高三数学 立体几何平面的基本性质教案
- 格式:doc
- 大小:330.00 KB
- 文档页数:3
第六课时 平面的基本性质【学习导航】知识网络学习要求1.了解平面基本性质的3个推论, 了解它们各自的作用.2.能运用平面的基本性质解决一些简单的问题. 【课堂互动】自学评价1.推论1: . 已知:求证:解答:见书22页推论12.推论2: 已知:求证:3.推论3: 符号表示: 仿推论1、推论2的证明方法进行证明。
【精典范例】一、如何证明共面问题. 例1:已知: 如图A ∈l , B ∈l , C ∈l , D Ïl , 求证:直线AD 、BD 、CD 共面.解答:见书22页例1思维点拔:简单的点线共面的问题,一般是先由部分点或线确定一个平面,然后证明其他的点线也在这个平面内,这种证明点线共面的方法称为"落入法" 例 2.如图: 在长方体ABCD-A 1B 1C 1D 1中, P 为棱BB 1的中点, 画出由A 1 , C 1 , P 三点所确定的平面α与长方体表面的交线.ABDC l α 听课随笔C A解答:见书23页例2追踪训练一证明空间不共点且两两相交的四条直线在同一平面内. 已知:求证: 证明:(1)如图,设直线a,b ,c 相交于点 O,直线d 和a,b ,c 分别交于M,N,P 直线d 和点O确定平面α,证法如例1(2)设直线a,b ,c, d 两两相交,且任意三条不共线,交点分别为M,N,P,Q,R,G ∵直线a 和b 确定平面α ∴a ∩c=N,b ∩c=Q ∵N,Q 都在平面α内∴直线c Ì平面α,同理直线d Ì平面α ∴直线a,b ,c, d 共面于α 【选修延伸】如图, 已知正方体ABCD-A 1B 1C 1D 1中, E 、F 分别为D 1C 1、B 1C 1的中点, AC ∩BD=P , A 1C 1∩EF=Q , 求证:(1) D 、B 、F 、E 四点共面’(2)若A 1C 交平面DBFE 于R 点, 则P 、Q 、R 三点共线 .证明略追踪训练二1.空间四点中, 如果任意三点都不共线, 那么由这四点可确定___1或4____个平面?2.已知四条不相同的直线, 过其中每两条作平面, 至多可确定____6____个平面.3.已知l 与三条平行线a,b,c 都相交,求证:l 与a,b,c 共面.证明略CA 听课随笔M N o P dα ac b NG Pαd c M a bR。
高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
《平面的基本性质》教学设计第1课时◆教学目标了解平面的基本事实与推论,能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实的地位与作用;会用平面的基本事实正面点共线、线共点、点线共面三个典型问题,熟悉符号语言、文字语言、图形语言之间的转换.◆教学重难点◆教学重点:掌握平面的基本事实及推论.教学难点:能用图形、文字、符号三种语言描述平面的基本事实,并能解决空间线面的位置关系问题.◆课前准备PPT课件.◆教学过程一、问题导入前面我们通过几何体的学习,已经直观地认识了点、线、面之间的位置关系,从本节开始,我们将在直观认识的基础上来论证它们之间的关系,以期进一步培养大家的空间想象能力和逻辑能力.问题1:观察如图11-2-2,的凳子,把凳子看成一个平面,思考(1)如果把一个平面固定在空间中,至少需要固定几个点?(2)有多少个平面能通过空间中指定的一点?有多少平面能通过空间中指定制定的两点?引语:要解决这个问题,就需要进一步学习平面的基本事实与推论.(板书:平面的基本事实与推论)【新知探究】问题2:确定平面的依据是什么?师生活动:学生分析解题思路,给出答案.追问:基本事实1的作用是什么?预设的答案:基本事实1: 文字表示:经过不在一条直线上的3个点,有且只有一个平面.符号表示:A ,B ,C 三点不共线⇒存在唯一的平面α使A ,B ,C ∈α图形表示:注:(1)可以简单地说成“不共线的3点确定一个平面”(2)过不共线的3点A ,B ,C 的平面,通常记作平面ABC ,用图象直观地表示平面时,为了增加立体感,习惯上讲平面用平行四边形表示.(3)如图的平面α可以看成由不共线的3点A ,B ,C 确定的,此时显然有:,,A B C ααα∈∈∈(4)如果给定的3个点同在一直线上,那么有无数个平面通过这3个点,也就是说,此时这三个点不能“确定”一个平面,例如,如果给定的3个点都在长方体的一条棱上,那么过这三个点就会有无数个平面.作用:①确定平面的依据;②判定点、线共面设计意图:通过对生活简单事实出发,通过观察分析归纳出平面基本事实.发展学生数学抽象和直观想象的核心素养.问题3:尝试与发现:这就是说,如果A B αα∈∈, ,那么直线AB α∈,如图11-2-4所示.师生活动:学生分析解题思路,给出答案追问:基本事实2的作用是什么?预设的答案:基本事实2:文字表示:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 符号表示:A ∈α,B ∈α⇒AB ⊂α图形表示:作用:①判定直线是否在平面内;②判断一个面是否是平面注:基本事实2可以作为判断一个面是否是平面的依据:如果一个面内的任意两点所确定的直线都在这个平面内,那么这个面就是平面.例如,球面不是一个平面,因为球面上任意两点所确定的直线中,只有两个点在球面上.设计意图:培养学生分析和归纳的能力.问题4:如图11-2-6所示,当用裁纸刀裁纸时,可以认为刀锋是在一个平面内运动的.(1)裁纸刀裁出的是什么样的痕迹?(2)两个平面相交时,公共点具有什么特点?师生活动:学生分析解题思路,给出答案追问:基本事实3的作用是什么?预设的答案:基本事实3:文字表示:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号表示:P∈α,且P∈β⇒α∩β=l,且P∈l图形表示:注:(1)基本事实3说明,两个不重合的平面,只要有一个公共点,就一定有无数个公共点,而且这无数个公共点能构成一条直线,这条直线通常也称为两个平面的交线,如图所示,有,A a a αβ∈=;(2)在画两个平面相交时,其中一个平面被另一个平面遮住的部分应该画出虚线或不画,如图所示;(3)根据基本事实3可知,棱柱中,有公共棱的两个面所在的平面一定是相交的,而且公共棱是交线的一部分.作用:①判定两个平面相交的依据;②判定点在直线上设计意图:培养学生分析和归纳的能力. 【巩固练习】例1. 用符号语言表示下列语句,并画出图形:(1)三个平面α、β、γ相交于一点P ,且平面α与平面β交于P A ,平面α与平面γ交于PB ,平面β与平面γ交于PC ;(2)平面ABD 与平面BCD 相交于BD ,平面ABC 与平面ADC 交于AC .师生活动:学生分析解题思路,给出答案.预设的答案: (1)符号语言表示:α∩β∩γ=P ,α∩β=P A ,α∩γ=PB ,β∩γ=PC .用图形表示如图①.(2)符号语言表示:平面ABD ∩平面BDC =BD .平面ABC ∩平面ADC =AC .图形表示如图②.设计意图:用符号语言表示语句. 例2. 证明:两两相交且不过同一个点的3条直线必在同一个平面内.师生活动:学生分析解题思路,给出答案.预设的答案:证明:设直线,,AB BC AC 两两相交,交点分别是,,A B C显然,,,A B C 3点不共线,因此它们能确定一个平面α.因为,,A B αα∈∈ 那么直线AB α⊂同理,AC BC αα⊂⊂即直线,,AB BC AC 都在平面α内.设计意图:基本事实1的运用.例3. 如图所示的正方体1111ABCD A B C D -中,E 是棱1CC 上的一点,试说明1,,D A E 3点确定的平面与平面ABCD 相交,并画出这两个平面的交线.师生活动:学生分析解题思路,给出答案.预设的答案:因为A ∈面1D AE ,A ∈面ABCD所以面1D AE ABCD ≠∅,即面1D AE 与面ABCD 相交.延长1D E 与DC ,设它们相交于F ,如图所示,则:F ∈直线1D E ,直线1D E ⊂面1D AE .F ∈直线DC ,直线DC ⊂面ABCD .则F ∈面1D AE 面ABCD ,从而AF 为面1D AE 与面ABCD 的交线,如图所示.设计意图:基本事实3的运用.【课堂小结】问题:(1)三个基本事实的作用有哪些?(2)证明几点共线的方法有哪些?(3)证明证明多线共点的方法有哪些?师生活动:学生尝试总结,老师适当补充.预设的答案:1.三个基本事实的作用基本事实1——判定点共面、线共面的依据;基本事实2——判定直线在平面内的依据;基本事实3——判定点共线、线共点的依据.2.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.3.证明多线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.设计意图:通过梳理本节课的内容,能让学生更加明确平面的基本事实的有关知识.布置作业:【目标检测】1. 下列说法正确的是()A.三点可以确定一个平面B.若直线上有一个点在一个平面内,则这条直线在这个平面内C.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面相交于一点D.如果两个平面有三个不共线的点,那么这两个平面重合设计意图:基本事实的运用.2. 若A ∈平面α,B ∈平面α,C ∈直线AB ,则( )A .C ∈αB .C ∉α C .AB ⊄αD .AB ∩α=C设计意图:用符号语言表示语句.3. 经过空间任意三点作平面( )A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个设计意图:基本事实的运用.4. 如图所示,在正方体1111ABCD A B C D 中.画出平面1AC 与平面1BC D 及平面1ACD 与平面1BDC 的交线.设计意图:基本事实的运用.5. 如图,已知E ,F ,G ,H 分别是四面体A -BCD 的棱AB ,BC ,CD ,DA 的中点.求证:E ,F ,G ,H 四点共面.设计意图:基本事实的运用.参考答案: 1. D A 错误,不共线的三点可以确定一个平面;B 错误,直线上的两个点在一个平面内,则这条直线在这个平面内;C 错误,三角板所在平面与桌面所在平面相交于一条直线;D 正确,过不共线的三个点有且只有一个平面.2. A 因为A ∈平面α,B ∈平面α,所以AB ⊂α.又因为C ∈直线AB ,所以C ∈α.3. D 当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个.4. 如图,∵AC BD O ⋂=,1C DC E ⋂=.∴O ∈平面1AC ,O ∈平面1BC D .又1C ∈平面1AC ,1C ∈平面1BC D .∴平面 1AC ⋂平面11BC D OC =.同理平面1ACD ⋂平面1BDC OE =.A A 15. 在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD .同理FG ∥BD ,则EH ∥FG .故E ,F ,G ,H 四点共面.。
数学课课堂教案立体几何的基本概念与性质课题名称:立体几何的基本概念与性质一、教学目标:1. 理解立体几何的基本概念,包括点、线、面、体等;2. 掌握几何图形的分类方法和特点;3. 理解物体的投影、视图和正投影的概念;4. 理解几何体的基本性质,包括平行、垂直、相交等关系。
二、教学重点:1. 点、线、面、体的基本概念;2. 物体的投影、视图和正投影;3. 几何体的基本性质。
三、教学过程:【引入】通过展示一些常见的三维物体图片,激发学生对立体几何的兴趣与好奇心。
引导学生讨论不同物体的形状、特点等。
【基础知识讲解】1. 介绍点、线、面、体的概念,示范物体的实际示意图,帮助学生理解。
2. 讲解投影的概念,引导学生思考物体投影的产生原理。
【活动一:物体的视图】1. 引导学生观察一个立方体,并在纸上绘制其俯视图、正视图、侧视图。
2. 让学生尝试观察其他物体,绘制它们的视图,并与同桌分享。
【活动二:投影的实践】1. 分发纸板和光源,让学生参与实践。
学生们互相合作,通过光线的照射,找出物体的阴影并描绘物体的投影。
2. 学生们展示自己的投影作品,共同探讨物体投影的特点和规律。
【知识巩固】1. 引导学生思考,得出物体在正投影中的性质,如平行、垂直、相交等。
2. 出示一些物体的正投影图,让学生通过观察图像,判断物体的特征和性质。
【拓展延伸】1. 引导学生思考,比较二维图形和三维物体的相似之处和不同之处。
2. 分组讨论,让学生结合生活实例,探究立体几何在实际中的应用。
四、教学总结:通过本节课的学习,学生们了解了立体几何的基本概念和性质,掌握了如何绘制物体的视图和投影。
同时,通过实践和讨论,培养了学生的观察力和思考能力,以及团队合作精神。
五、课后作业:1. 预习下一节课的内容,了解与立体几何相关的概念;2. 搜索并总结三个实际生活中的立体几何应用,并附上相关图片。
六、教学反思:本节课通过引发学生兴趣、实践操作、合作探究等多种方式,使学生参与度高,积极性强。
平面的基本性质教案一、教学目标知识与技能:1. 理解平面的基本性质,掌握平面的定义和特征。
2. 学会使用平面几何图形进行推理和证明。
过程与方法:1. 通过观察和操作,培养学生的空间想象力。
2. 运用小组合作、讨论交流等方法,提高学生的合作能力和口头表达能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学重点与难点重点:1. 平面的定义和特征。
2. 平面几何图形的推理和证明。
难点:1. 理解平面的无限延展性和不可度量性。
2. 掌握平行线的性质和判定。
三、教学准备教师准备:1. 平面的定义和特征的相关教学素材。
2. 平面几何图形的推理和证明的案例。
学生准备:1. 了解一些基本的几何概念。
2. 准备笔记本和文具。
四、教学过程1. 导入:利用现实生活中的实例,如桌面、黑板等,引导学生观察和体验平面的存在。
提出问题:“你们认为平面是什么?”让学生发表自己的观点。
2. 探究:引导学生通过观察和操作平面几何图形,如正方形、长方形等,探讨平面的基本性质。
让学生尝试用自己的语言描述平面的特征,如无限延展性、不可度量性等。
3. 证明:利用反证法,让学生尝试证明平面的基本性质。
例如,证明平面是无限延展的,可以让学生假设平面有边界,通过推理和逻辑分析,得出矛盾的结论,从而证明平面的无限延展性。
4. 应用:给出一些平面几何图形的推理和证明案例,让学生运用所学的平面性质进行分析和解决问题。
如平行线的性质和判定,可以让学生观察和分析实际生活中的实例,如马路上的交通标志等。
五、作业布置1. 完成课后练习题,巩固所学知识。
2. 观察生活中的平面实例,拍摄照片或绘制图片,下节课分享。
教学反思:课后对教学效果进行反思,观察学生对平面基本性质的理解程度,以及他们在实际问题中的运用能力。
根据学生的反馈,调整教学方法和策略,以提高教学效果。
六、教学拓展1. 利用多媒体展示平面几何图形的动态变化,如正方形变为长方形的过程,让学生直观地感受平面的性质。
§1.2.1平面的基本性质一、教学目标: 1、知识与技能(1)借助生活中的实物,学生对平面产生感性的认识; (2)掌握平面的表示法,认识水平放置的直观图; (3)掌握平面的基本性质及作用; (4)培养学生的空间想象能力。
2、过程与方法通过师生的共同讨论,学生经历平面的感性认识。
3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点重点:(1)平面的概念及表示;(2)平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具(1)学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
(2)教学用具:投影仪、投影片、正(长)方形模型、三角板 四、授课类型:新授课 五、教学过程(一)创设引入情景生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。
你们能举出更多例子吗? 平面的含义是什么呢? (二)建立模型 1、平面含义以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示在平面几何中,怎样画直线?一条直线平移就得到了一个平面。
我们通常把一个“水平放置的平面画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长”。
(如图):平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)D C B A α αβ αβ平面内有无数个点,平面可以看成点的集合。
若 点A 在平面α内,则记作:A ∈α;若点B 在平面α外, 则记作:B ∉α。
2.1-4 3、平面的基本性质把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有点都在这个平面内。
§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质【课时目标】 1.了解平面的概念及表示法.2.了解公理1、2、3及推论1、2、3,并能用文字语言、图形语言和符号语言分别表述.1.公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.用符号表示为:________________.2.公理2:如果________________________________,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的______________.用符号表示为:⎭⎪⎬⎪⎫P ∈αP ∈β⇒α∩β=l 且P ∈l . 3.公理3:经过不在同一条直线上的三点,________________________.公理3也可简单地说成,不共线的三点确定一个平面.(1)推论1 经过________________________________________,有且只有一个平面. (2)推论2 经过____________,有且只有一个平面. (3)推论3 经过____________,有且只有一个平面.一、填空题 1.下列命题: ①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚; ③有一个平面的长是50 m ,宽是20 m ;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念. 其中正确命题的个数为________. 2.若点M 在直线b 上,b 在平面β内,则M 、b 、β之间的关系用符号可记作____________. 3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有________条.4.已知α、β为平面,A 、B 、M 、N 为点,a 为直线,下列推理错误的是__________(填序号).①A ∈a ,A ∈β,B ∈a ,B ∈β⇒a ⊂β;②M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=MN ; ③A ∈α,A ∈β⇒α∩β=A ;④A 、B 、M ∈α,A 、B 、M ∈β,且A 、B 、M 不共线⇒α、β重合. 5.空间中可以确定一个平面的条件是________.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点.6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有__________个.7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)AD/∈α,a ⊂α________.(2)α∩β=a,PD/∈α且PD/∈β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.二、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明三条直线必相交于一点.13.如图,在正方体ABCD -A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,E 为AB 的中点,F 为AA 1的中点.求证:(1)C 1、O 、M 三点共线; (2)E 、C 、D 1、F 四点共面; (3)CE 、D 1F 、DA 三线共点.1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点,或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质答案知识梳理1.两点⎭⎪⎬⎪⎫A ∈αB ∈α⇒AB ⊂α 2.两个平面有一个公共点 一条直线3.有且只有一个平面 (1)一条直线和这条直线外的一点 (2)两条相交直线 (3)两条平行直线作业设计 1.1解析 由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确.2.M ∈b ⊂β 3.1,2或3 4.③解析 ∵A ∈α,A ∈β,∴A ∈α∩β.由公理可知α∩β为经过A 的一条直线而不是A .故α∩β=A的写法错误.5.③6.1或4解析四点共面时有1个平面,四点不共面时有4个平面.7.(1)C(2)D(3)A(4)B8.A∈m解析因为α∩β=m,A∈a⊂α,所以A∈α,同理A∈β,故A在α与β的交线m上.9.③10.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连结SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1⊂β,l2⊂β,l1P l2,∴l1∩l2交于一点,记交点为P.∵P∈l1⊂β,P∈l2⊂γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=12A1B.∴D1F,CE为相交直线,记交点为P.则P∈D1F⊂平面ADD1A1,P∈CE⊂平面ADCB.∴P∈平面ADD1A1∩平面ADCB=AD.∴CE、D1F、DA三线共点.。
1.2.1 平面的基本性质(2)【教学目标】1.进一步理解平面的基本性质和三个公理;2.掌握公理3的三个推论,能用图形和符号语言表示三个推论,并能用三个推论解决一些实际问题;3.学会用反证法证明简单问题.【教学重点】1.公理3的三个推论及其应用;2.共面类问题的证明.【教学难点】对公理3的推论“存在”和“唯一”性两方面证明的必要性的理解.【过程方法】1.通过师生之间、同学之间的互相交流,培养学生合作性学习的习惯;2.通过平面概念的学习,掌握点、线、面之间的内在联系.【教学过程】一、复习:1.平面的概念;2.公理1-3.二、新授:1.推论1.经过一条直线和这条直线外一点,有且只有一个平面. 2.推论2.经过两条相交直线,有且只有一个平面.3.推论3.经过两平行直线有且只有一个平面.三、例题选讲1.如图,直线AB ,BC ,CA 两两相交,交点分别为A ,B ,C共面.2.在长方体ABCD -A 1B 1C 1D 1中,P 是棱BB 1的中点,画出由定的平面α与长方体表面的交线. 3 四、方法总结d1.证明点线共面的基本方法:⑴有公理3及推论,有其中的某些点、或线确定一个平面,再证其他元素在此平面内;⑵先由其中某些点或线确定一个平面α,再由另外一些元素组成另一平面β,最后用公理3或其推论证明平面α,β重合.2.多点共线问题的证明方法:常用方法是先证明这些元素均是两个平面的公共点,然后根据公理2得到他们都在两平面的交线上.3.多线共点的问题的证明:先证两条直线交于一点,再证这个交点也在其他直线上.它一般依据两平面的交线有且仅有一条这一公理,进而需要证明这些点是两平面的公共点,而直线是这两个平面的交线.【课后作业】1.判断题:⑴两条直线确定一个平面;( )⑵若三条直线两两相交,那么三条直线在同一个平面内;( )⑶空间中,不在同一平面内的四点,一共可以确定四个平面;( )⑷如果平面α,β有三个公共点,则平面α,β重合;( )⑸一条线段在平面内,这条线段的延长线也在这个平面内;( )⑹点A在直线a上,也在平面α内,则直线a在平面α内;( )⑺首尾相接四条线段可以确定一个或两个平面.( )2.⑴空间三个平面之间交线条数可能有;⑵空间三个平面把空间分成个部分;⑶空间三条直线a,b,c互相平行,但不共面,它们能确定个平面,把空间分成个部分.3.给出下列命题:⑴和直线α都相交的两条直线在同一个平面内;⑵三条两两相交的直线在同一个平面内;⑶有三个不同公共点的两个平面重合;⑷两两平行的三条直线确定三个平面.其中正确的命题的个数有个.4.下列说法正确的是.⑴三点确定一个平面;⑵四边形一定是平面图形;⑶梯形一定是平面图形;⑷对边相等的四边形一定是平面图形.5.正方体各个面所在的平面将空间分成了个部分.6.三个平面两两相交,有三条交线,其中两条相交于一点,证明三条交线交于同一点.7.已知三条直线相交于P点,第四条直线与前三条直线分别相交于A,B,C,证明:这四条直线共面.。
平面的基本性质教案课题:平面的基本性质教学目标:[知识目标] 1、让学生理解平面的概念,掌握平面的画法、表示法。
2、掌握平面的基本性质公理1、2、3。
[能力目标]使学生了解立体几何研究的对象及方法,在初步建立空间的概念基础上,培养学生的空间想象力、逻辑推理能力和分析判断能力。
[情感目标]在传授知识培养能力的同时,培养学生有根有据、实事求是等严肃的科学态度和品质,并从生活实际中逐步培养学生从实践中来,到实践中去的辩证唯物主义观点。
教学重点:1、平面概念的理解。
2、掌握平面基本性质的三个公理及其作用。
教学难点:平面概念的理解;平面基本性质的三个公理的理解。
授课类型:新授课教具:直尺、三角板、纸板等教学过程:一、创设问题情境,导入新课问题1:平静的湖面,广阔的草原,大漠袅袅炊烟升起的画面会给你留下怎样的印象呢?问题2:请学生举出生活中一些平面的例子:如黑板面、桌面、墙面等。
二、讲解新课(一)、平面1、平面的三个特征:①平的②无厚度③无限延展(无边界)几何里的平面是从现实生活中抽象出来的,它和直线一样,是无限延展的,常见的桌面、黑板面、平静的水面都是平面的局部形象。
2、平面的画法:常用平行四边形表示平面通常我们画出直线的一部分来表示直线,同样地,我们也可以画出平面的一部分来表示平面,当我们从适当的角度和距离观察桌面或黑板面时,感到它们都很像平行四边形。
因此,通常画平行四边形来表示平面。
表示方法:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面ABCD ,平面AC 等练习1:判断下列命题是否正确:① 一个平面长4m ,宽2m ,厚0.01mm 。
( )②平面是平行四边形( )(二)、平面的基本性质讨论1:当一直尺的边缘上任意两点放在平的桌面上时,可以观察到什么现象,并归纳出一般性结论。
α β D C A B γ公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
第三节 空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[小题体验]1.(2019·湖州模拟)已知l,m,n为三条不重合的直线,α,β为两个不同的平面,则( )A.若m⊥α,m⊥β,则α∥βB.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αC.若α∩β=l,m⊂α,m⊥l,则m⊥βD.若m∥n,m⊂α,则n∥α解析:选A 由l,m,n为三条不重合的直线,α,β为两个不同的平面知,在A中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故A正确;在B中,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故B错误;在C中,若α∩β=l,m⊂α,m⊥l,则m与β相交,故C错误;在D中,若m∥n,m⊂α,则n∥α或n⊂α,故D错误.故选A.2.(教材习题改编)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1.(2018·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.2.(2019·杭州诊断)设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.①②B.①②③C.②③④ D.①③④解析:选A ①可以根据直线与平面垂直的性质定理得出;②可以根据三垂线定理的逆定理得出;对于③,n可以在平面α内,故③不正确;对于④,反例:正方体共顶点的三个平面两两垂直,故④错误.故选A.3.(教材习题改编)下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数为( )A.4 B.3C.2 D.1解析:选D ①中若三点在一条直线上,则不能确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定四个平面;④中这三个公共点可以在这两个平面的交线上.故错误的是①③④,正确的是②.所以正确命题的个数为1.考点一平面的基本性质及应用重点保分型考点——师生共研[典例引领]如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,A1B,CD1.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.[由题悟法]1.点线共面问题证明的2种方法(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题的2个步骤(1)先证其中两条直线交于一点;(2)再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.[即时应用]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.考点二空间两直线的位置关系重点保分型考点——师生共研[典例引领]如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[由题悟法][即时应用]1.上面例题中正方体ABCDA1B1C1D1的棱所在直线中与直线AB 是异面直线的有________条.解析:与AB异面的有4条:CC1,DD1,A1D1,B1C1.答案:42.在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填上所有正确答案的序号)解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.答案:②④考点三异面直线所成的角重点保分型考点——师生共研[典例引领](2018·全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 法一:如图,将长方体ABCD A 1B 1C 1D 1补成长方体ABCD A 2B 2C 2D 2,使AA 1=A 1A 2,易知AD 1∥B 1C 2,所以∠DB 1C 2或其补角为异面直线AD 1与DB 1所成的角.易知B 1C 2=AD 1=2,DB 1=12+12+32=5,DC 2=DC 2+CC 22=12+232=13.在△DB 1C 2中,由余弦定理,得cos ∠DB 1C 2=DB 21+B 1C 22-DC 222DB 1·B 1C 2=5+4-132×5×2=-55, 所以异面直线AD 1与DB 1所成角的余弦值为55. 法二:以A 1为坐标原点建立空间直角坐标系(如图),则A (0,0,3),D 1(0,1,0),D (0,1,3),B 1(1,0,0), 所以AD 1=(0,1,-3),DB 1=(1,-1,-3),所以cos 〈AD 1,DB 1〉=AD 1·DB 1|AD 1|·|DB 1|=0×1+1×-1+-3×-32×5=55.[由题悟法]1.用平移法求异面直线所成的角的3步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.2.有关平移的3种技巧求异面直线所成的角的方法为平移法,平移的方法一般有3种类型:(1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移.计算异面直线所成的角通常放在三角形中进行.[即时应用]如图所示,在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.一抓基础,多练小题做到眼疾手快1.(2019·台州一诊)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β解析:选D 由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12C.12 2 D.242解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCDA1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+222-322×2×22=78.答案:78二保高考,全练题型做到高考达标1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n ⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A ∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCDA1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行 D.MN与A1B1平行解析:选D 如图,连接C1D,在△C1DB中,MN∥BD,故C正确;因为CC1⊥平面ABCD,所以CC1⊥BD,所以MN与CC1垂直,故A正确;因为AC⊥BD,MN∥BD,所以MN与AC垂直,故B正确;因为A1B1与BD异面,MN∥BD,所以MN与A1B1不可能平行,故D错误.3.(2018·义乌二模)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.若α⊥β,m⊥β,则m∥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α解析:选D 由m,n为两条不同的直线,α,β为两个不同的平面知,在A中,若α⊥β,m⊥β,则m∥α或m⊂α,故A错误;在B中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故B错误;在C中,若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;在D中,若m∥n,n⊥α,则由线面垂直的判定定理得m⊥α,故D正确.故选D.4.(2019·湖州模拟)如图,在下列四个正方体ABCDA1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( )解析:选D 如图,在正方体ABCDA1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知多边形EFMN Q G是一个平面图形,且直线BD1与平面EFMN Q G垂直,结合各选项知,选项A、B、C中的平面与这个平面重合,只有选项D中的平面既不与平面EFMN Q G重合,又不与之平行.故选D.5.(2018·宁波九中一模)正三棱柱ABCA1B1C1中,若AC=2 AA1,则AB1与CA1所成角的大小为( )A.60°B.105°C.75° D.90°解析:选D 取A1C1的中点D,连接AD,B1D(图略),易证B1D⊥A1C,因为tan∠CA1C1·tan∠ADA1=22×2=1,所以A1C⊥AD,又B1D∩AD=D,所以A1C⊥平面AB1D,又AB1⊂平面AB1D,所以A1C ⊥AB1,故AB1与CA1所成角的大小为90°.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c 可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD , 所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2.答案:29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC=3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34,GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角.同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32.又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求: (1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校 1.(2019·绍兴质检)如图,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,A 1C 与底面ABCD 所成的角为60°.(1)求四棱锥A 1ABCD 的体积;(2)求异面直线A 1B 与B 1D 1所成角的余弦值.解:(1)∵在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,连接AC ,∴AC =22+22=22,又易知AA 1⊥平面ABCD ,∴∠A 1CA 是A 1C 与底面ABCD 所成的角,即∠A 1CA =60°,∴AA 1=AC ·tan 60°=22×3=26,∵S 正方形ABCD =AB ·BC =2×2=4,∴VA 1ABCD =13·AA 1·S 正方形ABCD =13×26×4=863. (2)连接BD ,易知BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成的角(或所成角的补角).∵BD =22+22=22,A 1D =A 1B =22+262=27,∴cos ∠A 1BD =A 1B 2+BD 2-A 1D 22·A 1B ·BD =28+8-282×27×22=1414, 即异面直线A 1B 与B 1D 1所成角的余弦值是1414. 2.(2018·台州一模)如图所示的圆锥的体积为33π,圆O 的直径AB =2,点C 是AB 的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.解:(1)∵圆锥的体积为33π,圆O 的直径AB =2,圆锥的高为PO ,∴13π×12×PO =33π,解得PO =3,∴PA = 32+12=2,∴该圆锥的侧面积S =πrl =π×1×2=2π.(2)法一:如图,连接DO ,OC .由(1)知,PA =2,OC =r =1.∵点D 是PA 的中点,点O 是AB 的中点,∴DO ∥PB ,且DO =12PB =12PA =1,∴∠CDO 是异面直线PB 与CD 所成的角或其补角.∵PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC ,又点C 是 AB 的中点,∴OC ⊥AB . ∵PO ∩AB =O ,PO ⊂平面PAB ,AB ⊂平面PAB ,∴OC ⊥平面PAB ,又DO ⊂平面PAB ,∴OC ⊥DO ,即∠DOC =90°.在Rt △DOC 中,∵OC =DO =1,∴∠CDO =45°.故异面直线PB 与CD 所成角为45°.法二:连接OC ,易知OC ⊥AB ,又∵PO ⊥平面ABC ,∴PO ,OC ,OB 两两垂直,以O 为坐标原点,OC所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系.其中A (0,-1,0),P (0,0,3),D ⎝ ⎛⎭⎪⎪⎫0,-12,32,B (0,1,0),C (1,0,0),∴PB =(0,1,-3),CD =⎝⎛⎭⎪⎪⎫-1,-12,32, 设异面直线PB 与CD 所成的角为θ,则cos θ=|PB ·CD ||PB |·|CD |=222=22, ∴θ=45°,∴异面直线PB 与CD 所成角为45°.3.如图所示,三棱柱ABC A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB , 所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接P Q ,PB ,B Q.因为EC =2FB =2,所以PE 綊BF ,所以P Q ∥AE ,PB ∥EF ,所以P Q ∥平面AFE ,PB ∥平面AEF ,因为PB ∩P Q =P ,PB ,P Q ⊂平面PB Q ,所以平面PB Q ∥平面AEF .又因为B Q ⊂平面PB Q ,所以B Q ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。
R P QαCBA第1课时 平面的基本性质公理1 如果一条直线上的 在同一个平面内,那么这条直线上的 都在这个平面内 (证明直线在平面内的依据).公理2如果两个平面有 个公共点,那么它们还有其他公共点,这些公共点的集合是 (证明多点共线的依据).公理3 经过不在 的三点,有且只有一个平面(确定平面的依据).推论1 经过一条直线和这条直线外的一点有且只有一个平面.推论2 经过两条 直线,有且只有一个平面.推论3 经过两条 直线,有且只有一个平面.例1.正方体ABCD-A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于O ,AC 、BD 交于点M .求证:点C 1、O 、M 共线.证明:A 1A ∥CC 1⇒确定平面A 1C A 1C ⊂面A 1C ⇒O ∈面A 1C ⇒O ∈A 1C面BC 1D∩直线A 1C =O ⇒O ∈面BC 1D O 在面A 1C 与平面BC 1D 的交线C 1M 上∴C 1、O 、M 共线变式训练1:已知空间四点A 、B 、C 、D 不在同一平面内,求证:直线AB 和CD 既不相交也不平行.提示:反证法.例2. 已知直线l 与三条平行线a 、b 、c 都相交.求证:l 与a 、b 、c 共面.证明:设a ∩l =A b ∩l =B c ∩l =C a ∥b ⇒ a 、b 确定平面α ⇒l ⊂β A ∈a, B ∈bb ∥c ⇒b 、c 确定平面β 同理可证l ⊂β所以α、β均过相交直线b 、l ⇒ α、β重合⇒ c ⊂α ⇒a 、b 、c 、l 共面变式训练2:如图,△ABC 在平面α外,它的三条边所在的直线AB 、BC 、CA 分别交平面α于P 、Q 、R 点.求证:P 、Q 、R 共线.证明:设平面ABC∩α=l ,由于P =AB∩α,即P =平面ABC∩α=l , A即点P 在直线l 上.同理可证点Q 、R 在直线l 上.∴P 、Q 、R 共线,共线于直线l .例3. 若△ABC 所在的平面和△A 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证: (1) AB 和A 1B 1、BC 和B 1C 1分别在同一个平面内;(2) 如果AB 和A 1B 1,BC 和B 1C 1分别相交,那么交点在同一条直线上.证明:(1) ∵AA 1∩BB 1=0,∴AA 1与BB 1确定平面α,又∵A ∈a ,B ∈α,A 1∈α,B 1∈α,∴AB ⊂α,A 1B 1⊂α,∴AB 、A 1B 1在同一个平面内同理BC 、B 1C 1、AC 、A 1C 1分别在同一个平面内(2) 设AB∩A 1B 1=X ,BC∩B 1C 1=Y ,AC∩A 1C 1=Z ,则只需证明X 、Y 、Z 三点都是平面A 1B 1C 1与ABC 的公共点即可.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:(1) E 、C .D 1、F 四点共面;(2) CE 、D 1F 、DA 三线共点.证明(1) 连结A 1B 则EF ∥A 1B A 1B ∥D 1C∴EF ∥D 1C ∴E 、F 、D 1、C 四点共面(2) 面D 1A∩面CA =DA∴EF ∥D 1C 且EF =21D 1C∴D 1F 与CE 相交 又D 1F ⊂面D 1A ,CE ⊂面AC ∴D 1F 与CE 的交点必在DA 上∴CE 、D 1F 、DA 三线共点.例4.求证:两两相交且不通过同一点的四条直线必在同一平面内.证明:(1) 若a 、b 、c 三线共点P ,但点p ∉d ,由d 和其外一点可确定一个平面α又a∩d =A ∴点A ∈α ∴直线a ⊂α同理可证:b 、c ⊂α ∴a 、b 、c 、d 共面(2)若a 、b 、c 、d 两两相交但不过同一点∵a ∩b =Q ∴a 与b 可确定一个平面β又c ∩b =E ∴E ∈β同理c ∩a =F ∴F ∈β∴直线c 上有两点E、F在β上 ∴c ⊂βO C 1B 1A 1ABCABECDFA 1B 1C 1D 1同理可证:d ⊂β 故a 、b 、c 、d 共面由(1) (2)知:两两相交而不过同一点的四条直线必共面变式训练4:分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线,为什么?解:假设AC 、BD 不异面,则它们都在某个平面α内,则A 、B 、C 、D ∈α.由公理1知AC α⊂≠,BD α⊂≠.这与已知AB 与CD 异面矛盾,所以假设不成立,即AC 、BD 一定是异面直1.证明若干点共线问题,只需证明这些点同在两个相交平面.2.证明点、线共面问题有两种基本方法:①先假定部分点、线确定一个平面,再证余下的点、线在此平面内;②分别用部分点、线确定两个(或多个)平面,再证这些平面重合.3.证明多线共点,只需证明其中两线相交,再证其余的直线也过交点.。
1.2.1 平面的基本性质(1)【教学目标】1.了解平面的概念,会用符号语言、图形语言表示空间中的点、直线、平面的位置关系;2.了解平面的基本性质和三个公理,并通用其解释生活中的一些具体问题;3.通过对三个公理的文字语言、图形语言和符号语言的互译,培养学生的语言转换能力;4.通过平面的概念和三个公理的文字叙述培养学生的观察能力和空间想象能力.【教学重点】1.空间点、直线、平面之间的位置关系的文字、符号和图形语言的表示;2.平面的基本性质的三个公理及其作用;3.对公理3中“有且仅有一个”的含义的理解.【教学难点】1.对平面的无限延展性的理解;2.符号语言的正确使用;3.对公理3的理解.【过程方法】1.通过师生之间、同学之间的互相交流,培养学生合作性学习的习惯;2.通过平面概念的学习,掌握点、线、面之间的内在联系.【教学过程】一、引言平面几何----研究内容是平面图形,即由一个平面内的点、线所构成的图形,研究它们的形状、大小和位置关系、画法、计算以及它们的应用.立体几何-----空间图形,由空间的点、线、面构成.研究对象-----空间图形;研究内容-----性质、画法、计算、证明及应用.二、平面的概念1.实例:桌面、黑板面、平静的水面等.2.平面是一个只描述而不定义的最基本的的概念(和直线类比).注:平面是无限延展的,没有厚薄、大小和面积.3.平面的画法⑴单个平面水平 竖直⑵两个平面(平行或相交) 注:①被遮住的部分用虚线或不画;②平行四边形表示的平面可以扩展; ③画非水平平面时,只须画成平行四边形即可,画直立平面要有一组对边为铅垂线.4.平面的表示法(1)平面α,β,γ或平面ABCD或平面AC ; (2)点用大写字母A ,B ;(3)直线用小写字母l ,m ,n 或用AB .5.空间的点、直线和平面的位置关系的符号表示如下:三、平面的基本性质公理1.如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理1用符号表示为:⎭⎬⎫A ∈ αB ∈ α ⇒ 直线AB ⊂ α.公理2.如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理2用符号表示为:⎭⎬⎫P ∈ α P ∈ β ⇒ α ∩ β = m ,且P ∈m .公理3.经过不在同一直线上的三点,有且只有一个平面. 注:“有且只有”的含义:“有”说明存在;“只有”说明唯一.【反馈练习】1. 找出能说明公理3的例子. 2. 课本P 22 练习1,2,3,4,5. 【课后作业】1.分别将下列文字语言转化为符号语言:①点A 在平面α内,但不在平面β内: ;②直线m 经过平面α外一点M : ; ③直线m 既在平面α内,又在平面β内: . 2.下列命题中,正确的个数有 个. ①平静的水面可以看成一个平面;②一本平整的书有100张纸装订而成,其厚度是1cm ,则每一张纸对应的平面的厚度是0.1mm ;③有一个平面的长是5cm ,宽是4cm ;④已知立几图形中,线段AB 在平行四边形内,则直线AB 一定也在平面α内.3.点M 在直线l 上,l 在平面α内,则M ,l ,α的关系是 . 4.已知点A ,B 均是平面α,β的公共点,则有 . 5.已知空间不共面的四点,过其中的任意三点可确定一个平面,由这四个点可确定 个平面. 6.空间不重合的三个平面可以将空间分成 个部分.7.如果三条直线两两相交,那么这三条直线是否确定平面?8.四条线段顺次首尾相接,所得的图形一定是平面图形吗?为什么?9.证明三角形一定是平面图形.10.三个平面两两相交,共有几种情况?请分别画出它们的直观图.。
高中数学《平面的基本性质》教案一、教学目标1. 让学生理解并掌握平面的基本性质,包括平面的定义、平面的表示方法、平面的性质等。
2. 培养学生运用平面几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和空间想象力。
二、教学内容1. 平面的定义:平面是无限延展、无厚度的二维空间。
2. 平面的表示方法:用字母“α”、“β”等表示平面。
3. 平面的性质:(1)平面上的点与直线的关系:任意一点在平面内,都可以用平面内的直线表示。
(2)平面上的直线与直线的关系:平面内的任意两条直线,要么相交于一点,要么平行。
(3)平面上的直线与点的关系:平面内的任意一点,要么在给定直线上,要么不在给定直线上。
三、教学重点与难点1. 教学重点:平面的定义、表示方法和平面的性质。
2. 教学难点:平面的性质中直线与直线、直线与点的关系的理解和应用。
四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论,自主探究平面的基本性质。
2. 利用几何画板或实物模型,直观展示平面的性质,帮助学生建立空间想象。
3. 设计适量练习题,让学生在实践中巩固知识。
五、教学过程1. 导入:通过生活中的实例,如平面地图、桌面等,引出平面的概念。
2. 新课导入:介绍平面的表示方法,讲解平面的性质。
3. 课堂讲解:详细讲解平面的性质,引导学生理解直线与直线、直线与点的关系。
4. 例题讲解:分析并解决典型例题,让学生掌握平面几何的应用。
5. 课堂练习:学生自主完成练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出更高层次的问题,激发学生兴趣。
7. 课后作业:布置适量作业,让学生进一步巩固平面几何知识。
六、教学评估1. 课堂提问:通过提问了解学生对平面基本性质的理解程度。
2. 练习题解答:检查学生课后练习题的完成情况,评估其对知识的掌握程度。
3. 小组讨论:观察学生在小组讨论中的表现,了解其合作能力和解决问题的能力。
七、教学反思1. 反思教学内容:根据学生的反馈,调整教案内容,使之更符合学生的认知水平。
高中数学《平面的基本性质》教案章节一:平面的概念1.1 教学目标让学生理解平面的基本概念,包括平面的定义和表示方法。
让学生掌握平面的性质,如平面的无限延展性和平面的包含关系。
1.2 教学内容平面定义:平面是无限延展的、无厚度的二维空间。
平面表示方法:用希腊字母“π”表示平面。
平面性质:平面的无限延展性,平面内任意两点可以确定一条直线。
1.3 教学步骤引入平面的概念,引导学生思考日常生活中的平面例子。
讲解平面的定义和表示方法,通过图形和实例进行说明。
引导学生理解平面的性质,通过实际操作和几何证明来加深理解。
章节二:平面的基本性质2.1 教学目标让学生掌握平面的基本性质,包括平面的连续性、平行的性质和平面的包含关系。
2.2 教学内容平面连续性:平面上的任意两点都可以用一条直线连接。
平面平行性质:同一平面内,不相交的两条直线称为平行线。
平面包含关系:一条直线可以包含在平面内,也可以不包含在平面内。
2.3 教学步骤回顾平面的概念和表示方法,引导学生思考平面的性质。
讲解平面的连续性,通过图形和实例进行说明。
讲解平面的平行性质,通过实际操作和几何证明来加深理解。
讲解平面的包含关系,通过实际操作和几何证明来加深理解。
章节三:平面的画法3.1 教学目标让学生掌握平面的画法,包括平面在坐标系中的表示和平面的方程。
3.2 教学内容平面在坐标系中的表示:平面可以用方程表示,如Ax + By + C = 0。
平面方程的求法:通过已知的平面上的点和平面的法向量来求解平面方程。
3.3 教学步骤引导学生回顾平面的概念和性质,引出平面的画法。
讲解平面在坐标系中的表示方法,通过图形和实例进行说明。
讲解平面方程的求法,通过实际操作和几何证明来加深理解。
章节四:平面与直线的关系4.1 教学目标让学生掌握平面与直线的关系,包括平面与直线的相交和平行。
4.2 教学内容平面与直线的相交:平面与直线相交时,交点称为直线在平面上的投影。
平面与直线的平行:平面与直线平行时,直线上的任意点都不在平面内。
立体几何平面的基本性质
一、知识点:
1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45o ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚)②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等
3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:
图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法)
A a A a ∈点A 在直线a 上 a α
a α⊂ 直线a 在平面α内 A a A a ∉点A 不在直线a 上 a αa α=∅I 直线a 与平面α无公共点
A
αA α∈点A 在平面α内 a A αa A α=I 直线a 与平面α交于点A
A αA α∉点A 不在平面α内 b a A a b A =I 直线a 、b 交于A 点
l αβ=I 平面α、β相交于直线l
α⊄a (平面α外的直线a )表示a α=∅I (a αP )或a A α=I
4 平面的基本性质
公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内
推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.
公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线
推理模式:A l A ααββ∈⎫⇒=⎬∈⎭
I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上
公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.
B
A α
公理3 经过不在同一条直线上的三点,有且只有一个平面 推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈
应用:①确定平面;②证明两个平面重合
“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 5 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形
6公理的推论:
推论1 经过一条直线和直线外的一点有且只有一个平面.
推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂
推论2 经过两条相交直线有且只有一个平面
推理模式:P b a =I ⇒存在唯一的平面α,使得,a b α⊂
推论3 经过两条平行直线有且只有一个平面
推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂
二、基本题型:
1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( )
A .∵αα∈∈
B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βαI .
C .∵α⊂∈a a A ,,∴A α∈.
D .∵α⊂∉a a A ,,∴α∉A .
2.下列推断中,错误的是( )
A .ααα⊂⇒∈∈∈∈l
B l B A l A ,,,
C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合
B .AB B B A A =⇒∈∈∈∈βαβαβαI ,,, D .αα∉⇒∈⊄A l A l ,
3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.
4.判断下列命题的真假,真的打“√”,假的打“×”
(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )
(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )
(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( )
(7)一条直线和一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )
5.看图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =
(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =
(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题
(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形
(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个 B 4个C 6个 D 8个
O 11D 1B C 1O D B A
(3)空间四点中,无三点共线是四点共面的 ( )
(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要
7.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.
答案:1. C 2. D 3. 2,4,8 4. ⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×
5.⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 1
6. 答案:⑴ D ⑵ C ⑶ D
7. 证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂
又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂
下面用反证法证明直线c α⊂:
假设c α⊄,则c C α=I ,在平面α内过点C 作c b 'P ,
因为b //c ,则c c 'P ,此与c c C '=I 矛盾.故直线c α⊂.
综上述,a 、b 、c 、d 四线共面. c'b
a
d c
α
C B A。