ChIP-chip 与 ChIP-seq 数据处理方法与分析平台

  • 格式:pdf
  • 大小:7.89 MB
  • 文档页数:28

下载文档原格式

  / 28
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文写作课期末作业

综述题目:

ChIP-chip与ChIP-seq数据处理方法与分析平台

姓名: 孙翰菲

学号:1132995

第一章生物学背景知识

1.1基因表达的调控

从DNA到蛋白质,需要经过若干步骤。对于真核生物来说,基因表达的调控是多级的,主要发生在4个彼此相互独立的水平上:转录水平的调控,加工水平的调控,翻译水平的调控,翻译后水平的调控。而转录水平的基因表达调控,是其中最重要的调控机制。

1.2转录因子与组蛋白修饰

转录因子(transcription factor)是一种特异识别某些DNA序列与之结合的蛋白质。调控DNA通过生成转录因子来对靶DNA序列(目标DNA)进行转录水平的调控,促进或者抑制这些基因的转录。这个机制是非常复杂的,这是由于真核生活的转录因子种类繁多,加上转录因子之间的相互作用造成的。

真核生物转录因子调节基因转录的一种重要机制,就是调节染色质的结构,以影响转录因子对启动子(promoter)的结合能力。转录因子能调节组蛋白──染色质的一种成分──核心的结构,或称使组蛋白修饰发生改变,从而改变核小体和染色质的紧密程度,影响转录因子和RNA聚合酶(P ol II)对启动子的结合,调控基因的表达。

转录因子从功能上可分为通用转录因子(general transcription factors)与特异转录因子(specific transcription factors)。通用转录因子与结合RNA聚合酶的核心启动子(promoter)位点结合,而特异转录因子与特异基因的各种调控位点结合,促进或阻遏这些基因的转录,目前已发现转录因子之间常常具有协同作用的能力。

具有完整的启动子的大部分DNA都可以起始基础水平的转录,这种基础水平的调控,导致转录水平的上升(受激活因子作用)或下降(受抑制因子的作用)。一般情况下,真核生物的基因转录还需要其他蛋白因子的参与,以帮助通用转录因子和RNA聚合酶在染色质上组装。这些辅助转录因子在DNA上的正调控元件,称为增强子(enhancer),因为它们的存在能够明显加强目的基因的转录,增强子似乎没有方向性,无论在在启动子上游还是下游,都不影响其增强基因转录的功能。另外还有一种负调控元件,称作沉默子(silencer),与增强子作用相反。

真核生物的转录因子调节基因转录的一种重要机制,就是调整染色质的结构,以影响通用转录因子对启动子的结合能力。真核生物的遗传物质是以染色质而不是裸露DNA的形式存在与细胞核中。而染色体的基本结构单位是核小体,由组蛋白核心(组蛋白八聚体)和包裹在其上长约147bp的DNA 构成。如果基因的启动子位于核小体中,组蛋白核心会阻碍通用转录因子在启动子上的组装以及Pol II与启动子的结合,使得基因转录难以进行。

组成核小体的组蛋白的核心部分状态大致是均一的, 游离在外的N-端则可以受到各种各样的修饰, 包括组蛋白末端的乙酰化, 甲基化[1], 磷酸化, 泛素化,ADP核糖基化等等,这些修饰的意义是改变染色质的结构,直接影响转录活性,或者使核小体表面发生改变,使其他转录因子易于和染色质相互接触,间接影响转录活性。

组蛋白修饰与转录因子关系密切:不仅组蛋白修饰能影响本区域对其他转录因子的易结合性,转录因子的结合也能引起组蛋白修饰的变化。

由于染色质结构紧密的地方,通用转录因子与Pol II难以结合启动子区域,从而导致此处的基因的转录活性降低;所以那些具有激活作用的转录因子,通常会有利于导致染色质或组蛋白结构松散的蛋白质发挥作用,如组蛋白乙酰化酶。而起抑制作用的转录因子,则通常会加强那些促进染色质结构紧密的蛋白质的作用,如组蛋白去乙酰化酶。

1.3 顺式作用元件与反式作用因子

顺式作用元件(cis-acting element),或称顺式元件子,是存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、沉默子等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码蛋白质,其作用是提供一个结合位点,反式作用因子通过结合在该位点上来改变结合处的特性,进而调控受此顺式作用元件影响的基因。调控方式包括对基因转录可变剪切的调控、转录起始位点的调控以及转录效率的调控。

反式作用因子(trans-acting factor)则是指通过直接结合或间接作用于DNA、RNA等核酸分子,对基因表达发挥不同调节作用(激活或抑制)的各类蛋白质,其本身对基因表达没有调控作用,只是阻断来自上、下游的调控效应。反式作用因子主要指能结合在基因序列上的特异性蛋白质──转录因子,然而随着表观遗传学的发展,研究发现除了蛋白,某些DNA,RNA片断也具有类似的调控功能,因此现在把它们算作反式作用因子[2]。

如图1-1所示,为转录因子调控基因通路的两种方式:直接调控(图1-1 a)与间接调控(图1-1 b)。直接调控就是作为反式作用因子的转录因子(蓝色球形)结合在基因的顺式作用元件区域(如启动子区域),调控该基因的表达,进而影响该基因生成的蛋白质X的量。而在间接调控中,影响蛋白质X的生成量的转录因子不结合在生成蛋白质X的基因附近,而是结合在远离该区域的生成蛋白质Y的顺式作用元件区域,而蛋白质Y又是一种能直接调控蛋白质X生成量的转录因子,通过这种方式,该转录因子间接地调控了蛋白质X的生成量。

图1-1 转录因子的两种调控模式(图片来源:Nature Reviews)

1.4基因芯片技术与测序技术

20 世纪90年代建立起来的DNA芯片技术和最近发展起来的第二代DNA 测序技术是高通量研究基因的结构和功能的两种比较重要的技术, 推动了功能基因组和系统生物学研究的发展.

DNA芯片技术(DNA chip)是应用面积为2.0cm2或更小的晶片,在上面高密度的排列着许多寡核苷酸,待测的DNA中加入荧光标记物,点到芯片表面,发出荧光信号的位置表明寡核苷酸与待测DNA发生杂交。荧光信号的位置与强弱经过转换,变为数据,用于进一步的分析[3]。

相比较于DNA芯片技术,测序技术可以发现更多未知的信息,但是成本更高。高通量测序技术(High throughput sequencing),又称下一代测序技术,是对传统测序的一项重大改进,在一次实验中,可以读取1G到14G的碱基数,其中蕴藏着丰富的信息[4]。

图1-2 Illumina测序仪数据量的增加(图片来源:Illumina网站)随着数据量的大幅增长,如何处理这些海量数据就成了摆在研究者面前的挑战,而生物信息学和统计学是在处理DNA芯片与测序技术产生的海量数据中必不可少的工具[4]。