2014年高考数学理科分类汇编专题06 数列
- 格式:doc
- 大小:565.50 KB
- 文档页数:4
1. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D3. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .4. 【2014辽宁高考理第8题】设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >5. 【2014重庆高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 369.,,D a a a 成等比数列6. 【2014天津高考理第11题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.7. 【2014大纲高考理第10题】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .8. 【2014高考广东卷理第13题】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .9. 【2014高考安徽卷理第12题】数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.10. 【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.【答案】8。
第六章 数列第1讲 数列的概念与简单表示法对应学生用书P84考点梳理1.数列的通项公式(1)定义:如果数列{a n }的第n 项a n 与项数n 之间的函数关系可以用一个公式来表示,那么这个公式就叫做数列的通项公式,记为a n =f (n )(n ∈N *).数列可以用通项公式来描述,也可以通过列表或图象来表示.(2)数列的递推公式:如果已知数列的第一项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. 2.数列的分类n n已知S n ,则a n =⎩⎨⎧ S 1,n =1,S n -S n -1,n ≥2.在数列{a n }中,若a n 最大,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎨⎧a n ≤a n -1,a n ≤a n +1.【助学·微博】 一个考情分析数列的通项公式及前n 项和是高考考查的重点及热点,常以填空的形式考查数列的通项公式.而前n 项和S n 与通项a n 相结合的题目,往往以解答题形式出现.题型比较全面,难度以中档题为主,重点考查学生的运算能力及抽象概括能力.由递推式求通项a n 的三种方法 (1)a n +1-a n =f (n )型,采用叠加法; (2)a n +1a n=f (n )型,采用叠乘法;(3)a n +1=pa n +q (p ≠0,1,q ≠0)型,采用待定系数法转化为等比数列解决.考点自测1.(教材改编题)已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________.解析 1,3,7,15分别都加上一个1,则为2,4,8,16, ∴通项公式不难发现为a n =2n -1. 答案 a n =2n -12.下列对数列的理解有四种:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的. 其中说法正确的所有序号是________.解析 由数列与函数的关系知①对,③对,由数列的分类知②不对,数列的通项公式不是唯一的,④不对. 答案 ①③3.在数列{a n }中,a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *),则a 100=________. 解析 法一 由a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *)可得该数列为1,5,4,-1,-5,-4,1,5,4,…. 由此可得a 100=-1.法二 a n +2=a n +1-a n ,a n +3=a n +2-a n +1,两式相加可得a n +3=-a n ,a n +6=a n ,∴a 100=a 16×6+4=a 4=-1. 答案 -14.(2012·无锡二模)设a >0,若a n =⎩⎨⎧(3-a )n -3(n ≤7),a n -6 (n >7),且数列{a n }是递增数列,则实数a 的范围是________.解析由{a n }是递增数列,得⎩⎨⎧3-a >0,a >1,a 8>a 7,即⎩⎨⎧1<a <3,a 2>(3-a )×7-3,解得2<a <3. 答案 (2,3)5.(2012·苏锡常镇四市调研(一))设u (n )表示正整数n 的个位数,a n =u (n 2)-u (n ),则数列{a n }的前2 012项和等于________.解析 因为n 与n +10的个位数字相同且周期为10,又a 1=0,a 2=4-2=2,a 3=9-3=6,a 4=6-4=2,a 5=5-5=0,a 6=6-6=0,a 7=9-7=2,a 8=4-8=-4,a 9=1-9=-8,a 10=0,所以a 1+a 2+…+a 10=0,即a 1+a 2+…+a 2 012=a 1+a 2=2. 答案 2对应学生用书P85考向一 由数列的前几项求数列的通项【例1】 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn .也可写为a n =⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为:93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1).[方法总结] 根据数列的前几项求通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征,把数列的项分成变化的部分和不变的部分;(4)各项符号特征,若关系不明显时,应将部分项作适当的变形,统一成相同的形式,让规律凸现出来. 【训练1】 已知数列{a n }的前四项分别为1,0,1,0,给出下列各式:①a n =1-(-1)n 2;②a n =1+(-1)n 2;③a n =sin 2n π2;④a n =1-cos n π2;⑤a n =⎩⎨⎧1(n 为正偶数)0(n 为正奇数);⑥a n =1+(-1)n +12+(n -1)(n -2).其中可以作为数列{a n }的通项公式的有________(填序号). 答案 ①③④考向二 数列的单调性【例2】 (2012·四川卷)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,①取n =2,得a 22=2a 1+2a 2,②由②-①,得a 2(a 2-a 1)=a 2.③ 若a 2=0,由①知a 1=0. 若a 2≠0,由③知a 2-a 1=1.④ 由①④解得,a 1=2+1,a 2=2+2; 或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, ∴(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), ∴a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.∴数列{b n }是单调递减的等差数列(公差为-12lg 2),从而b 1>b 2>…>b 7=lg 108>lg 1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.[方法总结] (1)本题主要考查等比数列、等差数列、对数等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力,并考查方程、分类与整合、化归与转化等数学思想.(2)计算时一定要细心.若a n 计算错误,则b n 就不能判定为等差数列,从而无法求和.【训练2】 已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n . 解 (1)由于a 1=S 1=4,当n ≥2时,a n =S n -S n -1=(2n 2+2n )-[2(n -1)2+2(n -1)]=4n ,显然a 1符合上式,所以a n =4n (n ∈N *).由b 1=2-b 1,得b 1=1,当n ≥2时,b n =T n -T n -1=b n -1-b n ,所以2b n =b n -1,所以数列{b n }为等比数列,其首项为1,公比为12.所以b n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1),知c n =a 2n ·b n =16n 2·⎝ ⎛⎭⎪⎫12n -1, 法一 由c n +1-c n =16(n +1)2·⎝ ⎛⎭⎪⎫12n -16n 2·⎝ ⎛⎭⎪⎫12n -1 =16·⎝ ⎛⎭⎪⎫12n [(n +1)2-2n 2]=16·⎝ ⎛⎭⎪⎫12n[-(n -1)2+2], 当n ≥3时,c n +1-c n <0,从而c n +1<c n .法二 因c n +1c n =16(n +1)2·⎝ ⎛⎭⎪⎫12(n +1)-116n 2·⎝ ⎛⎭⎪⎫12n -1=(n +1)22n 2,若c n +1c n <1,即(n +1)22n 2<1,所以n >1+2,即n ≥3时,c n +1c n <1恒成立.又c n >0,因此当且仅当n ≥3时,c n +1<c n .考向三 由a n 与S n 的关系求通项a n【例3】 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b .审题视点 当n =1时,由a 1=S 1,求a 1;当n ≥2时,由a n =S n -S n -1消去S n ,得a n +1与a n 的关系.转化成由递推关系求通项.解 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5.(2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1; 当b ≠-1时,a n =⎩⎨⎧3+b ,n =1,2·3n -1,n ≥2.[方法总结] 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n=1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练3】 (1)(2012·南通一模)已知数列{a n }的前n 项和为S n ,且S n =2n -a n ,则数列{a n }的通项公式为________.(2)已知数列{a n }的前n 项和S n +a n =2-⎝ ⎛⎭⎪⎫12n -1(n 为正整数).则数列{a n }的通项公式为________.解析 (1)当n =1时,由a 1=S 1=2-a 1,得a 1=1;当n ≥2时,由a n =S n -S n-1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1,即a n =12a n -1+1,设a n +m =12(a n -1+m ),∴a n =12a n -1-12m ,∴m =-2,∴数列{a n -2}构成首项为-1,公比为12的等比数列,∴a n -2=-1·⎝ ⎛⎭⎪⎫12n -1,∴a n =2-⎝ ⎛⎭⎪⎫12n -1.(2)由S n +a n =2-⎝ ⎛⎭⎪⎫12n -1,得S n +1+a n +1=2-⎝ ⎛⎭⎪⎫12n,两式相减,得a n +1-a n +a n +1=⎝ ⎛⎭⎪⎫12n ,即a n +1=12a n +⎝ ⎛⎭⎪⎫12n +1,因为S n +a n =2-⎝ ⎛⎭⎪⎫12n -1,令n =1,得a 1=12.在a n +1=12a n +⎝ ⎛⎭⎪⎫12n +1中,两端同除以⎝ ⎛⎭⎪⎫12n +1,得2n +1a n +1=2n a n +1,即数列{2n a n }是首项为1,公差为1的等差数列,故2n a n =n ,所以a n =n2n . 答案 (1)2-⎝ ⎛⎭⎪⎫12n -1 (2)n 2n考向四 已知数列的递推公式求通项【例4】 根据下列条件,确定数列{a n }的通项公式: (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1n a n -1(n ≥2);(3)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,求a n . 解 (1)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .(3)∵a n +1-a n =3n +2,∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=12×(3×1+1)=2,符合公式,∴a n =32n 2+n2.[方法总结] 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.【训练4】 根据下列各个数列{a n }的首项和基本关系式,求其通项公式. (1)a 1=1,a n =a n -1+3n -1(n ≥2); (2)a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n .解 (1)∵a n =a n -1+3n -1(n ≥2),∴a n -1=a n -2+3n -2, a n -2=a n -3+3n -3, …a 2=a 1+31,以上(n -1)个式子相加得 a n =a 1+31+32+…+3n -1=1+3+32+…+3n -1=3n -12.(2)∵a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n , ∴a n -a n -1=ln nn -1,a n -1-a n -2=ln n -1n -2,…a 2-a 1=ln 21,∴a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln n .又a 1=2,∴a n =ln n +2.对应学生用书P86热点突破16 数列中最值问题的求解策略从近几年高考可以看出,对求数列中的最大项是高考的重点.解决这类问题时,要利用函数的单调性研究数列的最值,但要注意数列的单调性与函数的单调性有所不同,其自变量的取值是不连续的,只能取正整数,所以在求数列中的最大(小)项时,应注意数列中的项可以是相同的,故不应漏掉项.【示例1】 (2011·浙江卷)若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.[审题与转化] 第一步:原问题可利用⎩⎨⎧a k ≥a k +1,a k ≥a k -1求最大项.[规范解答] 第二步:由题意知⎩⎪⎨⎪⎧k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k -1)(k -1+4)⎝ ⎛⎭⎪⎫23k-1,k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k +1)(k +1+4)⎝ ⎛⎭⎪⎫23k +1,∴⎩⎨⎧(k -1)2≤10,k 2≥10.∵k ∈N *,∴k =4,故填4. [反思与回顾] 第三步:若求数列{a n }的最大项,则可解不等式组⎩⎨⎧a n ≥a n +1a n ≥a n -1;若求数列{a n }的最小项,则可解不等式组⎩⎨⎧a n ≤a n +1a n ≤a n -1,求出n 的取值范围之后,再确定取得最值的项.【示例2】 (2010·辽宁卷)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.[审题与转化] 第一步:先利用累加法求a n 的表达式. 第二步:利用基本不等式求a nn 的最小值.[规范解答] 第三步:用累加法求得a n =n 2-n +33,所以a n n =n +33n -1≥233-1,当且仅当n =33n ,即n =33时取等号,但n ∈N *,所以n 取6,∴a nn =n +33n -1的最小值为10.5.[反思与回顾] 第四步:数列中用基本不等式时,一定注意n ∈N *,本题还可以用“对号函数”性质或示例1的方法求解.高考经典题组训练1.(2010·陕西卷改编)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的________条件.解析 由a n +1>|a n |(n =1,2,…)得数列{a n }为递增数列,反之不成立. 答案 充分不必要2.(2011·江西卷改编)已知数列{a n }的前n 项和S n 满足S n +S m =S n +m ,且a 1=1,那么a 10=________.解析 由S n +S m =S n +m ,得S 1+S 9=S 10;所以a 10=S 10-S 9=S 1=a 1=1. 答案 13.(2012·福建卷改编)若数列{a n }的通项公式a n =n cos n π2,前n 项和为S n ,则S 2 012=________.解析 因为a n =n cos n π2,当n =2k -1(k ∈N *)时,a n =0;当n =4k -2(k ∈N *)时,a n =-n ;当n =4k (k ∈N *)时,a n =n ,所以a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,即数列{a n }连续4项之和均为2,所以S 2 012=S 4×503=503×2=1 006. 答案 1 0064.(2009·湖北卷)已知数列{a n }满足a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,若a 6=1,则m 所有可能的取值为________.解析 若a n 为偶数,则a n =2a n +1;若a n 为奇数,则a n =a n +1-13.因为a 6=1,反推得a 5=2(a 5=0舍去),a 4=4⎝ ⎛⎭⎪⎫a 4=13舍去.若a 3为偶数,则a 3=2a 4=8,a 2=16⎝ ⎛⎭⎪⎫a 2=73舍去.所以a 1=2a 2=32或a 1=a 2-13=5.若a 3为奇数,则a 3=a 4-13=1,a 2=2,a 1=4. 综上,得m =4,5,32. 答案 4,5,32对应学生用书P299分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.已知数列,1,3,5,7,…,2n -1,…,则35是它的第________项. 解析 35=45=2×23-1. 答案 232.(2013·福州一模)把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是________.解析 观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28. 答案 283.(2011·四川卷改编)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=________.解析 a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44. 答案 3×444.(2012·南京调研)已知正数数列{a n }对任意p ,q ∈N *,都有a p +q =a p ·a q ,若a 2=4,则a 9=________.解析 由条件,可有a 1=2,a 2=4,a 4=16,a 8=256,a 9=512. 答案 5125.在数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. 解析 由a n +1-a n =n +1,可得a n -a n -1=n , a n -1-a n -2=n -1,a n -2-a n -3=n -2, …a 3-a 2=3,a 2-a 1=2,以上n -1个式子左右两边分别相加得, a n -a 1=2+3+…+n ,∴a n =1+(1+2+3+…+n )=n (n +1)2+1. 答案n (n +1)2+16.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 的值为________.解析 ∵S n =n 2-9n ,∴n ≥2时,a n =S n -S n -1=2n -10, a 1=S 1=-8适合上式,∴a n =2n -10(n ∈N *), ∴5<2k -10<8,得7.5<k <9.∴k =8. 答案 8二、解答题(每小题15分,共30分)7.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求{a n }的通项公式. 解 由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n .因a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列, 故{a n }的通项为a n =3n -1.8.在数列{a n }中,已知a 1=1,a n +1=a n +2n -1,求a n . 解 由a n +1=a n +2n -1,得a n +1-a n =2n -1. 所以a 2-a 1=1, a 3-a 2=2, a 4-a 3=22, a 5-a 4=23, …a n -a n -1=2n -2(n ≥2),将以上各式左右两端分别相加,得a n -a 1=1+2+22+…+2n -2=2n -1-1,所以a n =2n -1(n ≥2),又因为a 1=1适合上式,故a n =2n -1(n ∈N *).分层训练B 级 创新能力提升1.数列{a n }的通项公式是a n =n 2+kn +2,若对所有的n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是________.解析 a n +1>a n ,即(n +1)2+k (n +1)+2>n 2+kn +2,则k >-(2n +1)对所有的n ∈N *都成立,而当n =1时,-(2n +1)取得最大值-3,所以k >-3. 答案 (-3,+∞)2.(2012·合肥三检)在数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 16=________.解析 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,a 16=a 3×5+1=a 1=12. 答案 123.已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________. 解析 由已知条件可得S n +1=2n +1.∴S n =2n +1-1, 当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n , n =1时不适合a n ,∴a n =⎩⎨⎧3 (n =1),2n (n ≥2).答案 ⎩⎨⎧3 (n =1)2n (n ≥2)4.(2012·南通调研三)已知5×5数字方阵⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12 a 13 a 14 a 15a 21 a 22 a 23 a 24 a 25a 31a 32 a 33 a 34 a 35a 41a 42 a 43 a 44 a 45a51 a 52 a 53 a 54 a 55中,a ij=⎩⎨⎧ 1,j 是i 的整数倍,-1,j 不是i 的整数倍, 则∑j =25a 3j +∑i =24a i 4=________.解析 由条件可知a 32=-1,a 33=1,a 34=-1,a 35=-1,a 24=1,a 34=-1,a 44=1,从而原式=-1. 答案 -15.(2012·无锡一中期中)设数列{b n }满足:b 1=12,b n +1=b 2n +b n , (1)求证:1b n +1=1b n -1b n +1;(2)若T n =1b 1+1+1b 2+1+…+1b n +1,对任意的正整数n,3T n -log 2m -5>0恒成立.求m 的取值范围.解 (1)∵b 1=12,b n +1=b 2n +b n =b n (b n +1), ∴对任意的n ∈N *,b n >0. ∴1b n +1=1b n (b n +1)=1b n -1b n +1,即1b n +1=1b n -1b n +1.(2)T n =⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1b n -1b n +1=1b 1-1b n +1=2-1b n +1.∵b n +1-b n =b 2n >0,∴b n +1>b n ,∴数列{b n }是单调递增数列.∴数列{T n }关于n 递增.∴T n ≥T 1.∵b 1=12,∴b 2=b 1(b 1+1)=34.∴T 1=2-1b 2=23.∴T n ≥23.∵3T n -log 2m -5>0恒成立. ∴log 2m <-3,∴0<m <18.6.已知数列{a n }的前n 项和S n =(n +1)a n2,且a 1=1. (1)求数列{a n }的通项公式a n ;(2)令b n =ln a n ,是否存在k (k ≥2,且k ∈N *),使得b k ,b k +1,b k +2成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由.解 (1)法一 当n ≥2时,a n =S n -S n -1=(n +1)a n 2-na n -12,即a n n =a n -1n -1(n ≥2).所以⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1的常数数列,所以a nn =1,即a n =n (n ∈N *).法二 同上,得(n -1)a n =na n -1.同理得 na n +1=(n +1)a n ,所以2na n =n (a n -1+a n +1),即2a n =a n -1+a n +1,所以{a n }成等差数列.又由a 1=1,得a 2=S 2-a 1,得a 2=2,得a n =1+(n -1)=n (n ∈N *). 法三 同上,得a n a n -1=nn -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1·n -1n -2·…·32·21·1=n ,当n =1时a 1=1,也满足a n =n ,所以a n =n (n ∈N *).(2)假设存在k (k ≥2,k ∈N *),使得b k ,b k +1,b k +2成等比数列,则b k b k +2=b 2k +1.因为b n =ln a n =ln n ,所以b k b k +2=ln k ·ln(k +2)<⎣⎢⎡⎦⎥⎤ln k +ln (k +2)22=⎣⎢⎡⎦⎥⎤ln (k 2+2k )22<⎣⎢⎡⎦⎥⎤ln (k +1)222=[ln(k +1)]2=b 2k +1,这与b k b k +2=b 2k +1矛盾.故不存在k (k ≥2,k ∈N *),使得b k ,b k +1,b k +2成等比数列.第2讲 等差数列及其前n 项和对应学生用书P87考点梳理1.等差数列的定义及通项公式(1)等差数列:一般地,如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差(公差常用字母“d ”表示).即a n -a n -1=d (n ≥2,n ∈N ).(2)等差中项:如果三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,其中A =a +b 2.(3)等差数列的通项公式:若等差数列的首项为a 1,公差为d ,则通项公式为a n =a 1+(n -1)d ;若已知第m 项a m 和公差d ,通项a n 还可写成a n =a m +(n -m )d .(4)等差数列的公差公式:d =a n -a 1n -1或d =a n -a mn -m. 2.等差数列的性质(1)若数列{a n }是等差数列,则a n -a m =(n -m )d (n 、m ∈N *).(2)数列{a n }是等差数列,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .特别地,若m +n =2p ,则a m +a n =2a p .(3)在有穷等差数列{a n }中,与首、末两项距离相等的任意两项之和与首、末两项之和相等,如a 1+a n =a 2+a n -1.(4)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n }、⎩⎨⎧⎭⎬⎫S n n 仍为等差数列,其中m ,k 为常数.(5)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k , S 3k -S 2k ,…成等差数列,公差为k 2d . (6)项数为偶数2n 的等差数列{a n },有S 2n =n (a 1+a 2n )=n (a 2+a 2n -1)=…=n (a n +a n +1)(a n 与a n +1为中间的两项),S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (7)项数为奇数2n -1的等差数列{a n },有 S 2n -1=(2n -1)a n (a n 为中间项),S 奇-S 偶=a n ,S 奇S 偶=nn -1.3.等差数列的前n 项和(1)公式:若已知首项a 1和末项a n ,则S n =n (a 1+a n )2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n (n -1)2d .(2)等差数列的前n 项和公式与函数的关系:S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).(3)最值问题:在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值. 【助学·微博】 一个命题解读等差数列是高考考查的重点内容,主要考查等差数列的通项公式,前n 项和公式,等差数列的性质等相关内容.对等差数列的定义,性质及等差中项的考查,以填空为主,难度较小.通项公式与前n 项和相结合的题目,多出现在解答题中,难度中等.对这部分内容的考查仍会坚持小题考性质、大题考灵活运用知识分析问题、解决问题的能力. 等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.考点自测1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7=________. 解析 ∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49. 答案 492.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析 设公差为d .则a 5-a 2=3d =6, ∴a 6=a 3+3d =7+6=13. 答案 133.已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0, S 21=21a 11<0,∴a 10>0,a 11<0, ∴n =10时,S n 最大. 答案 104.(2012·南通第一学期期末考试)已知数列{a n }的前n 项和为S n =-2n 2+3n ,则数列{a n }的通项公式为________.解析 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=-2n 2+3n -[-2(n -1)2+3(n -1)]=5-4n .显然a 1符合a n ,所以a n =5-4n (n ∈N *). 答案 5-4n5.(2012·南京二模)设S n 是等差数列{a n }的前n 项和.若S 3S 7=13,则S 6S 7=________.解析 由S 3=3a 2,S 7=7a 4,S 3S 7=13,得9a 2=7a 4=7(a 2+2d ),即a 2=7d ,所以a 3=8d ,a 4=9d ,从而S 6=3(a 3+a 4)=51d ,S 7=7a 4=63d ,所以S 6S 7=1721.答案 1721对应学生用书P88考向一 等差数列基本量的计算【例1】 (2012·苏锡常镇四市调研)在数列{a n }中,a 1=1,a 2=2.数列{b n }满足b n =a n +1+(-1)n a n ,n ∈N *.(1)若数列{a n }是等差数列,求数列{b n }的前6项和S 6; (2)若数列{b n }是公差为2的等差数列,求数列{a n }的通项公式. 解 (1)因为a 1=1,a 2=2,数列{a n }是等差数列,所以a n =n .所以b 1=b 3=b 5=1,b 2=5,b 4=9,b 6=13. 所以S 6=b 1+b 2+…+b 6=30.(2)因为b 1=a 2-a 1=2-1=1,数列{b n }是公差为2的等差数列,所以b n =2n -1.因为b 2n -1=a 2n -a 2n -1=4n -3,b 2n =a 2n +1+a 2n =4n -1, 所以a 2n +1+a 2n -1=2.故a 2n +3+a 2n +1=2. 所以a 2n +3=a 2n -1.又a 1=1,所以a 3=1.故a 4n -3=a 1=1,a 4n -1=a 3=1. 所以a 2n -1=1.则a 2n =4n -2. 所以a n =⎩⎨⎧1,n 为奇数,2n -2,n 为偶数.[方法总结] 等差数列的通项公式及前n 项和公式中,共涉及五个量,知三可求二,如果已知两个条件,就可以列出方程组解之.如果利用等差数列的性质去考虑也可以.体现了用方程解决问题的思想.【训练1】 (2011·福建)在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3可得1+2d =-3.解得d =-2. 从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35可得2k -k 2=-35. 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7为所求.考向二 等差数列的判定或证明【例2】 (2012·苏州第一学期期末考试)已知各项均为正数的数列{a n }的前n 项和为S n,满足8S n=a2n+4a n+3(n∈N*),且a1,a2,a7依次是等比数列{b n}的前三项.(1)求数列{a n}及{b n}的通项公式;(2)是否存在常数a>0且a≠1,使得数列{a n-log a b n}(n∈N*)是常数列?若存在,求出a的值;若不存在,请说明理由.解(1)当n=1时,8a1=a21+4a1+3,a1=1或a1=3.当n≥2时,8S n-1=a2n-1+4a n-1+3,则a n=S n-S n-1=18(a2n+4a n-a2n-1-4a n-1),从而(a n+a n-1)(a n-a n-1-4)=0.因为数列{a n}的各项均为正数,所以a n-a n-1=4.所以当a1=1时,a n=4n-3;当a1=3时,a n=4n-1.又因为当a1=1时,a1,a2,a7分别为1,5,25,能构成等比数列,所以a n=4n -3,b n=5n-1;当a1=3时,a1,a2,a7分别为3,7,27,不能构成等比数列,故舍去.所以a n=4n-3,b n=5n-1.(2)假设存在符合条件的a.由(1)知,a n=4n-3,b n=5n-1,从而a n-log a b n=4n-3-log a5n-1=4n-3-(n-1)log a5=(4-log a5)n-3+log a5.由题意,得4-log a5=0,所以a=4 5.所以满足条件的a存在,即a=4 5.[方法总结] 等差数列主要的判定方法是定义法和等差中项法,而对于通项公式法和前n项和公式法主要适合在填空题中简单判断.另外,求数列通项,一般要作出是否是等差数列或等比数列的判断.【训练2】已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1(n≥2,q≠0).(1)设b n=a n+1-a n(n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a 3是a 6与a 9的等差中项,求q 的值,并证明:对任意的n ∈N *,a n 是 a n +3与a n +6的等差中项.(1)证明 由题设a n +1=(1+q )a n -qa n -1(n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列. (2)解 由(1)知,a 2-a 1=1,a 3-a 2=q ,…, a n -a n -1=q n -2(n ≥2).将以上各式相加,得a n -a 1=1+q +…+q n -2(n ≥2),即a n =a 1+1+q +…+q n -2(n ≥2). 所以当n ≥2时,a n =⎩⎨⎧1+1-q n -11-q ,q ≠1,n , q =1.上式对n =1显然成立.(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去). 于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q (1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.考向三 等差数列前n 项和及综合应用【例3】 (1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.(2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 (1)法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53. ∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0. 即当n ≤12时,a n >0,n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130. 法二 同法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130. 法三 同法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130.(2)∵a n =4n -25,a n +1=4(n +1)-25, ∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎨⎧a n =4n -25<0, ①a n +1=4(n +1)-25≥0, ② 由①得n <614;由②得n ≥514,所以n =6.即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-25=3. 设{|a n |}的前n 项和为T n ,则T n =⎩⎪⎨⎪⎧21n +n (n -1)2×(-4) (n ≤6)66+3(n -6)+(n -6)(n -7)2×4 (n ≥7)=⎩⎨⎧-2n 2+23n (n ≤6),2n 2-23n +132(n ≥7).[方法总结] 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性或性质,求出正负转折项,便可求得和的最值. (2)利用等差数列的前n 项和S n =An 2+Bn (A 、B 为常数)为二次函数,根据二次函数的性质求最值.【训练3】 已知数列{a n }的前n 项和为S n ,a 1=14且S n =S n -1+a n -1+12,数列{b n }满足b 1=-1194且3b n -b n -1=n (n ≥2且n ∈N *). (1)求{a n }的通项公式;(2)求证:数列{b n -a n }为等比数列; (3)求{b n }前n 项和的最小值. (1)解 由2S n =2S n -1+2a n -1+1 得2a n =2a n -1+1,a n -a n -1=12, ∴a n =a 1+(n -1)d =12n -14.(2)证明 由3b n -b n -1=n ,得b n =13b n -1+13n ,所以b n -a n =13b n -1+13n -12n +14 =13b n -1-16n +14=13⎝ ⎛⎭⎪⎫b n -1-12n +34;b n -1-a n -1=b n -1-12(n -1)+14=b n -1-12n +34.由上面两式得b n -a n b n -1-a n -1=13,又b 1-a 1=-1194-14=-30,故数列{b n -a n }是以-30为首项,13为公比的等比数列. (3)解 由(2)得b n -a n =-30×⎝ ⎛⎭⎪⎫13n -1,∴b n =a n -30×⎝ ⎛⎭⎪⎫13n -1=12n -14-30×⎝ ⎛⎭⎪⎫13n -1(n ≥2).b n -b n -1=12n -14-30×⎝ ⎛⎭⎪⎫13n -1-12(n -1)+14+30×⎝ ⎛⎭⎪⎫13n -2=12+30×⎝ ⎛⎭⎪⎫13n -2⎝ ⎛⎭⎪⎫1-13=12+20×⎝ ⎛⎭⎪⎫13n -2>0,∴{b n }是递增数列.当n =1时,b 1=-1194<0; 当n =2时,b 2=34-10<0; 当n =3时,b 3=54-103<0; 当n =4时,b 4=74-109>0,所以,从第4项起的各项均大于0,故前3项之和最小. 且S 3=14(1+3+5)-30-10-103=-49312.考向四 等差数列的性质及应用【例4】 (1)在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于________.(2)(2012·苏北四市二模)已知等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =7n +45n +3,且a n b 2n 是整数,则n 的值为________. 解析 (1)由已知可得(a 1+a 2+a 3)+(a 18+a 19+a 20)=-24+78⇒(a 1+a 20)+(a 2+a 19)+(a 3+a 18)=54⇒a 1+a 20=18⇒S 20=a 1+a 202×20=182×20=180. (2)令S n =7n 2+45n ,则a n =14n +38,T n =n 2+3n , 则b n =2n +2,则a n b 2n =14n +384n +2=7n +192n +1=72+12×312n +1,由2n +1∈N *,则2n +1=31,n =15.答案 (1)180 (2)15[方法总结] 高考对等差数列通项公式的考查,常常涉及项与项之间的内在联系,因此突破这些问题的关键是归纳和总结一些基本的性质,并能利用这些性质对问题进行合理的转化,从而求解.【训练4】 设等差数列的前n 项和为S n ,已知前6项和为36,S n =324,最后6项的和为180(n >6),求数列的项数n . 解 由题意可知a 1+a 2+…+a 6=36① a n +a n -1+a n -2+…+a n -5=180② ①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216. ∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324.∴n =18.对应学生用书P89热点突破17 等差数列的综合问题近几年高考中,对等差数列的概念.通项公式、性质、前n 项和公式的考查始终没有放松.一方面考查知识的掌握情况,另一方面考查数学推理能力. 【示例】 (2011·浙江卷)已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R ),设数列的前n 项和为S n 且1a 1,1a 2,1a 4成等比数列.(1)求数列{a n }的通项公式及S n ;(2)记A n =1S 1+1S 2+1S 3+…+1S n ,B n =1a 1+1a 2+1a 4+…+1a 2n -1,当n ≥2时,试比较A n 与B n 的大小.[审题与转化] 第一步:(1)利用方程求公差,再求a n 、S n .(2)利用裂项法求A n ,利用等比数列求和公式求B n ,再比较大小即可.[规范解答] 第二步:(1)设等差数列{a n }的公差为d ,由⎝ ⎛⎭⎪⎫1a 22=1a 1·1a 4,得(a 1+d )2=a 1(a 1+3d ),∵d ≠0,∴d =a 1=a ,∴a n =na ,S n =an (n +1)2.(2)∵1S n=2a ⎝ ⎛⎭⎪⎫1n -1n +1,∴A n =1S 1+1S 2+1S 3+…+1S n =2a ⎝ ⎛⎭⎪⎫1-1n +1. ∵a 2n -1=2n -1a ,∴B n =1a 1+1a 2+…+1a 2n -1=1a ·1-⎝ ⎛⎭⎪⎫12n1-12=2a ⎝ ⎛⎭⎪⎫1-12n . 当n ≥2时,2n =C 0n +C 1n +C 2n +…+C nn >n +1,即1-1n +1<1-12n , ∴当a >0时,A n <B n ,当a <0时,A n >B n .[反思与回顾] 第三步:高考考查等差数列时,常考查等差数列的通项、性质、求和、裂项法求和和公式法求和等知识.高考经典题组训练1.(2012·重庆卷改编)在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=________.解析 因为{a n }成等差数列,所以⎩⎨⎧a 2=a 1+d =1,a 4=a 1+3d =5,解得⎩⎨⎧a 1=-1,d =2.所以S 5=5a 1+5×42d =5×(-1)+10×2=15.答案 152.(2012·福建卷改编)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为________.解析 因为a 1+a 5=2a 3=10,所以a 3=5,又a 4=7,所以d =a 4-a 3=2. 答案 23.(2012·江西卷)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析因为(a1+a5)+(b1+b5)=2(a3+b3)=42,所以a5+b5=42-7=35.答案354.(2012·山东卷)在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.解(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8.因此9m-1+1≤n≤92m-1,故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9×(1-81m)1-81-1-9m1-9=92m+1-10×9m+180.5.(2010·天津卷)在数列{a n}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k.(1)证明:a4,a5,a6成等比数列;(2)求数列{a n}的通项公式;(3)记T n=22a2+32a3+…+n2a n,证明:32<2n-T n≤2(n≥2).(1)证明由题设可知,a2=a1+2=2,a3=a2+2=4,a4=a3+4=8,a5=a4+4=12,a6=a5+6=18.从而a6a5=a5a4=32.所以a4,a5,a6成等比数列.(2)解由题设,可得a2k+1-a2k-1=4k,k∈N*.所以a 2k +1-a 1=(a 2k +1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=4k +4(k -1)+…+4×1=2k (k +1),k ∈N *.由a 1=0,得a 2k +1=2k (k +1),从而a 2k =a 2k +1-2k =2k 2.所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n 2-12,n 为奇数,n 22,n 为偶数,或写成a n =n 22+(-1)n -14,n ∈N *. (3)证明 由(2)可知a 2k +1=2k (k +1),a 2k =2k 2. 以下分两种情况进行讨论:①当n 为偶数时,设n =2m (m ∈N *). 若m =1,则2n -∑k =2nk 2a k=2.若m ≥2,则∑k =2nk 2a k =∑k =1m (2k )2a 2k +∑k =1m -1 (2k +1)2a 2k +1=∑k =1m 4k 22k 2+∑k =1m -1 4k 2+4k +12k (k +1)=2m +∑k =1m -1⎣⎢⎡⎦⎥⎤4k 2+4k 2k (k +1)+12k (k +1) =2m +∑k =1m -1⎣⎢⎡⎦⎥⎤2+12⎝ ⎛⎭⎪⎫1k -1k +1 =2m +2(m -1)+12⎝ ⎛⎭⎪⎫1-1m =2n -32-1n .所以2n -∑k =2nk 2a k=32+1n ,从而32<2n -∑k =2n k 2a k<2,n =4,6,8,….②当n 为奇数时,设n =2m +1(m ∈N *).∑k =2nk 2a k =∑k =22m k2a k +(2m +1)2a 2m +1=4m -32-12m +(2m +1)22m (m +1)=4m +12-12(m +1)=2n -32-1n +1,所以2n -∑k =2nk 2a k =32+1n +1,从而32<2n -∑k =2n k 2a k<2,n =3,5,7,….综合①和②可知,对任意n ≥2,n ∈N *,都有32<2n -T n ≤2.对应学生用书P301分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2011·重庆卷改编)在等差数列{a n }中,a 2=2,a 3=4,则a 10=________. 解析 设公差为d ,则d =a 3-a 2=2. ∴a 1=0,a n =2n -2∴a 10=2×10-2=18. 答案 182.(2012·辽宁卷改编)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.解析 由等差数列性质及已知,得S 11=11(a 1+a 11)2=112(a 4+a 8)=112×16=88. 答案 883.(2012·泰州学情调查)在等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n =________.解析 因为a 1>0,S 4=S 9,所以a 5+a 6+a 7+a 8+a 9=0,所以a 7=0,所以⎩⎨⎧a 6>0,a 8<0,从而当n =6或7时S n 取最大值.答案 6或74.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9=________. 解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴3a 4=39,3a 6=27,∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4,∴d =-2, ∴a 5=a 4+d =13-2=11,∴S 9=9(a 1+a 9)2=9a 5=99.答案 995.(2012·南通调研)设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.解析 由15=a 1+a 2+a 3=3a 2,得a 2=5.所以⎩⎨⎧a 1+a 3=10,a 1a 3=16.又公差d >0,所以⎩⎨⎧a 1=2,a 3=8.所以d =3.所以a 11+a 12+a 13=3a 12=3(a 1+11d )=3(2+33)=3×35=105. 答案 1056.(2012·南京模拟)已知数列{a n }的前n 项和为S n =2n 2+pn ,a 7=11.若a k +a k +1>12,则正整数k 的最小值为________.解析 因为a 7=S 7-S 6=2×72+7p -2×62-6p =26+p =11,所以p =-15,S n =2n 2-15n ,a n =S n -S n -1=4n -17(n ≥2),当n =1时也满足.于是由a k +a k +1=8k -30>12,得k >214>5.又k ∈N *,所以k ≥6,即k min =6. 答案 6二、解答题(每小题15分,共30分)7.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.8.已知数列{a n }满足a n =2a n -1+2n +1(n ∈N *,n ≥2),且a 3=27. (1)求a 1,a 2的值;(2)记b n =12n (a n +t )(n ∈N *),问是否存在一个实数t ,使数列{b n }是等差数列?若存在,求出实数t ;若不存在,请说明理由. 解 (1)由a 3=27,得2a 2+23+1=27,所以a 2=9. 又由2a 1+22+1=9,得a 1=2.(2)假设存在实数t ,使得数列{b n }是等差数列,则2b n =b n -1+b n +1,即2×12n (a n +t )=12n -1(a n -1+t )+12n +1(a n +1+t ),即4a n =4a n-1+a n +1+t ,所以4a n =4×a n -2n -12+2a n +2n +1+t +1,所以t =1. 故存在t =1,使得数列{b n }是等差数列.分层训练B 级 创新能力提升1.(2012·南京学期学情)已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=________.解析a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=2(a 11+a 12)2(b 11+b 12)=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案 3152.已知数列{a n }满足递推关系式a n +1=2a n +2n-1(n ∈N *),且⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ2n 为等差数列,则λ的值是________.解析 由a n +1=2a n +2n-1,可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2n -λ2n +1=12-12n +1-λ2n +1=12-λ+12n +1,当λ的值是-1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -12n 是公差为12的等差数列.。
2014年高考题专题整理 --不等式和线性规划第I 部分1.【2014年四川卷(理04)】若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a bd c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>, 由不等式性质知:0a b d c ->->,所以a bd c<2.【2014年江西卷(理11)】(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为A.1B.2C.3D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=3.【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1- (B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-2=-+y x 022=--y x 022=+-y x xyO1-=k 2=k 21=k4.【2014年天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.5.【2014年山东卷(理09)】已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。
2014年高考数学真题汇编——数列一.选择题1. (2014大纲)等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .2. (2014重庆)对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D【解析】.∴D 选要求角码成等差3. (2014北京)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件D试题分析:对等比数列}{n a ,若1>q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则4. (2014福建)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14DC5. (2014辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >【答案】C【解析】 ..0.00;00:.,1111111C d a d a d a a a a a a a n n n 选且或且分情况解得即递减由同增异减知,<∴><<><+二.填空题1. (2014江苏) 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .2(2014安徽)数列{}n a 是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 12.13(2014北京)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.4(2014广东)若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则5 (2014天津)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________. 【答案】21-【解析】 解:12-依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-.6. (2014上海)设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= 。
2014年全国高考试卷数列部分汇编1. (2014安徽理12)数列{}n a 是等差数列,若135135a a a +++,,构成公比为q 的等比数列,则q =________. 【解析】1 设{}n a 的公差为d ,则315131225144a a d a a d +=++++=+++,,由题意可得23(3)a+=15(1)(5)a a ++.∴2111[(1)2(1)](1)[(1)4(1)]a d a a d +++=++++,∴2221111(1)4(1)(1)[2(1)](1)4(1)(1)a d a d a a d ++++++=++++, ∴1d =-,∴3131a a +=+,∴公比31311a qa +==+. 2. (2014安徽文12)如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12123567AA a A A a A A a ===,,…,,则7a =______________.【解析】 14由22BC =得112123222212AB a AA a A A a ==Þ==Þ==´=,由此可归纳出{}n a 是以12a =为首项,22为公比的等比数列,因此667121224a a q æö=´=´=ç÷ç÷èø.3. (2014安徽文18)数列{}n a 满足111(1)(1)n n a na n a n n n *+=,=+++,ÎN .⑴证明:数列n a n ìüíýîþ是等差数列;是等差数列;⑵设3nnnb a =×,求数列{}nb 的前n 项和nS .【解析】 ⑴ 由已知可得111n n a a n n +=++,即111n n a a n n+-=-. 所以n a n ìüíýîþ是以111a =为首项,1为公差的等差数列. ⑵ 由⑴得()111na n n n=+-×=,所以2n a n =. 从而3nn b n =×. 1231323333nn S n =×+×+×++×,①()23131323133n nn S n n +=×+×++-×+×.② A 1A 4A 3A 2第(12)题图ABC①-②得12123333n n n S n +-=+++-×()()1131312333132nn nn n n ++×--×-=-×=-..所以()121334nn n S +-×+=.评析 本题考查等差数列定义的应用,错位相减法求数列的前n 项和,解题时利用题⑴提示对递推关系进行变形是关键.4. (2014北京理5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的(”为递增数列的( ) A .充分而不必要条件 B .必要而不充分条件.必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件.既不充分也不必要条件 【解析】D 对于等比数列{}na ,若1q >,则当10a <时有{}na 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D .5. (2014北京理12)若等差数列{}n a 满足7890a a a ++> ,7100a a +<,则当n =____时,{}n a 的前n 项和最大.最大.【解析】8 由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值6. (2014北京文15)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.为等比数列.⑴求数列{}n a 和{}n b 的通项公式;的通项公式; ⑵求数列{}n b 的前n 项和.项和.【解析】 ⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --===所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a qb a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,, ⑵ 由⑴知()13212n nn b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112nn -=--×.所以,数列{}n b 的前n项和为()31212n n n ++-.7. (2014大纲理10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于(项和等于() A .6 B .5 C .4 D .3【解析】C8. (2014大纲理18)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤⑴求{}n a 的通项公式;的通项公式; ⑵设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S … 故4500a a ,厔于是10301040d d ++≥,≤ 解得10532d --≤≤. 因此3d =-.数列{}n a 的通项公式为133n a n =-.⑵ ()()1111331033103133n b n n n n æö==-ç÷----èø1.于是12n T b b =++…nb 1111111371047103103n n éùæöæöæö=-+-+-ç÷ç÷ç÷êú--èøèøèøëû…+ 111310310n æö=-ç÷-èø()10103n n =-.9. (2014大纲文8)设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32 C .63 D .64 【解析】C 10. (2014大纲文17)数列{}n a 满足12211222n n na a a a a ++===-+,, ⑴设1nn nb a a +=-,证明{}nb 是等差数列;是等差数列;⑵求{}n a 的通项公式.的通项公式.【解析】 ⑴ 由2122n n n a a a ++=-+得2112n n n n a a a a +++-=-+ 即12n n b b +=+又1211b a a =-=所以{}n b 是首项为1,公差为2的等差数列. ⑵ 由⑴得12(-1)n b n =+ 即+121n n a a n -=- 于是111()(21)nnk k k k aa k +==-=-åå所以211n a a n +-=,即211n a n a +=+.又11a =,所以{}n a 的通项公式为222n a n n =-+.11. (2014福建理3)等差数列{}n a 的前n 项和n S ,若13212a S ==,,则6a =( ) A .8B .10C .12D .14【解析】C12. (2014福建文17)在等比数列{}n a 中,25381a a ==,.⑴求n a ;⑵设3log n n b a =,求数列{}n b 的前n 项和n S .【解析】 本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查化归与转化思想.⑴ 设{}n a 公比为q ,依题意得141381a q a q =ìïí=ïî,, 解得113a q =ìí=î,.因此,13nn a -=.⑵ 因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()=22n nn b b n n S +-=.13. (2014广东理13)若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220l n l n l n a a a +++=__________.【解析】50. 由等比数列性质可知,51202193189121011e a a a a a a a a a a =====,可求得1220120219912l n l n l n l n l n l n l n 10550a a a a a a a a a a a +++=++++=´=. 14. (2014广东理19) 设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ÎN ,且315S =.⑴求1a ,2a ,3a 的值;的值;⑵求数列{}n a 的通项公式.的通项公式.【解析】 ⑴ 取2n =得到23420S a =-,又233315S S a a =-=-,于是3342015a a -=-,得37a =取1n =得到11227a S a ==-,又1322158a a a a =--=-, 于是22212785,3a a a a -=-Þ==;⑵ 猜测21na n =+,用归纳法证明:1°1n =时,显然成立;2°假设n k =时,成立,即21k a k =+;3°由22111(1)23432234232k k k k k k S ka k k k ka k k a k +++-=--Þ+×=--Þ=+; 故结论成立,即21n a n =+.15. (2014广东文13)等比数列{}n a 的各项均为正数,且154a a =,则2122232425l og l o g l o g l o g l o g a a a a a ++++=_____.【解析】5. 16. (2014广东文19)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足满足222(3)3()0n n S n n S n n n *-+--+=ÎN ,.⑴求1a 的值;的值;⑵求数列{}n a 的通项公式;的通项公式;⑶证明:对一切正整数n ,有()()()112211111113nna a a a a a+++<+++. 【解析】 ⑴ ∵()()222330n n S n n S n n -+--+=,∴令1n =,得21160a a +-=,解得12a =得13a =-. 又0na >,∴12a =.⑵ 由()()222330n n S n n S n n -+--+=,得()()230n n S n n S éù-++=ëû, 又0n a >,所以30n S +≠,所以2n S n n =+,所以当2n ≥时,()221112n n n a S S n n n n n -éù=-=+--+-=ëû,又由⑴知,12a =,符合上式.所以2n a n =.⑶ 由⑵知,()()111221n n a a n n =++, 所以()()()1122111111n n a a a a a a ++++++… ()1112345221n n =+++´´+…()()11112335572121n n <++++´´´-+…111111116235572121n n éùæöæöæö<+-+-++-ç÷ç÷ç÷êú-+èøèøèøëû… 111162321n æö=+-ç÷+èø11116233<+´=17. (2014湖北理18文19)已知等差数列{}n a 满足:12a =,且125a a a ,,成等比数列.成等比数列.⑴求数列{}n a 的通项公式.的通项公式.⑵记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.小值;若不存在,说明理由.【解析】 ⑴ 设数列{}n a 的公差为d ,依题意,2224d d ++,,成等比数列,故有 2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2na =;当4d =时,2(1)442n a n n =+-×=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-. ⑵ 当2na =时,2nS n =.显然260800n n +<,此时不存在正整数n ,使得60800n S n >+成立.当42na n =-时,[]22(42)22n n n S n +-==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60nS n >+800成立,n 的最小值为41.综上,当2na =时,不存在满足题意的n ;当42na n =-时,存在满足题意的n ,其最小值为41.18. (2014湖南理20)已知数列{}n a 满足111||n n n a a a p +=-=,,*n ÎN .⑴若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值;的值;⑵若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.的通项公式. 【解析】 ⑴ 因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=Þ-=,分别令12n =,可得22132a a p a a p -=-=,22311a p a p p Þ=+=++,, 因为12323a a a ,,成等差数列, 所以21343a a a =+()()224113130p p p p p Þ+=+++Þ-=13p Þ=或0, 当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.⑵ 由题可得122122212121111222n n n n n n n n n a a a a a a +-++-+-=Þ-=-=,, 因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22222122212121n nn n n n n n a a a a a a a a +-++-+-<-ìÞ->-í<î, 又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=, 同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n nn a a +-=-,则当2n m =()*m ÎN 时,21324322123211111,2222m m m a a a a a a a a ---=-=--=-=,,,,这21m -个等式相加可得2113212422111111222222m m m a a --æöæö-=+++-+++ç÷ç÷èøèø212222111111111224224113321144m m m ----×-×=-=+×--22141332m m a -Þ=+×. 当21n m =+时,2132432122321111,2222m m m a a a a a a a a +-=-=--=-=-,,,,这2m 个等式相加可得2111321242111111222222m m m a a +-æöæö-=+++-+++ç÷ç÷èøèø2122211111111224224113321144m m m--×-×=-=-×-- 21241332m m a +=-×,当0m =时,11a =符合,故212241332m m a --=-×综上()1141332nn n a --=+×. 19. (2014湖南文16)已知数列{}n a 的前n 项和22n n n S n *+=ÎN ,.⑴求数列{}n a 的通项公式;的通项公式;⑵设()21nna n nb a =+-,求数列{}n b 的前2n 项和.项和.【解析】 ⑴ 当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n aS Sn--+-+=-=-=. 故数列{}n a 的通项公式为n a n =. ⑵ 由⑴知,()21nn nb n =+-,记数列{}n b 的前2n 项和为2nT ,则()()122222212342nn T n =++++-+-+-+.记122222nA =+++,12342B n =-+-+-+,则()2212122212nn A +-==--,()()()1234212B n n n=-++-+++--+=éùëû. 故数列{}n b 的前2n 项和21222n n T A B n +=+=+-.20. (2014江苏理7)在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值为_____.【解析】 4设公比为q (0)q >,则由8642a a a =+得266622a a q a q =+,解得22q =,故4624a a q ==21. (2014江苏理20)设数列{}n a 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”. ⑴若数列{}n a 的前n 项和*2()n nS n =ÎN ,证明:{}n a 是“H 数列”; ⑵设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;的值;⑶证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}nc ,使得n n n a b c =+成立.成立.【解析】 ⑴ 当2n ≥时,111222n n n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ³时,1n n S a += ∴{}n a 是“H 数列”⑵1(1)(1)22n n n n n S na d n d --=+=+ 对*n "ÎN ,*m $ÎN 使n m S a =,即(1)1(1)2n n dn m d -+=+-取2n =得1(1)d m d +=-,12md =+∵0d <,∴2m <,又*m ÎN ,∴1m =,∴1d =- ⑶ 设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对*n "ÎN ,11n n b b a +-=-1(1)()n c n a d =-+,对*n "ÎN ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}n b 、{}n c 为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =;当2n =时1m = 当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,*m ÎN 因此对n ",都可找到*m ÎN ,使n m T b =成立,即{}n b 为H 数列 {}n c 的前n 项和1(1)()2n n n R a d -=+,令1(1)()m n c m a d R =-+=,则(1)12n n m -=+ ∵对*n "ÎN ,(1)n n -是非负偶数,∴*m ÎN即对*n "ÎN ,都可找到*m ÎN ,使得n m R c =成立,即{}n c 为H 数列因此命题得证22. (2014江西理17)已知首项都是1的两个数列{}n a ,{}n b *0n b n ¹ÎN ,,满足11120n n n n n n a b a b b b +++-+=.⑴令n n na cb =,求数列{}nc 的通项公式;的通项公式;⑵若13n n b -=,求数列{}n a 的前n 项和n S .【解析】 ⑴ 因为()*111200n n n n n n n a ba b b b b n +++-+=¹ÎN ,, 所以112n n n na ab b ++-=,即12n nc c +-= 所以数列{}n c 是以1为首项,2为公差的等差数列. 故21nc n =-.⑵ 由13n nb -=知()1213n n n n a c b n -==-,于是数列{}n a 的前n 项和()0121133353213n n S n -=×+×+×++-×…. ()()12131333233213n n n S n n -=×+×+-×+-×…+. 相减得()()()1212123332132223n n nn S n n --=+×++--×=---…+, 所以()131nn S n =-+.23. (2014江西文13)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,取最大值,则则d 的取值范围_________. 【解析】 718æö--ç÷èø, 24. (2014江西文17) 已知数列{}n a 的前n 项和232n n nS n *-=ÎN ,. ⑴求数列{}n a 的通项公式;的通项公式;⑵证明:对任意1n >,都有m *ÎN ,使得1n m a a a ,,成等比数列.成等比数列.【解析】 ⑴ 由232n n nS -=得111a S ==,当2n ≥时,132n n n a S S n -=-=-.所以数列{}na 的通项公式为32na n =-.⑵ 要使1n m a a a ,,成等比数列,只需要21n m a a a =×,即()()232132n m-=×-,即2342m n n =-+,而因此时m *ÎN ,且m n >,所以对任意的1n >,都存在m *ÎN ,使得1n m a a a ,,成等比数列.25. (2014辽宁理8文9) 设等差数列{}n a 的公差为d .若数列{}12n a a 为递减数列,则()为递减数列,则()A .0d <B .0d >C .10a d <D .10a d >【解析】C 26. (2014山东理19)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124S S S ,,成等比数列.⑴求数列{}n a 的通项公式;的通项公式;⑵令114(1)n n n n n b a a -+=-,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 1121412S S 246d a a d S a d ===+=+,,,124S S S ,,成等比数列,2214S S S \=解得1121n a a n =\=-,⑵111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+ 当n 为偶数时,111111111(1)()()()()3355723212121nT n n n n =+-+++-++-+---+1212121n nT n n \=-=++ 当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+12212121n n T n n +\=+=++2212221n n n n T n n n ìïï+\=í+ï+î,为偶数,为奇数27. (2014山东文19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.的等比中项.⑴求数列{}na 的通项公式;的通项公式;⑵设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【解析】 ⑴ 由题意知{}n a 为等差数列,设1(1)n a a n d =+-,2a 为1a 与4a 的等比中项2214a a a \=´且()()2111103a a d a a d ¹Þ+=+,2d =解得:12a =()2122n a n n \=+-´=.⑵ 由⑴知:2n a n =,∴()()121n n n b a n n +==+①当n 为偶数时:()()()()()()()()()()2122334+1213435+11224262+22246+222222n T n n n n n n n nn n n=-´+´-´++=´-++-++--++éùëû=´+´+´+´=´++++×+=´=②当n 为奇数时:()()()()()()()()()()()()()21223341213435+(1)21224262+(1)212246+111212122122n T n n n n n n n n n n n n n n n n n n n =-´+´-´+-+=´-++-++---+-+éùëû=´+´+´+-´-+=´+++--+-+-×++=´-+=-综上:2221222n n n n T n n n ì++-ïï=í+ïïî为为数,奇数,偶.28. (2014陕西文8) 原命题为“若12n n n a aa ++<,+n N ∈”,则{}n a 为递减数列,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,真,真.真,真,真 B .假,假,真.假,假,真 C .真,真,假.真,真,假 D .假,假,假.假,假,假【解析】A 29. (2014上海理23)已知数列{}n a 满足1133n n n a a a +≤≤,*n ÎN ,11a =。
1. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D3. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .4. 【2014辽宁高考理第8题】设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >5. 【2014重庆高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 369.,,D a a a 成等比数列6. 【2014天津高考理第11题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.7. 【2014大纲高考理第10题】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .8. 【2014高考广东卷理第13题】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .9. 【2014高考安徽卷理第12题】数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.10. 【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.【答案】8。
2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 1 3n 1 1 12 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 0 1 1 11 a2 31 2 1 1 L 132 93a n L 1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2.切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a nb n 2 n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3kS n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。
专题6 数列1. 【2014高考安徽卷文第12题】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.3. 【2014高考广东卷文第13题】等比数列{}n a 的各项均为正数,且154a a =,则212223242l o g l o g l o g l o g l o g a a a a a ++++= .【答案】5.5. 【2014高考江西卷文第13题】在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.6. 【2014高考辽宁卷文第9题】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 【答案】C 【解析】试题分析:由已知得,11122nn a a a a -<,即111212n n a a a a -<,1n 1(a )21n a a --<,又n 1a n a d --=,故121a d<,从而10a d <,选C .【考点定位】1、等差数列的定义;2、数列的单调性.7. 【2014高考全国2卷文第5题】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n -8.. 【2014高考陕西卷文第8题】原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】A 【解析】试题分析:由12n n n a a a ++<1{}n n n a a a +⇒<⇒为递减数列,所以原命题为真命题; 逆命题:若{}n a 为递减数列,则12n n n a a a ++<,n N +∈;若{}n a 为递减数列,则1n n a a +<,即12nn n a a a ++<,所以逆命题为真; 否命题:若12n n n a a a ++≥,n N +∈,则{}n a 不为递减数列;由11{}2n n n n n n a a a a a a +++≥⇒≤+⇒不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A考点:命题及命题的真假.10. 【2014高考陕西卷文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.11. 【2014高考天津卷卷文第5题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12-13. 【2014高考安徽卷文第18题】 数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}na n是等差数列; (2) 设3nn n b a =⋅,求数列{}n b 的前n 项和n S14. 【2014高考北京卷文第15题】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15. 【2014高考大纲卷文第17题】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.16. 【2014高考福建卷文第17题】在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .【答案】(1) 13n n a -=.(2)22n n nS -=.17. 【2014高考广东卷文第19题】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.【答案】(1)12a =;(2)2n a n =;(3)详见解析.【解析】(1)令1n =得:()2111320S S ---⨯=,即21160S S +-=,()()11320S S ∴+-=,10S >,12S ∴=,即12a =;(2)由()()22233n n S n n S n n -+--+,得()()230n n S S n n ⎡⎤+-+=⎣⎦,()0n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,所以当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,()2n a n n N *∴=∈;1111111623213633n n ⎛⎫=+-=-< ⎪++⎝⎭. 【考点定位】本题以二次方程的形式以及n S 与n a 的关系考查数列通项的求解,以及利用放缩法证明数列不等式的综合问题,考查学生的计算能力与逻辑推理能力,属于中等偏难题.18. 【2014高考湖北卷文第19题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列. (1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.19. 【2014高考湖南卷文第16题】已知数列{}n a 的前n 项和*∈+=N n n n S n ,22. (1)求数列{}n a 的通项公式;(2)设()n na n ab n 12-+=,求数列{}n b 的前n 2项和. 【答案】(1) n a n = (2) 21222n n T n +=+-20. 【2014高考江苏第20题】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n N =∈,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得n n n a b c =+*()n N ∈成立.21. 【2014高考江西文第17题】已知数列{}n a 的前n 项和*∈-=N n n n S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列.而此时*∈N m ,且,m n >所以对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 考点:由和项求通项,等比数列22. 【2014高考全国1文第17题】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 13n 1 112 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 01 1 11 a2 31 2 1 1 L 132 93a n L1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2 .切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a n bn2n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島 d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3k2S n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。
一.基础题组1. 【江苏省诚贤中学2014届高三数学月考试题】在等比数列{n a }中,若7944,1a a a ⋅==,则12a 的值是 .2. 【江苏省诚贤中学2014届高三数学月考试题】已知等比数列}{n a 的前n 项和为n S ,若62,256382-==S a a a a ,则1a 的值是 .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】 若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 .4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】等差数列{}n a 中,公差0d ≠,且2371220a a a -+=,数列{}n b 是等比数列,且77b a =则68b b = .5. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知数列{}n a 满足:121,(0).a a a a ==>数列{}n b 满足1(*)n n n b a a n N +=∈。
(1)若{}n a 是等差数列,且312,b =求a 的值及{}n a 的通项公式;(2)当{}n b 是公比为1a -的等比数列时,{}n a 能否为等比数列?若能,求出a 的值;若不能,请说明理由.试题解析:解:(1){}n a 是等差数列,121,(0),1(1)(1)n a a a a a n a ==>∴=+--.--- 2分又33412,12,(21)(32)12b a a a a =∴=--=即,解得526a a ==-或,0, 2.n a a a n >∴== 从而. …………………………6分(2)数列{}n a 不能为等比数列. …………………8分11222131,,1,1n n n n n n n n n n n n nb a a a ab a a a a a b a a a a +++++++=∴===-∴=- 则, ………10分假设数列{}n a 能为等比数列,由21231,,a a a a a ===得, ………………12分221,10a a a a ∴=--+=即, 此方程无解,∴数列{}n a 一定不能为等比数列.………14分考点:1.等差数列的通项公式;2.等比数列的定义6. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】设等比数列{}n a 的首项为12a =,公比为q (q 为正整数),且满足33a 是18a 与5a 的等差中项;数列{}n b 满足232()02n n n t b n b -++=(*,t R n N ∈∈). (1)求数列{}n a 的通项公式;(2)试确定t 的值,使得数列{}n b 为等差数列;(3)当{}n b 为等差数列时,对每个正整数k ,在k a 与1k a +之间插入k b 个2,得到一个新数列{}n c . 设n T 是数列{}n c 的前n 项和,试求满足12m m T c +=的所有正整数m .试题解析:解:(Ⅰ)因为31568a a a =+,所以2468q q =+, 解得2242q q ==或(舍),则2q =………………3分又12a =,所以2nn a =……………………………5分7. 【南京市、盐城市2014届高三第一次模拟考试】已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若1n n A S B S ≤-≤对*n N ∈恒成立,则B A -的最小值为8. 【南京市、盐城市2014届高三第一次模拟考试】等差数列{}n a 的前n 项和为n S ,已知12a =,622S =.(1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<< ,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.试题解析:(1)设等差数列的公差为d ,则611665222S a d =+⋅⋅=,解得23d =, (2)分 所以(5)3n n n S +=. ………4分 (2)因为数列}{n a 是正项递增等差数列,所以数列}{n k a 的公比1>q , 若22=k ,则由382=a ,得3412==a a q ,此时932)34(223=⋅=k a ,由)2(32932+=n ,9. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 各项均为正数的等比数列{}n a 中,811=a 12...8(2,)m m a a a m m N +⋅⋅⋅=>∈,若从中抽掉一项后,余下的m-1项之积为1m -,则被抽掉的是第 ▲_ 项.10. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 设各项均为正实数的数列}{n a 的前n 项和为n S ,且满足2)1(4+=n n a S (*N n ∈).(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 的通项公式为n b nn a a t=+(*N t ∈),若1b ,2b ,m b (*,3N m m ∈≥)成等差数列,求t 和m 的值;(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为}{n a 中的三项1n a ,2n a ,3n a .角形的三边2)32(1+=k a n ,)52)(32(2++=k k a n ,2)52(3+=k a n ,再利用三角形两边之和大于第三边来判断能构成一个三角形;又欲证明它们互不相似,这是一个否定性命题,故不难想到运用反证法证明,假设某两个三角形相似,用上述所设某两边代入并整理,可得21k k =,与21k k ≠相矛盾,从而命题得证.11. 【江苏省扬州中学2013—2014学年第一学期月考】在等差数列{}n a 中,若7893a a a ++=,则该数列的前15项的和为 .【答案】15 【解析】试题分析:对数列问题,能用性质的尽量应用性质解题可以更简捷,由等差数列的性质789833a a a a ++==,81a =,1581515S a ==.考点:等差数列的性质,等差数列{}n a 中,2(,,*)m n p m n p N +=∈2m n p a a a ⇒+=12. 【江苏省扬州中学2013—2014学年第一学期月考】 设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = .13.【江苏省扬州中学2013—2014学年第一学期月考】设13521A ,,,,2482n n n -⎧⎫=⎨⎬⎩⎭ (),2n N n *∈≥,A n 的所有非空子集中的最小元素的和为S ,则S = .【答案】⎪⎩⎪⎨⎧∈≥-=*2,3,212,47N n n n n【解析】试题分析:这个问题主要是研究集合n A 中的每个元素在和S 中分别出现多少次,事实上,以12为例,集合14. 【江苏省扬州中学2013—2014学年第一学期月考】已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数.(1)用n x 表示1n x +; (2)12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (3)若数列{}n b 的前n 项和()12n n n S +=,记数列}{n n b a ⋅的前n 项和n T ,求n T .21321n n a b a b a b +=+++ ,两式相减,即n n T qT -,这个和是容易求得的.15. 【苏北四市2014届高三第一次质量检测】 设等比数列{}n a 的前n 项和为n S ,若435a a a ,,成等差数列,且33k S =,163k S +=-,其中k N *∈,则2k S +的值为 .16. 【苏北四市2014届高三第一次质量检测】 已知数列{}n a 满足1a x =,23a x =,2*1132(2,)n n n S S S n n n +-++=+∈N ≥,n S 是数列{}n a 的前n 项和.(1)若数列{}n a 为等差数列. (ⅰ)求数列的通项n a ;(ⅱ)若数列{}n b 满足2n a n b =,数列{}n c 满足221n n n n c t b tb b ++=--,试比较数列{}n b 前n 项和n B 与{}n c 前n 项和n C 的大小;(2)若对任意*n ∈N ,1n n a a +<恒成立,求实数x 的取值范围.试题解析:(1)(ⅰ)因为21132(2,*)n n n S S S n n n +-++=+∈N ≥,所以32114S S S ++=,即3212314a a a ++=,又12,3a x a x ==,所以3149a x =-, ……………………2分 又因为数列{}n a 成等差数列,所以2132a a a =+,即()6149x x x =+-,解得1x =,所以()()()1111221*n a a n d n n n =+-=+-⨯=-∈N ; ……………………4分17. 【苏州市2014届高三调研测试】 设S n 为等差数列{a n }的前n 项和,已知S 5 = 5,S 9 =27,则S 7 = ▲ .18. 【苏州市2014届高三调研测试】 设数列{a n }满足a n +1 = 2a n + n 2 - 4n + 1.(1)若a 1 = 3,求证:存在2()f n an bn c =++(a ,b ,c 为常数),使数列{ a n + f (n ) }是等比数列,并求出数列{a n }的通项公式;(2)若a n 是一个等差数列{b n }的前n 项和,求首项a 1的值与数列{b n }的通项公式.试题解析:解(1),14221+-+=+n n a a n n设),(2)1()1(221c bn an a c n b n a a n n +++=++++++…………………… 2分 也即,)2(221b a c n a b an a a n n --+-++=+…… 4分19.【江苏省兴化市安丰高级中学2014届高三12月月考】设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =是“627S S =” 的条件.20. 【江苏省兴化市安丰高级中学2014届高三12月月考】 数列{}n a 是公差不为0的等差数列,且862a a a =+,则=55a S .二.能力题组1. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知数列{}n a 中,,31=a 前n 和1(1)(1)12n n S n a =++-(1)求证:数列{}n a 是等差数列 (2)求数列{}n a 的通项公式(3)设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由。
专题6数列1.【2014高考安徽卷文第12题】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.3.【2014高考广东卷文第13题】等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .【答案】5.5.【2014高考江西卷文第13题】在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.6.【2014高考辽宁卷文第9题】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则() A .0d <B .0d >C .10a d <D .10a d > 【答案】C 【解析】试题分析:由已知得,11122nn a a a a -<,即111212n n a a a a -<,1n 1(a )21n a a --<,又n 1a n a d --=,故121a d<,从而10a d <,选C .【考点定位】1、等差数列的定义;2、数列的单调性.7.【2014高考全国2卷文第5题】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =()A.(1)n n +B.(1)n n -C.(1)2n n + D.(1)2n n -8..【2014高考陕西卷文第8题】原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )真,真,真(B )假,假,真(C )真,真,假(D )假,假,假 【答案】A 【解析】试题分析:由12n n n a a a ++<1{}n n n a a a +⇒<⇒为递减数列,所以原命题为真命题; 逆命题:若{}n a 为递减数列,则12n n n a a a ++<,n N +∈;若{}n a 为递减数列,则1n n a a +<,即12n n n a a a ++<,所以逆命题为真;否命题:若12n n n a a a ++≥,n N +∈,则{}n a 不为递减数列;由11{}2n n n n n n a a a a a a +++≥⇒≤+⇒不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A考点:命题及命题的真假.10.【2014高考陕西卷文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.11.【2014高考天津卷卷文第5题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =()A.2B.-2C.21D.12-13.【2014高考安徽卷文第18题】数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}na n是等差数列; (2) 设3nn n b a =⋅,求数列{}n b 的前n 项和n S14.【2014高考北京卷文第15题】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15.【2014高考大纲卷文第17题】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.16.【2014高考福建卷文第17题】在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .【答案】(1)13n n a -=.(2)22n n nS -=.17.【2014高考广东卷文第19题】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++. 【答案】(1)12a =;(2)2n a n =;(3)详见解析.【解析】(1)令1n =得:()2111320S S ---⨯=,即21160S S +-=,()()11320S S ∴+-=,10S >,12S ∴=,即12a =;(2)由()()22233n n S n n S n n -+--+,得()()230n n S S n n ⎡⎤+-+=⎣⎦, ()0n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,所以当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦, 又1221a ==⨯,()2n a n n N *∴=∈;1111111623213633n n ⎛⎫=+-=-< ⎪++⎝⎭. 【考点定位】本题以二次方程的形式以及n S 与n a 的关系考查数列通项的求解,以及利用放缩法证明数列不等式的综合问题,考查学生的计算能力与逻辑推理能力,属于中等偏难题.18.【2014高考湖北卷文第19题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列.(1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.19.【2014高考湖南卷文第16题】已知数列{}n a 的前n 项和*∈+=N n n n S n ,22. (1)求数列{}n a 的通项公式;(2)设()n na n ab n 12-+=,求数列{}n b 的前n 2项和.【答案】(1)n a n =(2)21222n n T n +=+-20.【2014高考江苏第20题】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n N =∈,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得n n n a b c =+*()n N ∈成立.21.【2014高考江西文第17题】已知数列{}n a 的前n 项和*∈-=N n n n S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列.而此时*∈N m ,且,m n >所以对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 考点:由和项求通项,等比数列22.【2014高考全国1文第17题】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年高考数学理科数列大题专项训练1.(本小题满分12分)已知数列{a n}满足a1=1,a2=3,a n+2=3a n+1-2a n(n∈N+)(1)证明:数列{a n+1-a n }是等比数列;(2)求数列{a n}的通项公式2.(12分)已知数列{a n}的前n项和S n=kc n-k(其中c,k为常数),且a2=4,a6=8a3.(1)求a n;(2)求数列{na n}的前n项和T n.已知数列{}n a 的前n 项和为n S ,且满足:1a a =(0)a ≠,1n n a rS += (n ∈N *,,1)r R r ∈≠-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在k ∈ N *,使得1k S +,k S ,2k S +成等差数列,是判断:对于任意的m ∈N *,且2m ≥,1m a +,m a ,2m a +是否成等差数列,并证明你的结论. 4.(本小题满分16分)已知数列{}n a 满足1a x =,23a x =,2*1132(2,)n n n S S S n n n +-++=+∈N ≥,n S 是数列{}n a 的前n 项和.(1)若数列{}n a 为等差数列.(ⅰ)求数列的通项n a ;(ⅱ)若数列{}n b 满足2n a n b =,数列{}n c 满足221n n n n c t b tb b ++=--,试比较数列{}n b前n 项和n B 与{}n c 前n 项和n C 的大小; (2)若对任意*n ∈N ,1n n a a +<恒成立,求实数x 的取值范围.已知函数xnx x f n +=)(,(x >0,),1Z n n ∈≥,以点))(,(n f n n 为切点作函数)(x f y n =图像的切线n l ,记函数)(x f y n =图像与三条直线n l n x n x ,1,+==所围成的区域面积为n a 。
(Ⅰ)求n a ; (Ⅱ)求证:n a <231n ; (Ⅲ)设n S 为数列{}n a 的前n 项和,求证:n S <95.6.(本题满分13分)已知,,a b c 是正数, 1lg a a =,2lg a b =,3lg a c =. (Ⅰ)若,,a b c 成等差数列,比较12a a -与23a a -的大小;(Ⅱ)若122331a a a a a a ->->-,则,,a b c 三个数中,哪个数最大,请说明理由;(Ⅲ)若a t =,2b t =,3c t =(t *∈N ),且1a ,2a ,3a 的整数部分分别是,m 21,m +221,m +求所有t 的值.7(8分).已知数列{}n a 满足11=a ,且nn n a a 221+=-(n ≥2且n ∈N )(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项之和n S ,求n S ,并证明:322-n S n n>.8.(本小题满分12分)在公差不为零的等差数列{n a }中,已知a 1=l ,.且a 1,a 2,a 5依次成等比数列.数列{n b }满足b n+1=2b n -1且b 1=3.(I )求{b n }的通项公式; (Ⅱ)设数列{12n n a a +⋅}的前n 项和为S n ,试比较S n 与1一1n b 的大小.9.设等差数列{}n a 的前n 项和为n S ,已知12a =,622S =. (1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<< ,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.10. (本小题满分16分)设数列{}n a 的各项均为正实数,2log n n b a =,若数列{}n b 满足20b =,12log n n b b p +=+,其中p 为正常数,且1p ≠.(1)求数列{}n a 的通项公式;(2)是否存在正整数M ,使得当n M >时,1473216n a a a a a -⋅⋅⋅⋅⋅⋅⋅>恒成立?若存在,求出使结论成立的p 的取值范围和相应的M 的最小值;若不存在,请说明理由;(3)若2p =,设数列{}n c 对任意的*n N ∈,都有12132n n n c b c b c b --+++⋅⋅⋅1n c b +2n =-成立,问数列{}n c 是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.11.(本小题满分14分)设等差数列{}n a 的公差为d ,前n 项和为n S ,已知35S a =,525S =. (1)求数列{}n a 的通项公式;(2)若p ,q 为互不相等的正整数,且等差数列{}n b 满足p a b p =,q a b q =,求数列{}n b 的前n 项和n T .12.已知等差数列{}n a 满足{}3577,26,n a a a a =+=的前n 项和为n S 。
数 学D 单元 数列D1 数列的概念与简单表示法 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 17.、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n 1,即1a n =23n-1≤13n 1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.22.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D2 等差数列及等差数列前n 项和 12.、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.112.[2014·北京卷] 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.12.8 3.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 3.C 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求nn =4n -2. 800, 成立.2n 2.此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝⎛⎭⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝⎛⎭⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 8.[2014·辽宁卷] 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0 8.C 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).17.、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12)所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)n -1⎛⎫1+1-⎝⎛⎭⎫12n -1+12n +1 ⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +116.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.、[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1222.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]所以a 2n +1>a 22n +1-2a 2n +1+2-1综上,由②③④知存在c =14使a 2n <c <aD3 等比数列及等比数列前n 项和 2.[2014·重庆卷] 对任意等比数列{a n A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列 2.D 12.、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.1 13.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 10.C 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛12n -3+=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛或T n16.,,[2014·陕西卷] △ABC (1)若a ,b ,c 成等差数列,证明:(2)若a ,b ,c 成等比数列,求cos c =2b . =12,n 11的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1219.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .D4 数列求和 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+=1-12n +1=2n2n +1. 当n 为奇数时,20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n 1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝⎛⎭⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝⎛⎭⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n 1.21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛1由此可得,f (x )在[c 1p ,+∞)①当n =1时,由a 1>c 1p>0,即a p 1>c a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p ),a n >a n +1>c 1p均成立.n }满足:a 1=2,且a 1,a 2,a 5成等比数列. n ,使得S n >60n +800?若存在,求n 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-所以,T n =2n +1-n -22n.19.[2014·浙江卷] 已知数列{a n }和{b 数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S 19.解:(1)由题意a 1a 2a 3…a n =(2)b n 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去, 所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.。
2014年全国高考数学试题分类汇编(数列)1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 【答案】D .6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ) .8A .10B .12C .14D 【答案】C7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <【答案】D8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】2112.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________. 【答案】1q =。
2014年高考数列真题(理科) 1(大纲)18.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 2(新课标2)17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+. 3(江西)17、(本小题满分12分)已知首项都是1的两个数列(),满足. (1)令,求数列的通项公式; (2)若,求数列的前n 项和.4(广东)19. (14分)设数列{}n a 的前n 和为n S ,满足22*1234,n n S na n n n N +=--∈,且315S =。
(1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;5(湖北)18.(本小题满分12分) 已知等差数列满足:=2,且,成等比数列. (Ⅰ)求数列的通项公式. (Ⅱ)记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.6(湖南)20. (本小题满分13分) 已知数列{}n a 满足111,,.n n n a a a p n N *+=-=∈ (Ⅰ)若{}n a 是递增数列,且123a ,2a ,3a 成等差数列,求p 的值; (Ⅱ)若12p =,且{}12n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式。
7(四川)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。
(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T 。
1. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
2. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( )
.8A .10B .12C .14D
3. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .
4. 【2014辽宁高考理第8题】设等差数列{}n a 的公差为d ,若数列1{2}n a a
为递减数列,则( )
A .0d <
B .0d >
C .10a d <
D .10a d >
5. 【2014重庆高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )
139.,,A a a a 成等比数列 236.,,B a a a 成等比数列
248.,,C a a a 成等比数列 369.,,D a a a 成等比数列
6. 【2014天津高考理第11题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.
7. 【2014大纲高考理第10题】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )
A .6
B .5
C .4
D .3
【答案】C .
8. 【2014高考广东卷理第13题】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .
9. 【2014高考安徽卷理第12题】数列{}n a 是等差数列,若135
1,3,5a a a +++构成公比为q 的等比数
列,则q =________.
10. 【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.
【答案】8。