【优质】考研数学二历年平均分word版本 (2页)
- 格式:docx
- 大小:16.47 KB
- 文档页数:2
2016年数二均分除了数学考研国家线,还可以知道平均分!数学考研全国平均分如下:加更一下,强烈推荐2016,2018,2020这三年的数学真题,2020年大题有些考点挺变态,平均分官方只给了俩字“偏低”,2016大题设计挺好的,难度也够,但是坑特别多,一不小心就错了,计算错误对后面大题的得分影响很严重2021做点什么,因为2021的题型是第一年修改的,线生成和概率部分比较大。
2018年考研数学平均分数一 61.94分样本91134数二 61.22分样本78360数三 64.55分样本784972017数学全国平均分数一 79.50分数二 81.07分数三 69.90分2016数学全国平均分数一 60.65分数二 60.56分数三 62.49分其实我感觉16年算一卷主要是因为小问题知识有点冷门,大部分都没注意到。
2014年考研数学平均分数一:67数二:71数三:692014年考研数学难,平均分可见一斑。
小问题难,大问题不难。
很多考生坦言在考场上的心理崩溃。
2013年考研数学平均分数一:73.86数二:78.49数三:81.802013年数学难度还是比较大的,思维方式也和往年不一样,尤其是数学2。
很多考生反映很难,入门很难。
2012年考研数学平均分数一:80.11数二:82数三:81.542012年普遍反映数学考研比较简单,考察的题目也是交际性的,从记录平均分也能看出来。
2011年考研数学平均分数一:77.16数二:80.66数三:82.84据说是五年来最低的,很多考生抱怨差别不大。
呵呵,有时候做人还是挺难的。
2010年考研数学平均分数一:70数二:64数三:73.462010年的数学打破了历年数学出题的规律,特别是概论的大题,一般是直接考二维随机变量和估计,但2010年考的更深了。
(完整word 版)考研数学历年真题(2008-2017年)年数学一2017年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =- (C)0ab = (D)2ab =(2)设函数()f x 可导,且()()0f x f x '>则( ) (A)()()11f f >- (B) ()()11f f <- (C )()()11f f >-(D )()()11f f <-(3)函数()22,,f x y z x y z =+在点()1,2,0处沿向量()1,2,2n 的方向导数为( ) (A )12(B )6(C)4(D)2(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,如下图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t = (B)01520t <<(C)025t = (D )025t >()s(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则( ) (A ) T E αα-不可逆 (B ) T E αα+不可逆 (C) 2T E αα+不可逆(D )2T E αα-不可逆(6)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则( )(A ) A 与C 相似,B 与C 相似 (B ) A 与C 相似,B 与C 不相似(完整word 版)考研数学历年真题(2008-2017年)年数学一 (C ) A 与C 不相似,B 与C 相似(D) A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1,0()1P A P B <<<<,则()()P A B P A B >的充分必要条件是( ) A 。
考研数学二历年难度排行(实用版)目录1.考研数学二历年难度概述2.考研数学二历年难度排名3.考研数学二历年难度变化趋势4.考研数学二历年难度与考生成绩对比5.备考建议正文考研数学二历年难度排行1.考研数学二历年难度概述考研数学二是许多考研学生必须面对的一门科目,它主要包括高等数学、线性代数、概率论等内容。
数学二的难度一直是考生关注的焦点,那么,考研数学二历年难度怎么样呢?2.考研数学二历年难度排名根据近年来的考研数学二真题平均分和难度系数,可以对历年数学二的难度进行排名。
以下为考研数学二历年难度排名:- 2016 年:难度系数 0.49,难度偏大- 2018 年:难度系数 0.45,难度适中- 2019 年:难度系数 0.479,难度略大- 2015 年:难度系数 0.55,难度适中- 2017 年:难度系数 0.48,难度适中- 2020 年:难度系数 0.47,难度适中3.考研数学二历年难度变化趋势从上面的排名可以看出,考研数学二的难度在逐年变化。
一般来说,奇数年的难度较高,偶数年的难度较低。
不过,这种规律并非绝对,考生还需结合当年的具体题型和考试大纲来综合评估。
4.考研数学二历年难度与考生成绩对比根据上述难度排名,可以发现,难度系数越小,考生的平均分越高。
以 2018 年为例,难度系数为 0.45,该年的全国平均分为 71.87 分。
而在难度系数较大的 2016 年,全国平均分仅为 65.69 分。
这说明难度系数较小的年份,考生整体表现较好。
5.备考建议面对考研数学二的历年难度变化,考生在备考过程中应该注意以下几点:- 扎实掌握基础知识,强化基本功,提高解题能力- 关注历年真题,了解题型和考试规律,提高应试水平- 适当模拟考试,提高答题速度和准确率- 保持良好的心态,调整作息,确保在考试时保持最佳状态总之,考研数学二的历年难度有所变化,但难度并非决定考生成绩的唯一因素。
数二历年真题平均分
最近,很多考生都想了解二历年真题的平均分,以期在考试中取得
更好的成绩。
因此,本文将对近二历年真题考试的平均分进行详细的
分析,如下所示:
1. 2017年考试中,中文及文科类科目的平均分分别为小学入学考试
(体育)70.61分,中考136.21分,高考419.41分。
2. 2018年考试中,中文及文科类科目的平均分分别为小学入学考试
(体育)71.37分,中考137.12分,高考422.94分。
3. 2019年考试中,中文及文科类科目的平均分分别为小学入学考试
(体育)70.11分,中考135.45分,高考420.50分。
从上述分析可见,小学入学考试(体育)和中考的平均分基本上维持
在70多分,而高考则持续在400多分,总体来说,二历年考试各科目
平均分较为稳定。
上述是二历年真题考试的平均分,不管是学生、家长还是教育工作者,在更好的了解二历年真题考试的状况,在更深入的分析考试的难度等
方面,均需要仔细梳理,全面了解,以便更准确地评估考试的水平,
取得更好的考试成绩。
考研数学二历年国家线考研数学二的概述考研数学二是中国研究生入学考试中的一门重要科目。
该科目为数学类研究生考试的第二部分,主要测试考生对数学理论和解题能力的掌握程度。
因此,考研数学二的考试要求相对较高,对考生的数学基础和逻辑思维能力提出了一定的挑战。
国家线的意义国家线是指考试成绩的一个重要标准,用来决定考生是否被录取进入研究生院。
考研数学二的国家线是由教育部和各高校联合制定的,标志着该年度考试的最低合格分数线。
考生只有达到或超过国家线才能有资格被高校录取。
历年国家线的走势考研数学二的国家线在每年的考试之后会公布出来。
经过观察和分析,我们可以看到国家线的走势并进行总结。
以下是近几年的考研数学二国家线数据:•2017年:国家线为150分•2018年:国家线为155分•2019年:国家线为160分•2020年:国家线为165分通过以上数据可以看出,考研数学二的国家线在逐年提高。
这与考研报名人数的增加和考生整体水平的提高有一定的关系。
因此,面对日益严峻的竞争环境,考生在备考过程中需要做好充足的准备,以提高自身的竞争力。
影响国家线的因素国家线的确定不仅仅是由考生的整体水平决定的,还与其他因素有关。
以下是影响考研数学二国家线的一些因素:1.考生人数:考生报名人数的增加会增加竞争压力,使得国家线有可能上升。
2.难度系数:每年的考试难度系数也会影响国家线的设定。
如果一年的考试难度较大,那么国家线有可能相应降低。
3.教育政策:教育部可能根据国家的教育政策和高等教育发展的需求来调整国家线。
因此,考生在备考过程中不能仅仅满足于达到国家线,而是要根据实际情况合理安排备考时间和内容,全面提升自己的数学水平和解题能力。
如何应对国家线的变化面对历年国家线的提高,考生需要采取一些应对策略,以更好地备考和应对考试。
以下是一些建议:1.制定合理的备考计划:根据自身的情况和时间安排,制定合理的备考计划。
合理安排每天的学习时间和内容,做到有计划地提高数学水平。
2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.1ln 1y x e x ⎛⎫=+⎪-⎝⎭曲线的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 〖答案〗B〖解析〗1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩〖答案〗D〖解析〗当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。
考研数学二历年难度怎么样考研数学二历年难度怎么样?会不会很难?不知道的小伙伴看过来,下面由小编为你精心准备了“考研数学二历年难度怎么样”仅供参考,持续关注本站将可以持续获取更多的内容!考研数学二历年难度怎么样数学难度分析2019考研数学真题全国平均分情况如下:数学一65.69 难度系数0.438 难度偏大数学二71.87 难度系数0.479 难度略大数学三76.80 难度系数0.512 难度适中这里将往年平均分一起作了一个对比,结果如下:对于数学来说,大小年的难度很明显:「奇数年较高,偶数年较低」。
15年、17年、19年相对简单,16年、18年、20年则会相对难。
大家也可发现,19考研数学一和18年持平,数学一二三难度有所分化。
数学一、二、三难度分化的原因是,各数学卷子自己的特色题目加强,数学一高数下册、线代的向量空间做重点命题;数学二高数上册做重点命题,数学三高数上下册选取数学一二的公共部分做重点命题。
从往年数据来看,数学一和数学二在2020考研中难度会有所增大,但不必担心会难出天际,16年平均分低出了新境界,当时可是一片骂声啊...其难度估计也是后无来者了,所以大家要辩证分析。
数学三难度应会略有提高,也不应变化太大,不必过于紧张。
数学现在不论是二刷还是启动一轮真题,做错还是做对,都不要在意得了多少分,一定要将做过的题纳入自己的知识体系和思维结构,不断巩固和加强解题能力。
记住:「20考研数学是一场硬仗!」,必须潜心钻研!考研数学二高等数学题目难度解析从整个试卷分析来看,2019年考研数学(二)试题难度比2018年试题略难,这一点在我们考前分析中早已提到,其实考研数学的命题方式在2014年及其后的几年里都是趋于平稳的,没有很大的波动。
2019年数学试卷的难度从整体上看与往年相当,基本上没有偏题、怪题,题型大部分是往年常考题型,考生较容易入手,个别题目比较新颖,思路比较灵活,从命题思路和趋势上来看,还是同往年一样,注重考查对基本概念、基本理论和基本计算方法的理解和综合运用能力。
2004年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A*为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量20cos xtdt α=⎰, 20x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是[](A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα (8)设()(1)f x x x =-, 则[](A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(9)22lim (1)n nn→∞+等于[](A )221ln xdx ⎰. (B ) 212ln xdx ⎰.(C ) 212ln(1)x dx +⎰. (D ) 221ln(1)x dx +⎰(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得 [](A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >.(11)微分方程21sin y y x x ''+=++的特解形式可设为 [](A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于[](A)11()dx f xy dy -⎰⎰.(B)2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰. (D )2sin 200(sin cos )d f r rdr πθθθθ⎰⎰(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为[](A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有[](A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上,2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形.该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A是否可相似对角化.2003年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,T α是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e .[ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为 [ ](A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ](A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.(5)01xdx x 02tan , 则 [ ](A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则[ ](A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xex⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min/33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数0)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxe y -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ).3.02='+''y y y 满足初始条件21)0(,1)0(='=y y 的特解是( ). 4.1lim 1cos n n →∞++=( ).5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1;(C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B)⎰x dt t f 02)(;(C)⎰--x dt t f t f t 0)]()([; (D)⎰-+xdt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xe qy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3. 4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有(A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关; (C)21321,,,ββαααk +线性无关; (D) 21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x x e xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小. 七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分 的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限.九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+.十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A , 4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy eyx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ). 4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ).5、方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.) 1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x .2、0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且)1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <. 5、设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示: 则)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+''). 六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(x f且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间?十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系, 144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2000 年全国硕士研究生入学统一考试一、 填空题1.2.3.4.5.二、选择题6. 7.8.9.10.三、解答题11.12.13.14.15.16. 17.18.19.20.21.1999 年全国硕士研究生入学统一考试(数学二)1998 年全国硕士研究生入学统一考试(数学二)1997 年全国硕士研究生入学统一考试(数学二)1996 年全国硕士研究生入学统一考试(数学二)1995 年全国硕士研究生入学统一考试(数学二)1994 年全国硕士研究生入学统一考试(数学二)1993 年全国硕士研究生入学统一考试(数学二)1992 年全国硕士研究生入学统一考试(数学二)1991 年全国硕士研究生入学统一考试(数学二)1990 年全国硕士研究生入学统一考试(数学二)。
考研数学二历年平均分导语:平均分与平均数不同,是分物时所用的一种思想。
指在分物体的时候,要尽可能地分完,而且还要使每一份得到的数相等。
那么,考研数学二历年平均分是多少呢?一起来了解一下!什么是考研数学一、简介针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。
具体不同专业所使用的试卷种类有具体规定。
二、招生专业根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。
招生专业须使用的试卷种类规定如下:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2.授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。
四、须使用数学三的招生专业1.经济学门类的各一级学科。
2.管理学门类中的工商管理、农林经济管理一级学科。
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与k x 是 同阶无穷小量,则k =( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C . 【解析】因为3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22. 【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。
当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。
故选 C .3、下列反常积分发散的是( )A 、0xxe dx +∞-⎰. B 、2x xe dx +∞-⎰. C 、20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛;D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。
4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r =-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == 。
2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数.(B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-.(B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】 (14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。
历年考研数学试题分析及答题技巧2009年09月21日 16:22 来源:腾讯教育最近几年的考研数学试题主要考查数学的基本概念和基本理论,及数学的基本方法,考查抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.试题都是严格按照《考试大纲》来进行命题,没有出现偏题、怪题、没有出现超纲的试题,总体的难度适中,考查出了考生的能力区分,有利于国家选拔高层次人才。
下面我说一下近三年来数学一、二、三的平均分。
09年数学一、二、三的平均分分别为:68.10;77.59;68.25。
08年数学一、二、三的平均分分别为:70.73;85.86;69.36。
07年数学一、二、三的平均分分别为:62.20;72.28;68.59。
这几年的平均分可以看出数学考试不会太难,但是也会有一定的区分度,要想取得好的成绩还是要付出一定的努力的。
根据历年高分考生的经验,大体可分为以下几个阶段:第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。
这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,考生可以视情况而灵活掌握,这样省出时间来看更多的题。
所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,这也是临考前非常重要的阶段。
考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。
在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。
最后阶段是考前冲刺,针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
【优质】考研数学二历年平均分word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
考研数学二历年平均分
导语:平均分与平均数不同,是分物时所用的一种思想。
指在分物体的时候,要尽可能地分完,而且还要使每一份得到的数相等。
那么,考研数学二历年平均分是多少呢?一起来了解一下!
考研数学二历年平均分
什么是考研数学
一、简介
针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的
数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针
对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(201X年之
前管理类为数学三,经济类为数学四,201X年之后大纲将数学三数学四合并)。
具体不同专业所使用的试卷种类有具体规定。
二、招生专业
根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数
学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对
工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。
招生专
业须使用的试卷种类规定如下:
一、须使用数学一的招生专业
1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制
科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘
科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科
学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2.授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业。