7.1_参数的点估计
- 格式:ppt
- 大小:1.41 MB
- 文档页数:31
点估计的基本概念及矩估计方法总体样本统计量描述作出推断随机抽样统计推断:参数估计和假设检验这类问题称为参数估计问题.参数估计问题的一般提法设有一个总体X ,其分布函数为F (x,θ),其中θ为未知参数,现从该总体抽样,得样本X 1,X 2,…,X n .参数估计问题就是利用从总体抽样得到的样本来估计总体未知参数的问题.要依据该样本对参数θ作出估计,或估计参数θ的某个函数g (θ).点估计(Point Estimation)参数估计区间估计(Interval Estimation)点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使它以一定的概率包含未知参数.这是点估计.这是区间估计.估计μ在区间(1.59, 1.77)内,假如我们要估计某队男生的平均身高.(假定身高服从正态分布N (μ,0.12)),现从该总体抽取容量为5的样本,分别为1.65 1.67 1.681.71 1.69,求总体均值μ的估计.估计μ为1.68,全部信息就由这5个数组成.设总体X 的分布函数F (x ,θ)形式已知,θ是待估参数,X 1, X 2, …, X n 为抽自总体X 的样本,x 1, x 2,…, x n 是相应的一个样本值. 据此,应如何估计未知参数θ呢?点估计问题为估计θ,需要构造一个适当的统计量每当有了样本观测值x 1,x 2,…,x n ,就代入该统计量计算出一个值作为未知参数θ的近似值.12ˆ(,,,),n X X X θ12ˆ(,,,)n x x x θ称为参数θ的估计量(Estimator ).称为参数θ的估计值(Estimate ).在不引起混淆情况下统称为估计,记为12ˆ(,,,)n X X X θ12ˆ(,,,)n x x x θˆθ注意:被估计的参数θ是一个未知常数,而估计量是样本的函数,是一个随机变量,当样本值取定后,估计值是个已知的数值.对于不同的样本值,θ的估计值一般不同.问题:使用什么样的统计量去估计θ?矩估计法(Method of Moments)最大似然估计法(Method of Maximum Likelihood)矩估计法由英国统计学家卡尔•皮尔逊(Karl Pearson)在20世纪初提出.1.矩估计方法的基本思想用样本矩估计总体矩利用样本k阶原点矩作为总体k阶原点矩的估计.由此进一步估计未知参数θ,这就是矩估计法.1857-1936由大数定律总体k 阶原点矩为因此,可以用A k 估计μk 设X 1,X 2, …, X n 为来自总体X 的一个样本,()kk E X μ=样本k 阶原点矩为若g 为连续函数,则用g (A k )估计g (μk )又由于μk 一般可以表示为总体中未知参数的函数,从而可以估计出未知参数.11n kk i i A X n ==∑11nP kk i i A X n ==−−→∑k μ()Pk g A −−→()k g μ2.矩估计的步骤(1)根据未知参数的个数,求出总体的各阶矩.设总体X~F (x ,θ1,θ2, …,θk ), X 1,X 2, …, X n 为来自总体X 的样本.1(,,),1,2,,l l k l kμμθθ==X 为连续型X 为离散型+12()(;,,)lll k E X x f x ,dxμθθθ∞-∞==⎰12()(;,,)Xll l k x R E X x p x ,μθθθ∈==∑总体X 的密度函数总体X 的分布律(3)用样本矩估计相应的总体矩,即:用A l 替代相应的μl ,得到θl 的矩估计量(2)解方程(组),得12ˆ(,,,),1,2,,l l kA A A l k θθ==(4)g (θ1 ,⋯,θk )的矩估计量为12ˆˆˆ(,,,)kg θθθ1(,,),1,2,,l l k l kθθμμ==解:(1)10.求总体的1阶矩例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是取自总体X 的样本,求(1)参数α的矩估计量;(2)g (α)=(α+1)/α的矩估计量.(1),01()0,x x f x αα⎧+<<=⎨⎩其它1()E X μ=111(1)=2x dx αααα++=++⎰+()xf x dx ∞-∞=⎰112EX αμα+==+20. 解方程11211μαμ-=-21ˆ1X Xα-=-10.30. 用代替μ1,得α的矩估计为111nii A X X n ===∑用代替α,得g (α)=(α+1)/α的矩估计为ˆα21ˆ1X Xα-=-ˆ1ˆ()ˆgααα+=21X X =-例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是来自总体X 的样本,求(1)参数α的矩估计量;(2)g (α)=(α+1)/α的矩估计量.(1),01()0,x x f x αα⎧+<<=⎨⎩其它例2.设总体X 的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X 1,X 2,…,X n 是来自总体X 的样本,求μ,σ2的矩估计量.解:10.求总体的1阶矩和2阶矩122222()()()()E X E X D X EX μμμσμ==⎧⎪⎨==+=+⎪⎩20.解方程组12221μμσμμ=⎧⎪⎨=-⎪⎩30.分别以A 1, A 2代替μ1, μ2得到μ, σ2的矩估计量分别为1ˆA X μ==22222211111ˆ()n ni i i i A A X X X X n n σ===-=-=-∑∑例2.设总体X 的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X 1,X 2,…,X n 是来自总体X 样本,求μ,σ2的矩估计量.特别,若X~N (μ, σ2),μ, σ2未知,则μ, σ2的矩估计量分别为ˆX μ=2211ˆ()ni i X X n σ==-∑若总体X~U [a,b ],其中a<b 且均未知,X 1,X 2, …,X n 是来自总体X 的样本,则a ,b 的矩估计量分别为213ˆ()ni i a X X X n ==--∑213ˆ()ni i b X X X n ==+-∑优点:直观、简单缺点(1)不唯一,如例1例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是来自总体X 的样本,求(1)参数α的矩估计;(1),01()0,x x f x αα⎧+<<=⎨⎩其它可以求总体的二阶矩μ2,用A 2代替μ2得到矩估计.规定:用尽量低阶的矩求相应的矩估计.缺点(2)损失信息,如例2例2.设总体X的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X1, X2,…,X n是来自总体X样本,求μ,σ2的矩估计量.若已知总体X的服从正态分布,则该分布形式已知的信息没有用到,从而造成信息的损失.。