七年级数学几何证明题(典型)电子教案
- 格式:doc
- 大小:429.50 KB
- 文档页数:9
七年级数学几何证明题
1.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:(1)DE=AB ,(2)∠EDB=60°
2.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。求证: ∠FAC=∠B
3.已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30
∠C=50°求:(1),求∠DAE 的度数。(2) 试写出 ∠DAE 与 ∠C - ∠B 有何关系?(不必证明)
B
A
C
D
4、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个
零件不合格,运用三角形的有关知识说明零件不合格的理由。 C
D
A B
5、如图,已知DF ∥AC,∠C=∠D,你能否判断CE ∥BD?试说明你的理由
6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 交于G , 若∠BDC = 140°,∠BGC = 110°,则∠A ?
G F
E
D
C
B A
E
D
C
B
A
8、如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证AD 平分∠BAC 。E
D
C B A G 3
21
9、如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F , 若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数.
10、如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB
11、如图,将两块直角三角尺的直角顶点C 叠放在一起. (1)若∠DCE=350
,求∠ACB 的度数; (2)若∠ACB=1400,求∠DCE 的度数;
(3)猜想:∠ACB 与∠DCE 有怎样的数量关系,并说明理由
E O D
C
B
A
12、已知:直线AB 与直线CD 相交于点O ,∠BOC=45o
,
(1)如图1,若EO ⊥AB ,求∠DOE 的度数; (2)如图2,若EO 平分∠AOC ,求∠DOE 的度数.
13、已知AOB ∠,P 为OA 上一点.
(1)过点P 画一条直线PQ ,使PQ ∥OB ;
(2)过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ; (3)若︒=∠40AOB ,则=∠PMO ?
14、如图。已知∠BOC = 2∠AOB ,OD 平分∠AOC ,∠BOD = 14°,求∠AOB 的度数.
O
D C
B
A
15、如图,∠AOC 和∠DOB 都是直角,如果∠DOC =28°,那么∠
AOB = ?
16、已知:线段AB=5cm ,延长AB 到c ,使AC=7cm ,在AB 的反向延长线上取点D ,使BD=4BC ,设线段CD 的中点为E ,问线段AE 是线段CD 的几分之一?
17、)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC 中,AB=AC ,P 是△ABC 内任意一点,将AP 绕点A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连结BQ 、CP ,则BQ=CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,发现△ABQ ≌△ACP ,从而得到BQ=CP .之后,他将点P 移到△ABC 外,原题中其他条件不变,发现“BQ=CP ”仍然成立,请你就图②给出证明.
O
A
C
B
D
18、如图所示:ΔABC 的周长为24cm ,AB=10cm ,边AB 的垂直平分线DE 交BC 边于点E ,垂足为D ,求ΔAEC 的周长.
第18题图
19、(6分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?
第19题图
20、如图,AB=EB ,BC=BF ,
CBF ABE ∠=∠.EF 和AC 相等吗?为什么?
21、已知:如图,AD ∥BE ,∠1=∠2.求证:∠A=∠E .
(第21题图) F
E
C
B
A
(第20题图)
2
1
3
F
D
C
B
H E
G A
22、已知:如图,AB//CD ,∠ABE=∠DCF ,请说明∠E=∠F 的理由
F
E
D
C
B
A
23、如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,AE=CE ,
AB 与CF 有什么位置关系?说明你的理由.
24、下图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和四边形EFGH 都是正方
形。
小强看后马上猜出△ABF ≌△DAE ,并给出以下不完整的推理过程。请你填空完成推理: (7分) 证明:∵四边形ABCD 和EFGH 都是正方形,
∴AB=DA, ∠DAB=90°, ∠GFE=∠HEF=90° ∴∠1+∠3=90°, ∠AFB=∠DEA =90°, ∴∠2+∠3=90° ( ) ∴ ( ) 在△ABF 和△DAE 中
∴△ABF ≌△DAE ( )
25、如图,交于点是的平分线,求的度数.