的交点,点P 是空间任意一点.求证:++++1PA +1PB +1PC +1PD =8.12.如图9-5-10,已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB,且与α所成角是30°.如果AB=a,AC=BD=b,求C 、D 间的距离.B 卷:综合应用创新练习题 (90分 90分钟)一、学科内综合题(10分)1.如图9-5-11所示,已知□ABCD ,O 是平面AC 外一点,1OA =2OA ,1OB =2OB ,1OC =2OC ,1OD =2OD .求证:A 1、B 1、C 1、D 1四点共面.二、应用题(10分) 2.在△ABC 中,∠C=60°,CD 为∠C 的平分线,AC=4,BC=2,过B 作BN ⊥CD 于N 延长交CA 于E ,将△BDC 沿CD 折起,使∠BNE=120°,求折起后线段AB 的长度.三、创新题(60分)(一)教材变型题(10分)3.(P 35练习2变型)如图9-5-12已知空间四边形ABCD 的每条边和对角线的长都等于a ,求AB 与CD 的夹角.(二)一题多解(15分)4.已知矩形ABCD,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分成定比2,N 分成定比1,求满足=x +y +z 的实数x 、y 、z 的值.(三)一题多变(15分)5.设a ⊥b,<a,c>=3π,<b,c>=6π,且|a |=1,|b |=2,|c |=3,求|a +b +c |. (1)一变:设a ⊥b ,<a ,c>=3π,<b ,c>=6π,且|a|=1,|b|=2,|c|=3,求|a+2b-c|. (2)二变:设a ⊥b ,<a ,c>=3π,且|a|=1,|b|=2,|c|=3,|a+b+c|=3617+,求-b 与c 的夹角.(四)新解法题(10分)6.如图9-5-13,正方形ABCD 和正方形ABEF 交于AB ,M 、N 分别是BD 、AE 上的点,且AN=DM ,试用向量证明MN ∥平面EBC.7.O 为空间任意一点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λ(||||AC ACAB AB+),λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心四、高考题(10分)8.(2002,上海,5分)若a 、b 、c 为任意向量,m∈R ,则下列等式不一定成立的是( )A.(a +b )+c =a +(b +c )B.(a +b )·c =a ·c +b ·cC.m(a +b )=ma+m bD.(a ·b )·c =a ·(b ·c )加试题:竞赛趣味题(10分)证明:ab b a -+22+ac c a -+22>bc c b -+22(a ,b ,c 为正实数).【课外阅读】用向量表示三角形的四心由高中数学新教材中的向量知识出发,利用定比分点的向量表达式,可以简捷地导出三角形的重心、内心、垂心、外心这四心的向量表达式.【例】 如图9-5-14,在△ABC 中,F 是AB 上的一点,E 是AC 上的一点,且FB AF =l m ,EC AE =ln (通分总可以使两个异分母分数化为同分母分数),连结CF 、BE 交于点D.求D 点的坐标.解:在平面上任取一点O ,连结O A 、O B 、O C 、O D 、O E 、O F ,由定比分点的向量表达式,得:OF =(OA +l m ·OB )÷(1+lm ) =m l OB m OA l +•+• ①=ln OC l n OA +•+1=n l OC n OA l +•+• ② 又=λλ+•+1OC OF =u OE u OB +•+1 ③(其中DCFD =λ,u DE BD =). 整理①、②、③式得λ=1+m n . 所以OD =n m l l ++OA +n m l m ++OB +nm l n ++OC ④ 由④式出发,可得三角形四心的向量表达式:(1)若BE 、CF 是△ABC 两边上的中线,交点G 为重心.由④式可得重心G 的向量表达式: =31(++). (2)若BE 、CF 是△ABC 两内角的平分线,交点I 是内心. 因为FB AF =a b ,EC AE =a c , 由④式可得内心I 的向量表达式:OI =c b a a ++OA +c b a b ++OB +cb ac ++OC . (3)若BE 、CF 是△ABC 两边上的高,交点H 是垂心.EC AE =Ca A c cos cos ••=Aa C ccos cos . 同理FBAF =Aa B bcos cos . 由④式可得垂心H 的向量表达式:=C c B b A a C a cos cos cos cos +++C c B b A a C b cos cos cos cos +++Cc B b A a C ccos cos cos cos ++. (4)若BE 、CF 的交点O ′是△ABC 的外心,即三边中垂线交点,则O ′A=O ′B=O ′C.根据正弦定理:EC AE =CBE C BE EBA A BE ∠•∠•sin sin sin sin =)(21sin sin )(21sin sin C BO A B AO C '∠-•'∠-•ππ =A A C C cos sin cos sin ••=AC 2sin 2sin .同理FB AF =AB 2sin 2sin . 由④式可得外心O ′的向量表达式:OO =C B A A 2sin 2sin 2sin 2sin ++OA +CB A B 2sin 2sin 2sin 2sin ++OB +OC CB AC 2sin 2sin 2sin 2sin ++. 这四个向量表达式,都由④式推出,都有着各自轮换对称的性质.好记,好用!新教材的优越性,由此可见.参考答案A 卷一、1.B 点拨:空间向量的一组基底是不共面的.2.D 点拨:AB +BC +1CC =AC +1CC =1AC ,同理根据空间向量的加法运算法则可知(2)、(3)、(4)的计算结果也为1AC .3.B 点拨:当三个非零向量a 、b 、c 共面时,a 、b 、c 不能构成空间的一个基底,但是{a ,b,c }为空间的一个基底时,必有a 、b 、c 都是非零向量.因此由P 推不出q ,而由q 可推出P.4.B 点拨:AC ·=0⇒AC ⊥AB.同理可得AC ⊥AD,AB ⊥AD.设AB=a ,AC=b ,AD=c.则BC=22b a +,CD=22c b +,BD=22c a +. ∵cos∠BCD=CDBC BD CD BC •-+2222>0,故△BCD 为锐角. 同理∠CBD 、∠BDC 亦为锐角.则△BCD 为锐角三角形.5.D 点拨:向量共线则其所在直线平行或重合,故A 错误;向量平行于平面,则向量在面内或所在直线与面平行,故B 错误;取λ1=λ2=λ3=1,则λ1(a-b)+λ2(b-c)+λ3(c-a)=0,即a-b,b-c,c-a 是共面向量,不能构成空间的基底,故C 错. x+y+z=1 x=25, 6.A 点拨: x-y+z=2 ⇒ y=-21, x-y=3 z=-1.二、7.-62,373 点拨:(a+3c )·(3b-2a )=3a ·b-2a 2+9c ·b-6a ·c=3|a|·|b|·cos90°-2|a|2+9|c|·|b|·cos60°-6|a|·|c|·cos60°=-62.8.3 点拨:∵21A A +32A A +…+n n A A 1-=n A A 1,∴在b 方向投影为|n A A 1|·cos<n A A 1,b>=2|a|·cos30°=3.9.MG =-61OA +31OB +31OC 点拨:如答图9-5-1所示,连AG 延长交BC 于E ,MG =MA +AG =21OA +32AE =21OA +32·21(AB +AC )=21OA +31(OB -OA )+31(OC -OA )=-61OA +31OB +31OC .10.λ=-37 点拨:根据共面向量定理知,P 、A 、B 、C 四点共面,则=x +y +z ,且x+y+z=1.三、11.证明:设E 、E 1分别是平行六面体的面ABCD 与A 1B 1C 1D 1的中心,于是有PA +PB +PC +PD =(PA +PC )+(PB +PD )=2PE +2PE =4PE ,同理可证1PA +1PB +1PC +1PD =41PE .又∵平行六面体对角线的交点O 是EE 1的中点,∴+1PE =2PO ,PA +PB +PC +PD +1PA +1PB +1PC +1PD =4PE +41PE =4(PE +1PE )=8PO .12.解:由AC ⊥α,可知AC ⊥AB.过D 作DD ′⊥α,D ′为垂足,则∠DBD ′=30°,<,BD >=120°,||2=·=(++)2=||2+||2+||2+2·+2·+ 2·=b 2+a 2+b 2+2b 2·cos120°=a 2+b 2.∴CD=22b a +. B 卷 一、1.证明:∵11C A =1OC -1OA =2OC -2OA =2(OC -OA )=2AC =2(AB +AD ) =2[(OB -OA )+(OD -OA )]=2OB -2OA +2OD -2OA=(1OB -1OA )+(1OD -1OA )=11B A +11D A ,∴A 1、B 1、C 1、D 1四点共面.二、2.解:如答图9-5-2.解:过A 作AM ⊥CD 的延长线于M,则CM=4cos30°=23. CN=2cos30°=3,∴MN=CM -CN=3. 又AM=AC ·sin30°=2,BN=BC ·sing30°=1,且<,>=120°,∴<NB ,>=60°.∵AM ⊥MN ,则AM ·MN =0.同理MN ·NB =0. ∵AB =AM +MN +NB , ∴2AB =2AM +2MN +2NB +2·+2·+2·=4+3+1+2||·||·cos60°=10.即|AM |=10,所以线段AB 长度为10.三、(一)3.解:取AB 、CD 的中点分别记为M 、N ,连结AN 、BN.∵空间四边形的每条边和对角线的长都等于a ,∴BN ⊥CD ,NA ⊥CD.∴·CD =(AN +NB )·CD =AN ·CD +NB ·CD =0.则AB 、CD 所成的角为2π. (二)4.解法一:如答图9-5-3,取PC 的中点E ,连结NE ,则=-. ∵=21=21=-21, =-=32PC -21PC =61PC . 连结AC,则PC =AC -AP =AB +AD -AP ∴MN =-21AB -61(AB +AD -AP )=-32AB -61AD +61AP . ∴x=-32,y=-61,z=61. 解法二:在PD 上取点F ,使F 分所成定比为2,连结MF ,则MN =+FN =32CD +DN -=-32+21-31=-32+61 =-32AB +61AP -61AD . ∴x=-32,y=-61,z=61. (三)5.解:|a +b +c |2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c =1+4+9+0+2×3×21+2×2×3×23=17+63. ∴|a +b +c |=3617+.(1)|a +2b -c |=31223-. (2)65π. (四)6.证明:设BC =a ,=b ,=c . ∵AN =λ1(c +b ),DM =λ1(c -a ),AM =a +λ1(c -a )=(1-λ1)a +λ1c , ∴MN =AN -AM =(λ1-1)a +λ1b .∵a 、b 是平面EBC 上两个不共线的向量,∴(λ1-1)a +λ1b 必为平面EBC 上的一个向量ZY .由=,且MN ⊄面EBC ,必有MN ∥ZY ,所以MN ∥平面EBC.点拨:本题老解法是过M 、N 作AB 的垂线通过证面面平行得到线面平行的,新解法用向量证明.(五)7.B 点拨:本题是由20XX 年高考新课程卷改编而来,点P 的轨迹通过△ABC 内一定点,与O 点位置和△ABC 的形状无关,故取O 与A 重合.由平行四边形法则,易知P 在∠BAC 的平分线上.四、8.D 点拨:(a ·b )·c =|a |·|b | cos θ·c ,a ·(b ·c )=|b |·|c |cos α·a ,a 与c 的模不一定相等且不一定同向.加试题:证明:如答图9-5-4,构造三棱锥A —BCD ,且每个顶角均为60°,且|AB|=a ,|AC |=b ,|AD |=c ,则ab b a -+22=b a b a •-+222=|AB -AC |=|BC |,ac c a -+22=c a c a •-+222=|-|=||,bc c b -+22=c b c b •-+222=|-AD |=||.在三角形BCD 中,|BC |+|BD |>|CD |, ∴ab b a -+22+ac c a -+22>bc c b -+22.。