2019年北京中考数学试卷及答案
- 格式:pdf
- 大小:19.59 MB
- 文档页数:24
2019年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2019年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8“”(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC ,其边长为1,D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF=120°.(1)直接写出DE 与DF 的数量关系;(2)若BE ,DE ,CF 能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE +AF 的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线.(1)当⊙O 的半径为1时,①分别判断在点D (,),E (0,﹣),F (4,0)中,是⊙O 的相邻点有______; ②请从①中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程;③点P 在直线y=﹣x +3上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=﹣与x 轴,y 轴分别交于点M ,N ,若线段MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.2019年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2019年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8“”请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)根据一元二次方程的根的判别式,直接计算即可;(2)根据求根公式,求出两根,由抛物线与x轴的两个交点的横坐标都为正整数,求出m 的值,可得抛物线解析式;(3)画出图象,找到当y1=y2时,a的值,根据图象,直接判断即可.【解答】解:(1)由题意可知,△=b2﹣4ac=(3m+1)2﹣4m×3=(3m﹣1)2>0,解得m≠,∵mx2+(3m+1)x+3=0是一元二次方程,∴m≠0,。
2019年北京市东城区中考数学一模试卷一、选择题(每小题2分,共16分)1.下列立体图形中,主视图是圆的是()A. B. C. D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的主视图是矩形,故B不符合题意;C、圆台的主视图是梯形,故C不符合题意;D、球的主视图是圆,故D符合题意,故选D.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A. 16×104B. 1.6×107C. 16×108D. 1.6×108【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将16 000 000用科学记数法表示应 1.6×107,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.3.已知实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A. a b >B. a b <C. 0ab >D. a b ->【答案】D 【解析】【分析】由数轴得出a <-1<0<b <1,根据a 、b 的范围,即可判断各选项的对错. 【详解】由数轴得出a <-1<0<b <1,则有A 、a <b ,故A 选项错误;B 、|a|>|b|,故B 选项错误;C 、ab <0,故C 选项错误;D 、-a >b ,故D 选项正确, 故选D.【点睛】本题考查了实数与数轴,解决本题的关键是结合数轴,灵活运用相关知识进行判断.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】A 【解析】 【分析】利用平行线的性质解决问题即可. 【详解】如图,∵a ∥b ,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=12(180°﹣80°)=50°, 故选A .【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.5.一个多边形的每个内角均为120°,则这个多边形是( ) A. 四边形 B. 五边形C. 六边形D. 七边形【答案】C 【解析】由题意得,180°(n -2)=120°n ⨯, 解得n =6.故选C.6.如果a 2+3a ﹣2=0,那么代数式(23139a a ++-)23a a-⋅ 的值为( ) A. 1 B.12 C.13D.14【答案】B 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】原式=2231(3)(3)3a a a a a a a-⋅=+-+,由a 2+3a ﹣2=0,得到a 2+3a =2,则原式=12,故选B.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【详解】设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:0.51617k bk b+=⎧⎨+=⎩,解得:k2b15=⎧⎨=⎩,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选B.【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x千克重物在原来基础上增加的长度.8.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A. 2017年第二季度环比有所提高B. 2017年第三季度环比有所提高C. 2018年第一季度同比有所提高D. 2018年第四季度同比有所提高【答案】C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.二、填空题(每小题2分,共16分)9.x的取值范围是.【答案】x2≥。
北京市朝阳区普通中学2019届初三中考数学复习平行投影专题复习练习题1.下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )2.对同一建筑物,相同时刻在太阳光下的影子冬天比夏天( )A.短 B.长 C.看具体时间 D.无法比较3.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是( )A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行 D.一根竿子倒在地上4.在一个晴朗的上午,皮皮拿着一块正方形木板在阳光下做投影试验,正方形木板在地面上形成的投影不可能是( )5. 太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形6. 在一个晴朗的好天气里,小明向正北方向走路时,发现自己的身影向右偏,则小明当时所处的时间是( )A.上午 B.中午 C.下午 D.无法确定7. 下面四幅图是两物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )A.①②③④ B.④②③① C.③④①② D.①③②④8. 在太阳光下转动一个正方体,观察正方体在地上投下的影子,则这个影子边数最多时是( ) A.四边形 B.五边形 C.六边形 D.七边形9. 如图是小树的影子,图中反映的这一时刻大约是这一天的_______.(填“上午”“中午”或“下午”)10. 如图,A′B′是阳光照射下篮板上边框AB在地面上的投影,已知A′B′=1.5 m,那么AB________1.5 m.(填“>”“<”或“=”)11. 如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,那么窗户的高AB为________m.12. 在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为________米.13. 如图,AB和DE是直立在地面上的两根立柱,已知AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.14. 如图,小明同学要利用影长测量学校旗杆AB的高度,他在某一时刻立1米长的竹竿,测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑物的墙上,分别测得其长度BC为9.6米和CD为2米,求学校旗杆AB的高度.答案:1---8 DBCAA CCC9. 上午10. =11. 1.512. 9.613. 解:(1)略(2)DE=10 m14.解:过点D作DH⊥AB于点H,则AHHD=11.2,∴AH=8(米),∴AB=AH+HB=10(米)2019-2020学年数学中考模拟试卷一、选择题1.下列立体图形中,主视图是三角形的是( )A. B. C. D.2.如图是某几何体的三视图,该几何体是( )A.三棱柱B.三棱锥C.长方体D.正方体3.下列运算正确的是( ) A .232a a a +=B .326(a )a -=C .222(a b)a b -=-D .326(2a )4a -=-4.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A. B.C. D.5.下列说法:①如果a 2>b 2,那么a>b 4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( ) A .0个B .1个C .2个D .3个6.转动A 、B 两个盘当指针分别指向红色和蓝色时称为配紫色成功。
2019年北京市海淀区首都师大附中中考数学一模试卷一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3|B .﹣2C .0D .π2.下列各式的变形中,正确的是( )A .(﹣x ﹣y )(﹣x +y )=x 2﹣y 2B .﹣x =C .x 2﹣4x +3=(x ﹣2)2+1D .x ÷(x 2+x )=+13.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( ) A .40%B .33.4%C .33.3%D .30%4.如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (s ),y =PC 2,则y 关于x 的函数的图象大致为( )A .B .C .D .5.下列命题正确的个数是( )①若代数式有意义,则x 的取值范围为x ≤1且x ≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m 为常数),当x >0时,y 随x 增大而增大,则一次函数y =﹣2x +m 的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.46.下列图形中,阴影部分面积最大的是()A.B.C.D.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,249.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB 为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3;(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.2019年北京市海淀区首都师大附中中考数学一模试卷参考答案与试题解析一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+1【分析】根据平方差公式和分式的加减以及整式的除法计算即可.【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;B、,错误;C、x2﹣4x+3=(x﹣2)2﹣1,错误;D、x÷(x2+x)=,错误;故选:A.【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.4【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①若代数式有意义,则x的取值范围为x<1且x≠0,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③根据反比例函数(m为常数)的增减性得出m<0,故一次函数y=﹣2x+m的图象一定不经过第一象限.,此选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中有y=3,y=x2是偶函数,原命题正确,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.6.下列图形中,阴影部分面积最大的是()A.B.C.D.【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.【解答】解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:3+×(1+3)×2﹣﹣=4,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×1×6=3,阴影部分面积最大的是4.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.8.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,24【分析】根据题意得到此调查为抽样调查,由样本容量求出a的值即可.【解答】解:根据题意得:该调查的方式是抽样调查,a=50﹣(6+10+6+4)=24,故选:D.【点评】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键.9.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接PA、PB、OP;则S 半圆O ==,S △ABP =×2×1=1,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A .【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.10.定义新运算:a ⊕b =例如:4⊕5=,4⊕(﹣5)=.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【分析】根据题意可得y =2⊕x =,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y =2⊕x =,当x >0时,反比例函数y =在第一象限,当x <0时,反比例函数y =﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是0.【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=2.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.故答案为:2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【解答】解:∵∠ACB=90°,BC=12cm,AC=8cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=8cm.【点评】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m 的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)【分析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5=2.75(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.75=cos18°×2.75=0.95×2.75=2.6125≈2.6(m),∵2.6m<2.75m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点评】此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB 为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.【分析】(1)在RT△OAB中,利用勾股定理OA=求解,(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt△ACM中tan∠M=,求出AC.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在Rt△OAB中,∵AB=13,∴OA===5.(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在Rt△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(2)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.【点评】本题主要考查四边形的综合题,解题的关键是灵活运用等边三角形的性质及菱形的性质.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.【解答】解:(1)∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4).故答案为:(1,1),(3,2),(7,4);(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,A1(0,1),∵四边形A1B1C1O是正方形,∴C1(1,0),又∵点A2在直线y=x+1上,∴点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点为(2,3),设抛物线L2的解析式为:y=a(x﹣2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a(3﹣2)2+3,解得:a=﹣1,∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;抛物线L3的解析式的求解过程:又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),∴抛物线L3的对称轴为直线x=5,∴抛物线L3的顶点为(5,6),设抛物线L3的解析式为:y=a(x﹣5)2+6,∵L3过点B3(7,4),∴当x=7时,y=﹣4,∴4=a×(7﹣5)2+6,解得:a=﹣,∴抛物线L 3的解析式为:y =﹣(x ﹣5)2+6;猜想抛物线L n 的顶点坐标为(3×2n ﹣2﹣1,3×2n ﹣2);(猜想过程:方法1:可由抛物线L 1、L 2、L 3…的解析式:∵y =﹣2(x ﹣)2+,y =﹣(x ﹣2)2+3,y =﹣(x ﹣5)2+6…,归纳总结;方法2:可由正方形A n B n ∁n C n ﹣1顶点A n 、B n 的坐标规律A n (2n ﹣1﹣1,2n ﹣1)与B n (2n ,2n ﹣1),再利用对称性可得抛物线L n 的对称轴为直线x =,即x ==3×2n ﹣2﹣1,又顶点在直线 y =x +1上,所以可得抛物线L n 的顶点坐标为(3×2n ﹣2﹣1,3×2n ﹣2).故答案为:(3×2n ﹣2﹣1,3×2n ﹣2);(3)①、k 1与k 1的数量关系为:k 1=k 2,理由如下:同(2)可求得L 2的解析式为y =(x ﹣2)2+3,当y =1时,1=﹣(x ﹣2)2+3解得:x 1=2﹣,x 2=2+,∴x =2﹣,∴A 1D 1=2﹣=(﹣1),∴D 1B 1=1﹣(2﹣)=﹣1,∴A 1D 1=﹣D 1B 1,即k 1=;同理可求得A 2D 2=4﹣2=2(﹣1),D 2B 2=2﹣(4﹣2)=2﹣2=2(﹣1),A 2D 2=﹣D 2B 2,即k 2=, ∴k 1=k 2;②∵由①知,k 1=k 2,∴点D 1、D 2、…,D n 在一条直线上;∵抛物线L 2的解析式为y =﹣(x ﹣2)2+3,∴当y =1时,x =2﹣,∴D 1(2﹣,1);同理,D 2(5﹣2,2),∴设直线D 1D 2的解析式为y =kx +b (k ≠0),则,解得,∴直线D 1D 2的解析式为y =(3+)x +﹣3,∴,解得, ∴这条直线与直线y =x +1的交点坐标为(﹣1,0).。
2019年北京市中考数学试卷及答案一、选择题(本题共16分,每小题2分)说明:第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A )60.43910 (B )64.3910(C )54.3910 (D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D ) 3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为 (A )3 (B )2 (C )1 (D )1 5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;B(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20° (C )MN ∥CD (D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为 (A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是(A )①③ (B )②④ (C )①②③ (D )①②③④ 二、填空题(本题共16分,每小题2分)9.若分式1x x 的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别512.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,第10题图CBA第11题图③圆锥②圆柱①长方体第12题图图3图2图1①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.CBA解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:AB在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bxa 与y 轴交于点A ,将点A向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H为射线OA 上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;备用图图1BAOABCDE AED CB(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t>,,,在△ABC中,D E,分别是AB AC,的中点.①若12t =,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.参考答案一. 选择题.1 C ;2 C ;3 B ;4 A ;5 D ;6 D ;7 D ;8 C 。
2019年北京市海淀区首都师大附中中考数学一模试卷一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+13.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.5.下列命题正确的个数是()①若代数式有意义,则x 的取值范围为x ≤1且x ≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m 为常数),当x >0时,y 随x 增大而增大,则一次函数y =﹣2x +m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x +1,y =x 2中偶函数的个数为2个.A .1B .2C .3D .46.下列图形中,阴影部分面积最大的是( )A .B .C .D .7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .8.为了解中学生获取资讯的主要渠道,设置“A .报纸.B .电视.C .网络,D .身边的人.E .其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是( ),图中的a 的值是( )A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,249.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3;(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.2019年北京市海淀区首都师大附中中考数学一模试卷参考答案与试题解析一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+1【分析】根据平方差公式和分式的加减以及整式的除法计算即可.【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;B、,错误;C、x2﹣4x+3=(x﹣2)2﹣1,错误;D、x÷(x2+x)=,错误;故选:A.【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y =(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.4【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①若代数式有意义,则x的取值范围为x<1且x≠0,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③根据反比例函数(m为常数)的增减性得出m<0,故一次函数y=﹣2x+m的图象一定不经过第一象限.,此选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中有y=3,y=x2是偶函数,原命题正确,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.6.下列图形中,阴影部分面积最大的是()A.B.C.D.【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.【解答】解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:3+×(1+3)×2﹣﹣=4,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×1×6=3,阴影部分面积最大的是4.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:B .【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.8.为了解中学生获取资讯的主要渠道,设置“A .报纸.B .电视.C .网络,D .身边的人.E .其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是( ),图中的a 的值是( )A .全面调查,26B .全面调查,24C .抽样调查,26D .抽样调查,24【分析】根据题意得到此调查为抽样调查,由样本容量求出a 的值即可.【解答】解:根据题意得:该调查的方式是抽样调查,a =50﹣(6+10+6+4)=24, 故选:D .【点评】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键. 9.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .B .C .D .【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =×2×1=1,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A .【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.10.定义新运算:a ⊕b =例如:4⊕5=,4⊕(﹣5)=.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【分析】根据题意可得y =2⊕x =,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y =2⊕x =,当x >0时,反比例函数y =在第一象限,当x <0时,反比例函数y =﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是0.【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=2.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.故答案为:2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【解答】解:∵∠ACB=90°,BC=12cm,AC=8cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=8cm.【点评】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)【分析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5=2.75(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.75=cos18°×2.75=0.95×2.75=2.6125≈2.6(m),∵2.6m<2.75m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点评】此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.【分析】(1)在RT△OAB中,利用勾股定理OA=求解,(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt△ACM中tan∠M=,求出AC.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在Rt△OAB中,∵AB=13,∴OA===5.(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在Rt△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(2)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.【点评】本题主要考查四边形的综合题,解题的关键是灵活运用等边三角形的性质及菱形的性质.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.【解答】解:(1)∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4).故答案为:(1,1),(3,2),(7,4);(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,A1(0,1),∵四边形A1B1C1O是正方形,∴C1(1,0),又∵点A2在直线y=x+1上,∴点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点为(2,3),设抛物线L2的解析式为:y=a(x﹣2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a(3﹣2)2+3,解得:a=﹣1,∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;抛物线L3的解析式的求解过程:又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),∴抛物线L3的对称轴为直线x=5,∴抛物线L3的顶点为(5,6),设抛物线L3的解析式为:y=a(x﹣5)2+6,∵L3过点B3(7,4),∴当x=7时,y=﹣4,∴4=a×(7﹣5)2+6,解得:a=﹣,∴抛物线L3的解析式为:y=﹣(x﹣5)2+6;猜想抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2);(猜想过程:方法1:可由抛物线L1、L2、L3…的解析式:∵y=﹣2(x﹣)2+,y=﹣(x﹣2)2+3,y=﹣(x﹣5)2+6…,归纳总结;方法2:可由正方形A n B n ∁n C n ﹣1顶点A n 、B n 的坐标规律A n (2n ﹣1﹣1,2n ﹣1)与B n (2n ,2n ﹣1),再利用对称性可得抛物线L n 的对称轴为直线x =,即x ==3×2n ﹣2﹣1,又顶点在直线 y =x +1上,所以可得抛物线L n 的顶点坐标为(3×2n ﹣2﹣1,3×2n ﹣2). 故答案为:(3×2n ﹣2﹣1,3×2n ﹣2);(3)①、k 1与k 1的数量关系为:k 1=k 2,理由如下:同(2)可求得L 2的解析式为y =(x ﹣2)2+3,当y =1时,1=﹣(x ﹣2)2+3解得:x 1=2﹣,x 2=2+,∴x =2﹣,∴A 1D 1=2﹣=(﹣1),∴D 1B 1=1﹣(2﹣)=﹣1,∴A 1D 1=﹣D 1B 1,即k 1=;同理可求得A 2D 2=4﹣2=2(﹣1),D 2B 2=2﹣(4﹣2)=2﹣2=2(﹣1),A 2D 2=﹣D 2B 2,即k 2=,∴k 1=k 2;②∵由①知,k 1=k 2,∴点D 1、D 2、…,D n 在一条直线上; ∵抛物线L 2的解析式为y =﹣(x ﹣2)2+3,∴当y =1时,x =2﹣,∴D 1(2﹣,1);同理,D 2(5﹣2,2),∴设直线D 1D 2的解析式为y =kx +b (k ≠0),则,解得,∴直线D 1D 2的解析式为y =(3+)x +﹣3,∴,解得,∴这条直线与直线y =x +1的交点坐标为(﹣1,0).。
北京市西城区2019届初三数学中考复习 角的平分线的性质 专题复习检测题1.作∠AOB 的平分线时,以点O 为圆心,某一长度为半径作弧,与OA ,OB 分别相交于点C ,D ,然后分别以点C ,D 为圆心,适当的长度为半径作弧,使两弧相交于一点,则这个适当的长度应( ) A .大于12CD B .等于12CD C .小于12CD D .以上答案都不对2. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等3. 如图,OP 平分∠MON,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA =3,则PQ 的最小值为( )A. 3 B .2 C .3 D .2 34. 如图,AD 是△ABC 中∠BAC 的角平分线,DE⊥AB 于点E ,DE =2,AC =3,则△ADC 的面积是( )A .3B .4C .5D .65. 如图,OP 平分∠AOB ,PC⊥OA,PD⊥OB,垂足分别是C ,D ,下列结论中错误的是( )A .PC =PDB .OC =OD C .∠CPO=∠DPO D .OC =PC6. 如图,在△ABC 中,∠B,∠C 的平分线交于点O ,OD⊥AB 于点D ,OE⊥AC 于点E ,则OD 与OE 的大小关系是( )A .OD>OEB .OD =OEC .OD<OED .不能确定7. 如图,在△ABC 中,∠C=90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE⊥AB 于点E ,且AB =6 cm ,则△DEB 的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm8. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P且与AB垂直.若AD=8,则点P到BC的距离是( )A.8 B.6 C.4 D.29. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为 .10. 命题“全等三角形对应边上的高线相等”的已知是,结论是.11. 如图,在△ABC中,AD是∠BAC的角平分线,AB=6 cm,AC=8 cm,则S△ABD∶S△ACD=,BD∶CD= .12. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是 .13. 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.14. 证明:全等三角形对应边上的中线相等.15. 如图,已知OD平分∠AOB,P是OD上一点,在OA,OB边上取OA=OB,PM⊥BD,PN⊥AD,垂足分别为M,N.求证:PM=PN.16. 如图,在四边形ABCD 中,AC 平分∠BAD,过点C 作CE⊥AB 于点E ,且CD =CB ,∠ABC +∠ADC =180°.求证:AE =12(AB +AD).答案:1---8 AACAD BBC 9. 310. 两个三角形是全等三角形 它们对应边上的高相等 11. 3∶4 3∶4 12. 313. 证明:∵AD 平分∠BAC ,DE⊥AB,DF⊥AC, ∴DE=DF ,∠BED=∠CFD =90°,∵D 是BC 的中点,∴BD=CD ,在Rt △BDE 和Rt △CDF 中, ∵DE=DF ,DB =DC ,∴Rt △BDE ≌Rt △CDF(HL),∴∠B=∠C 14. 证明:△ABC≌△A′B′C′,∴AB=A′B′, ∠B=∠B′,BC =B′C′.又∵AD ,A′D′分别是BC ,B′C′边上的中线,∴BD=B′D′.∴△ABD≌△A′B′D′,∴AD=A′D′ 15. 证明:∵OD 平分∠AOB ,∴∠1=∠2, 又∵OA =OB ,OD =OD ,∴△AOD≌△BOD, ∴∠3=∠4,又∵PM⊥DB,PN⊥DA,∴PM=PN16. 证明:过点C 作CF⊥AD,交AD 延长线于点F ,易证△CEB≌△CFD,△AEC ≌△AFC ,∴DF =BE ,AF =AE ,又DF =AF -AD =AE -AD ,BE =AB -AE ,∴AB -AE =AE -AD ,即AE =12(AB +AD)2019-2020学年数学中考模拟试卷一、选择题1.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A .11B .13C .11或13D .不能确定2.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5 D .方差是0.013.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为点E ,连接CO ,AD ,若30BOC ∠=︒,则BAD ∠的度数是( )A .30°B .25︒C .20︒D .15︒4.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .5.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .126.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球7.把抛物线y=(x-2)2向左平移2个单位长度,再向上平移2个单位长度,所得到的抛物线是( ). A .y=x 2+2B .y=x 2-2C .y=(x+2)2-2D .y=(x+2)2+28.已知点(-2,1y ),(1,0),(3,2y )都在二次函数2y x bx 3=+-的图象上,则1y ,0,2y 的大小关系是( ) A .120y y <<B .21y 0y <<C .12y y 0<<D .12y 0y <<9.半径为r 的圆的内接正六边形边长为( )A .1r 2B C .r D .2r10.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC ,在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于( )A .49πB .23π C .43π D .π11.在平面直角坐标系中,将A(﹣1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是( ) A .(﹣1,5)B .(5,﹣1)C .(﹣1,﹣5)D .(﹣5,﹣1)12.某校九年级3月份中考模拟总分760分以上有300人,同学们在老师们的高效复习指导下,复习效果显著,在4月份中考模拟总分760分以上人数比3月份增长5%,且5,6月份的760分以上的人数按相同的百分率x 继续上升,则6月份该校760分以上的学生人数( ). A .()()30015%12x ++人 B .()()230015%1x ++人 C .()()3005%3002++人 D .()30015%2x ++人二、填空题13.十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学计数法表示为__________人.14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.15.已知|a ﹣=a ,则a ﹣20072的值是_____.16.直线22y x =+沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______ 17.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC =2,tanA =43,则CD =_____.18.如图,直线l 1与l 2相交于点O ,OM ⊥l 1,若α=52°,则β的度数是_____度.三、解答题19.如图是一张锐角三角形纸片,AD 是BC 边上的高,BC=40cm ,AD=30cm ,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm .20.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.21.某校举行了一次古诗词朗读竞赛,满分为10分,学生得分均为整数,成绩达到6分及6分以上为合格.达到9分或10分为优秀.这次竞赛中,甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示.(1)求出成绩统计分析表中a的值.(2)小英说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察成绩统计分析表判断,小英是甲、乙哪个组的学生.(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.试写出两条支持乙组同学观点的理由.(4)从这次参加学校古诗词朗诵竞赛的甲、乙两组成绩优秀的学生中,随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率是多少?(画树状图或列表求解)22.抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是;(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.23.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生;(2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?24.在如图菱形ABCD中,对角线AC、BD相交于O,E、F分别是AB、BC的中点.求证:OE=OF.25.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥BC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC的边长等于,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD 的长.【参考答案】***一、选择题二、填空题 13.3×10714.90 15.2008 16.(2,0) 17.5618.38 三、解答题 19.72cm 【解析】 【分析】设所剪得的矩形的长为2xcm ,宽为xcm ,根据相似三角形的对应高的比等于相似比即可列方程求解. 【详解】解:设所剪得的矩形的长为2xcm ,宽为xcm ,由题意得2304030x x -=或3024030x x -= 解得x=12或12011x =则周长为()2412272cm +⨯=或2401207202cm 111111⎛⎫+⨯= ⎪⎝⎭因为7207211>所以所剪得的矩形周长为72cm. 故答案为:72cm 【点睛】相似三角形的应用相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.11a +,2. 【解析】 【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可 【详解】 解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++=21(1)a a a a ++=1+1a,当a=2.【点睛】此题考察分式的化简求值,关键在于约分21.(1)中位数a=6;(2)小英属于甲组学生;(3)①乙组的总体平均水平高;②乙组的成绩比甲组的成绩稳定;(4)随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率为1 10.【解析】【分析】(1)由折线图中数据,根据中位数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可;(4)首先根据题意列表,然后求得所有等可能的结果与两名学生恰好是乙组的情况,再利用概率公式即可求得答案.【详解】(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)乙组学生成绩的平均分b=(5×2+6×1+7×2+8×3+9×2)÷10=7.2;①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定;(4)列表得:∵共有20种等可能的结果,两名学生恰好是乙组的有2种情况,∴随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率=21= 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 的结果数目m,然后利用概率公式计算事件A的概率.也考查了折线统计图以及中位数与方差的定义.22.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.23.(1) 50;(2)见解析;(3) 1620.【解析】【分析】(1)根据第三组的数据,用人数除以百分数得出结论即可;(2)根据抽取的总人数减去前4组的人数,即可得到第五组的频数,并画图;(3)用样本中考试成绩评为“B”级及其以上的学生数占抽取的总人数的百分比,乘上全区该年级4500名考生数,即可得出结论.【详解】解:(1)20÷40%=50名,故答案为:50;(2)50-4-8-20-14=4,画图如下:(3)(4+14)÷50×4500=1620.答:估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有1620名.【点睛】本题主要考查了直方图和扇形图以及用样本估计总体的知识,根据直方图和扇形图中都有的数据求出抽取的学生总数是解决此题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.24.证明见解析【解析】【分析】根据菱形ABCD,可得AC⊥BD,所以可得△AOB、△BOC为直角三角形,再利用直角三角形斜边的中线等于斜边的一半即可证明OE=OF.【详解】解:∵AC⊥BD,∴△AOB、△BOC为直角三角形,∵E、F分别是AB、BC的中点,∴OE=12AB,OF=12BC,∵AB=BC,∴OE=OF.【点睛】本题主要考查菱形的性质,应当熟练掌握,这是重点知识.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG=1,由勾股定理求出AG BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴∵∴∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE, ∴BD=CE,∵△ADE是等边三角形, ∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴∴,在Rt△EFC中===∴综上所述,BD的长为2和【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷一、选择题1.如图,直角三角板的直角顶点A 在直线上,则∠1与∠2( )A .一定相等B .一定互余C .一定互补D .始终相差10°2.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.5 3.如图,ABC ∆为O 的内接三角形,1tan 2ACB ∠=,且2AB =,则O 的半径为( )A B C .D .4.如图,在▱ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =4,则△CEF 的周长为( )A.8B.9.5C.10D.11.55.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110B .(1+x )2=109C .1+2x =1110D .1+2x =1096.某颗人造地球卫星绕地球运行的速度是7.9×103m/s,那么这颗卫星绕地球运行一年(一年以3.2×107 s计算)走过的路程约是()A.1.1×1010m B.7.9×1010m C.2.5×1010m D.2.5×1011m7.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个8.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④B.①③C.①②D.③④9.若一个直角三角形的两条直角边长分别为5和12,则其第三边长()A.13 B C.5 D.1510.在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.611.如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB 于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2 B.C.2D.412.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5 C.6 D.254二、填空题13.函数6x y x =-中,自变量x 的取值范围是_______. 14.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为_____.15.如图所示,已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且∠AOC =60°,又以P (0,4)为圆心,PC 为半径的圆恰好与OA 所在的直线相切,则t =_____.16在实数范围内有意义,则x 的取值范围是_________. 17.已知a ∥b ,某学生将一直角三角板放置如图所示,如果∠1=35°,则∠2的度数为_____.18.如果分式有意义,那么x 的取值范围是_____.三、解答题 19.解不等式组211,?331x x x ①②+-⎧⎨+-⎩…… 请结合题意填空,完成本题的解答。
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。
专题突破(九) 几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.1.[2019·北京] 在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH ,PH .(1)若点P 在线段CD 上,如图Z9-1(a ). ①依题意补全图(a );②判断AH 与PH 的数量关系与位置关系,并加以证明.(2)若点P 在线段CD 的延长线上,且∠AHQ =152°,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)图Z9-12.[2019·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2019·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2019·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2019·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠P AB=30°,求∠ACE的度数;(3)如图②,若60°<∠P AB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2019·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2019·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2019·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2019·西城一模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AFBE =________;(2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AFBE 的值,并证明你的结论;(3)如果∠BAC =α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2019·丰台一模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CFPE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CFPE的值.(用含a 的式子表示)图Z9-117.[2019·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2019·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH =PH ,AH ⊥PH . 证明:连接CH ,由条件易得:△DHQ 为等腰直角三角形, 又∵DP =CQ ,∴△HDP ≌△HQC , ∴PH =CH ,∠HPC =∠HCP . ∵BD 为正方形ABCD 的对称轴, ∴AH =CH ,∠DAH =∠HCP , ∴AH =PH ,∠DAH =∠HPC , ∴∠AHP =180°-∠ADP =90°, ∴AH =PH 且AH ⊥PH.(2)如图(b),过点H 作HR ⊥PC 于点R , ∵∠AHQ =152°, ∴∠AHB =62°, ∴∠DAH =17°, ∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x2.由tan17°=HRCR 得1-x 21+x2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠P AB =∠P AE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°. ∴BF 2+FD 2=BD 2. ∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形. 证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段P A 绕点P 顺时针旋转2α得到线段PQ , ∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中, ∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,P A =PC , ∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠P AD =∠PCD , ∴∠ADC =2∠CDB. 又∵PQ =P A ,∴PQ =PC ,∴∠PQC =∠PCD =∠P AD , ∴∠P AD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ +∠ADC =360°-(∠P AD +∠PQD )=180°, ∴∠ADC =180°-∠APQ =180°-2α, ∴2∠CDB =180°-2α, ∴∠CDB =90°-α.(3)∵∠CDB =90°-α,且PQ =QD ,∴∠P AD =∠PCQ =∠PQC =2∠CDB =180°-2α. ∵点P 不与点B ,M 重合, ∴∠BAD >∠P AD >∠MAD , ∴2α>180°-2α>α, ∴45°<α<60°.5.解:(1)∵AF 平分∠BAD , ∴∠BAF =∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠F . ∴∠CEF =∠F . ∴CE =CF .(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC ,∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG ,∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 证明:连接AD ,EB ,如图②.∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A. ∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC ,∴∠FDB =90°. ∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB. ∴AF =EB.在△ABC 和△DFB 中,∵AC =8,DF =3,∴AB =8 2,BF =3 2. AF =AB -BF =5 2, 即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°. ∴∠GEB =∠CBE . ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中, ⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE . ∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC 是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC . ∴BH =EH .在△GEH 与△CBH 中, ⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC , ∴△GEH ≌△CBH . ∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α. 由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC. ∵AB =AC , ∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形, ∴AE ∥BF ,AE =BF . ∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α, ∴∠DAC =α. ∴∠DAC =∠C. ∴AD =CD .∵AD =AE =BF , ∴BF =CD. ∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32.证明:如图,连接AD .∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形. ∵D 为BC 的中点, ∴AD ⊥BC.∴∠1+∠2=90°. 又∵DE ⊥AC , ∴∠DEC =90°. ∴∠2+∠C =90°. ∴∠1=∠C =60°. 设AB =BC =k (k >0), 则CE =12CD =k 4,DE =34k .∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k .∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C , ∴△ADF ∽△BCE . ∴AF BE =AD BC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°. ∴∠AHB =90°. (3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB. ∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN . ∴PE =CN .∴CF PE =CF CN =12.(2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上. ∴∠BDC =12∠BAC =30°.方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α.∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°.(2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中, ⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形. ∴EM =AM =AE .∵AC =AD ,AM ⊥CD , ∴CM =DM .又∵∠DEC =90°, ∴EM =CM =DM . ∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上. ∴α=∠CAD =90°. 8.解:(1)CH =AB (2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°. ∵DE =DF , ∴AF =CE .在△ABF 和△CBE 中, ⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE . ∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2. ∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C. ∴CH =CB. ∴CH =AB. (3)3 2+3.。
北京市海淀区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a+3b=5ab B.=±6C.a6÷a2=a4D.(2ab2)3=6a3b54.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:5 5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是()A.(0,﹣2)B.(1,﹣2)C.(2,﹣1)D.(1,2)6.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.下列y关于x的函数中,当x>0时,函数值y随x的值增大而减小的是()A.y=x2B.y=C.y=D.y=9.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.410.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)13.若m+n=1,mn=2,则的值为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.16.样本数据2,4,3,5,6的极差是.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC ≌△DEF.20.(5分)关于x的分式方程﹣=总无解,求a的值.21.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(5分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A、从一个社区随机选取200名居民;B、从一个城镇的不同住宅楼中随机选取200名居民;C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24.(5分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?25.(5分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC 边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).29.(8分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.2.解:从上面看,是正方形右边有一条斜线,如图:故选:B.3.解:A、2a+3b,无法计算,故此选项错误;B、=6,故此选项错误;C、a6÷a2=a4,正确;D、(2ab2)3=8a3b6,故此选项错误;故选:C.4.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.5.解:如图,黑棋②的坐标为(0,﹣2).故选:A.6.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:A、二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y 随x的增大而增大;故本选项错误;B、一次函数y=x+1的图象,y随x的增大而增大;故本选项错误;C、正比例函数y=x的图象在一、三象限内,y随x的增大而增大;故本选项错误;D、反比例函数y=中k=1>0,所以当x>0时,y随x的增大而减小;故本选项正确;故选:D.9.解:①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.10.解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上13.解:∵m+n=1,mn=2,∴原式==.故答案为:14.解:﹣20+10=﹣10,所以,现在潜水艇在原来的位置下面10米,∵潜水艇原来在距水面50米深处,∴现在潜水艇在距水面60米深处.故答案为:60.15.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.16.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.21.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.解:(1)A、B两种调查方式具有片面性,故C比较合理;(2)由条形图可得,每天锻炼2小时的人数是52人;(3)设100万人中有x万人锻炼时间在2小时及以上,则有=,解之,得x=53(万);(4)这个调查有不合理的地方.比如:在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.24.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.25.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.29.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。
2019年北京中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个选项是无理数?A. 0.3B. 0.33333...C. √2D. 3答案:C2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的高是多少?A. 2B. 3C. 4D. 5答案:C3. 计算(2x-1)+(3x+2)的结果是:A. 5x-3B. 5x+1C. 5x+3D. 5x-1答案:B4. 一个数的平方根是4,那么这个数是:A. 16B. 4C. 8D. 2答案:A5. 已知一个数的相反数是-8,那么这个数是:A. 8B. -8C. 0D. 16答案:A6. 下列哪个选项是二次根式?A. √2xB. 2xC. 2√xD. √x²答案:A7. 计算(-2)³的结果是:A. -8B. 8C. -6D. 6答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 已知一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A10. 下列哪个选项是不等式?A. 2x+3=5B. 2x+3>5C. 2x+3D. 2x+3<5答案:D二、填空题(本题共5小题,每小题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个数的倒数是2,那么这个数是____。
答案:1/23. 一个数的绝对值是10,那么这个数是____。
答案:±104. 一个数的立方是-27,那么这个数是____。
答案:-35. 一个数的平方根是3,那么这个数是____。
答案:9三、解答题(本题共5小题,共50分)1. 已知一个直角三角形的两条直角边长分别为3和4,求斜边长。
(6分)答案:斜边长为5,因为根据勾股定理,斜边长=√(3²+4²)=√(9+16)=√25=5。
2. 计算:(2x+1)(3x-2)。
2019年北京市通州区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.如图,∠AOB的角平分线是()A. 射线OBB. 射线OEC. 射线ODD. 射线OC2.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道.其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨.将数76000用科学记数法表示为()A. B. C. D.3.使二次根式有意义的x的取值范围是()A. B. C. D.4.某几何体的平面展开图如图所示,则该几何体是()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱5.若y=-x+3,且x≠y,则+的值为()A. 3B.C.D.6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A. B. C. D.7.2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年-2018年我国研究与试验发展(R&D)经费支出及其增长速度情况.2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是()A. 2014年年,我国研究与试验发展经费支出的增长速度始终在增加B. 2014年年,我国研究与试验发展经费支出增长速度最快的年份是2017年C. 2014年年,我国研究与试验发展经费支出增长最多的年份是2017年D. 2018年,基础研究经费约占该年研究与试验发展经费支出的8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A. ①③B. ②③C. ②D. ③二、填空题(本大题共8小题,共16.0分)9.实数a,b在数轴上对应点的位置如图所示,若实数c满足ac>bc,那么请你写出一个符合题意的实数c的值:c=______.10.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是______.11.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为______.12.若多项式x2+ax+b可以写成(x+m)2的形式,且ab≠0,则a的值可以是______,b的值可以是______.13.小华同学的身高为170cm,测得他站立在阳光下的影长为85cm,紧接着他把手臂竖直举起,测得影长为105cm,那么小华举起的手臂超出头顶的长度为______cm.14. 如图所示,在一条笔直公路l 的两侧,分别有A 、B 两个小区,为了方便居民出行,现要在公路l 上建一个公共自行车存放点,使存放点到A 、B 小区的距离之和最小,你认为存放点应该建在______处(填“C ”“E ”或“D ”),理由是______.15. 在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算根据列表,可以估计出n 的值是______.16. 甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…,若甲跑步的速度为5m /s ,乙跑步的速度为4m /s ,则起跑后100s 内,两人相遇的次数为______. 三、计算题(本大题共1小题,共5.0分)17. 计算:()-1-6tan30°-( -1)0+ .四、解答题(本大题共11小题,共63.0分) 18. 解不等式组: <19. 已知:如图1,在△ABC 中,∠ACB =90°.求作:射线CG ,使得CG ∥AB .下面是小东设计的尺规作图过程. 作法:如图2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点; ②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;③以点F 为圆心,DE 长为半径作弧,两弧在∠FCB 内部交于点G ; ④作射线CG .所以射线CG 就是所求作的射线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接FG 、DE . ∵△ADE ≌△______, ∴∠DAE =∠______.∴CG ∥AB (______)(填推理的依据).20. 关于x 的一元二次方程x 2+2x -(n -1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B作BD、AD 的平行线交于点E ,且AB 平分∠EAD . (1)求证:四边形EADB 是菱形; (2)连接EC ,当∠BAC =60°,BC =2 时,求△ECB 的面积.22. 如图,在平面直角坐标系xOy 中,直线y =2x 与函数y =(x >0)的图象交于点A (1,2). (1)求m 的值;(2)过点A 作x 轴的平行线l ,直线y =2x +b 与直线l 交于点B ,与函数y=(x>)的图象交于点C,与x轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC>BD时,直接写出b的取值范围.23.如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.24.数学活动课上,老师提出问题:如图1,在Rt△ABC中,∠C=90°,BC=4cm,AC=3cm,点D是AB的中点,点E是BC上一个动点,连接AE、DE.问CE的长是多少时,△AED的周长等于CE长的3倍.设CE=xcm,△AED的周长为ycm(当点E与点B重合时,y的值为10).小牧根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小牧的探究过程,请补充完整:1x y(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图2;(3)结合画出的函数图象,解决问题:①当CE的长约为______cm时,△AED的周长最小;②当CE的长约为______cm时,△AED的周长等于CE的长的3倍.25.某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.1()小明同学说:“这次竞赛我得了分,在我们小组中排名属中游略偏上!”观察上表可知,小明是______组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐______参加,请你从两个不同的角度说明推荐理由.26.已知二次函数y=x2-ax+b在x=0和x=4时的函数值相等.(1)求二次函数y=x2-ax+b的对称轴;(2)过P(0,1)作x轴的平行线与二次函数y=x2-ax+b的图象交于不同的两点M、N.①当MN=2时,求b的值;②当PM+PN=4时,请结合函数图象,直接写出b的取值范围.27. 如图,在等边△ABC 中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F . (1)设∠BAF =α,用α表示∠BCF 的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M为线段AB 上一点.(1)在点C (2,1),D (2,0),E (1,2)中,可以与点M 关于直线y =x 对称的点是______; (2)若x 轴上存在点N ,使得点N 与点M 关于直线y =x +b 对称,求b 的取值范围.(3)过点O 作直线l ,若直线y =x 上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),请你直接写出点N 横坐标n 的取值范围.答案和解析1.【答案】B【解析】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.2.【答案】A【解析】解:数据76000用科学记数法表示为7.6×104.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:由题意得,x-2≥0,解得x≥2,故选:B.根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.4.【答案】C【解析】解:由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体为四棱锥故选:C.由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体此题主要考查的是几何体的展开图,熟记几何的侧面、底面图形特征即可求解5.【答案】A【解析】解:由y=-x+3,得到x+y=3,则原式=-===x+y=3,故选:A.原式变形后,利用同分母分式的减法法则计算,约分得到最简结果,将已知等式变形后代入计算即可求出值.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.【答案】B【解析】解:设绳子长x尺,木条长y尺,依题意有.故选:B.本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.7.【答案】B【解析】解:观察折线图可知:2014年-2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年,增长速度约为12.5%.故选:B.利用折线图中的信息一一判断即可.本题考查折线统计图,解题的关键是理解题意,灵活运用所学知识解决问题. 8.【答案】C【解析】解: 如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误 故选:C .根据题意在坐标系中画出对应的图象即可.此题主要考查图象的坐标,画出相应的直线确定交点,即可解. 9.【答案】-1【解析】解:由数轴可知a <b , 而实数c 满足ac >bc , ∴c <0,于是答案不唯一 故答案为-1.由数轴可以观察发现a <b ,而实数c 满足ac >bc ,只要c <0即可满足要求.本题考查的是不等式的基本性质,把握不等式两边同时乘以一个负数时,不等号方向改变的性质是关键.10.【答案】60° 【解析】解:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E , ∴=, ∵=, ∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.根据垂径定理求出=,求出、、的度数,即可求出答案.本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能求出的度数是进而此题的关键.11.【答案】40° 【解析】解:∵正多边形的外角和是360°, ∴360°÷9=40°. 故答案为:40°.正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数和外角的度数是常用的一种方法,需要熟记. 12.【答案】-4 4【解析】解:∵多项式x 2+ax+b 可以写成(x+m )2的形式,且ab≠0, ∴x 2+ax+b=(x+m )2,∴a 可以为-4,b 可以为4,即x 2-4x+4=(x-2)2,故答案为:-4,4.此题是一道开放型的题目,答案不唯一,只要符合完全平方公式即可.本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,a 2+2ab+b 2=(a+b )2,a 2-2ab+b 2=(a-b )2. 13.【答案】40【解析】解:设手臂竖直举起时总高度xm,列方程得:,解得x=210,210-170=40cm,所以小华举起的手臂超出头顶的高度为40cm.故答案为:40根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小华举起的手臂超出头顶的高度.本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.14.【答案】E两点之间线段最短【解析】解:公共自行车存放点应该建在B处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.根据两点之间线段最短可得公共自行车存放点的位置是E处.此题主要考查了线段的性质,关键是掌握两点之间线段最短.15.【答案】n=10【解析】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴=0.5,解得:n=10.故答案为:10.利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.16.【答案】4【解析】解:设两人起跑后100s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示甲、乙两人的速度,则有:(V甲+V乙)t=2S∴t=∴,解得:x=4.5又∵x是正整数,且只能取整,∴x=4故答案为4.在100s内,求两人相遇的次数,关键一是求出两人每一次相遇间隔时间,二是找出隐含等量关系:每一次相遇时间×次数=总时间构建一元一次方程.本题考查了一元一次方程解决行程中的相遇问题,突破口就是相遇时间等于每个人走的时间;结合实际问题中x的取值只能取整数,此题与方程的解既有区别又有联系.17.【答案】解:原式=2-6×-1+2=1.【解析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:<①②∵解不等式①得:x>2,解不等式②得:x≥5,∴不等式组的解集为x≥5.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.19.【答案】CFG FCG同位角相等,两直线平行【解析】解:(1)如图,射线CG为所作;(2)完成下面的证明.证明:连接FG、DE.∵△ADE≌△CFG,∴∠DAE=∠FCG.∴CG∥AB(同位角相等,两直线平行).故答案为CFG,FCG,同位角相等,两直线平行.(1)根据作法画出对应的几何图形;(2)利用作法得到AD=AE=CF=CG,FG=CE,则△ADE≌△CFG,根据全等三角形的性质得∠DAE=∠FCG.然后根据同位角相等,两直线平行判断CG∥AB.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的性质.20.【答案】解:(1)根据题意得△=22-4[-(n-1)]>0,解得n>0;(2)因为n为取值范围内的最小整数,所以n=1,方程化为x2+2x=0,x(x+2)=0,x=0或x+2=0,所以x1=0,x2=-2.【解析】(1)根据判别式的意义得到△=22-4[-(n-1)]>0,然后解不等式即可;(2)利用n的范围确定以n=1,则方程化为x2+2x=0,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.【答案】(1)证明:∵AD∥BE,AE∥BD,∴四边形EADB是平行四边形,∵AB平分∠EAD,∴∠EAB=∠DAB,∵AE∥BD,∴∠EAB=∠DBA,∴∠DAB=∠DBA,∴AD=AD.∴四边形EADB是菱形;(2)解:∵∠ACB=90°,∠BAC=60°,BC=2,∴tan60°==,∴AC=2,∴S△ACB=AC•BC=×2×2=2,∵AE∥BC,∴S△ECB=S△ACB=2.【解析】(1)根据已知条件求得四边形EADB是平行四边形,根据角平分线定义得到∠EAB=∠DAB,根据平行线的性质得到∠EAB=∠DBA,于是得到结论;(2)解直角三角形和根据平行线的性质即可得到结论.本题考查了菱形的判定和性质,三角形的面积,含30°直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)把A(1,2)代入函数y=(x>0)中,∴2=.∴m=2;(2)①过点C作x轴的垂线,交直线l于点E,交x轴于点F.当点C是线段BD的中点时,∴CE=CF=1.∴点C的纵坐标为1,把y=1代入函数y=中,得x=2.∴点C的坐标为(2,1),把C(2,1)代入函数y=2x+b中得:1=4+b,得b=-3,②由①可知:当BC>CD时,b<-3.【解析】(1)根据待定系数法求得即可;(2)①根据题意求得C点的坐标,然后根据待定系数法即可求得b的值;②根据①结合图象即可求得.本题考查了一次函数和反比例函数的交点问题,待定系数法求反比例的解析式,求得C点的坐标是解题的关键.23.【答案】(1)证明:∵AE是⊙O的切线,∴∠BAE=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC+∠CAE=90°,∠BAC+∠B=90°,∴∠B=∠CAE,∵AF=AE,∠ACB=90°,∴∠CAD=∠CAE.∴∠B=∠CAD;(2)解:连接BD.∵∠ABC=∠CAD=∠CAE=30°,∴∠DAE=60°,∵∠BAE=90°,∴∠BAD=30°,∵AB是直径,∴∠ADB=90°,∴cos∠BAD=,∴=,∵∠ACE=90°,∠CAE=30°,CE=2,∴AE=2CE=4,∵∠BAE=90°,∠ABC=30°,∴cot∠ABC=,即=,∴AB=4,∴=,∴AD=6.【解析】(1)根据切线的性质和圆周角的定理∠BAE=∠ACB=90°,进而求得∠B=∠CAE,根据等腰三角形三线合一的性质得出∠CAD=∠CAE,即可证得结论;(2)连接BD,易证得∠BAD=30°,解直角三角形求得AE,进而求得AB,然后即可求得AD.本题考查了切线的性质圆周角定理,等腰三角形的性质以及解直角三角形熟练掌握性质定理是解题的关键.24.【答案】7.6 1.5 2.7【解析】解:(1)x=2cm,即CE=2cm,∵Rt△ABC中,∠C=90°,BC=4cm,AC=3cm,∴AB=5cm,∵BC=4,点D是AB的中点,∴AD=2.5,DE是△ABC 的中位线,∴DE=AC=1.5,∴AE===≈3.6,∴y=AE+DE+AD=3.6+1.5+2.5=7.6;故答案为:7.6;(2)根据(1)表对应的坐标值进行描点,画图象;如图2所示:(3)①由(2)画出的函数图象,当CE的长约为1.5cm时,△AED的周长最小;故答案为:1.5;②在(2)函数图象中,画出直线y=3x的图象,如图3所示:直线y=3x与原函数图象的交点即为△AED的周长等于CE的长的3倍值时对应x的值,x≈2.7cm,故答案为:2.7.(1)x=2cm,即CE=2cm,由勾股定理求出AB=5cm,求出AD=2.5,DE是△ABC的中位线,由三角形中位线定理得出DE=AC=1.5,由勾股定理求出AE==≈3.6,即可得出结果;(2)根据(1)表对应的坐标值进行描点,画出图象即可;(3)①由(2)画出的函数图象得出:当CE的长约为1.5cm时,△AED的周长最小即可;②在(2)函数图象中,画出直线y=3x的图象,直线y=3x与原函数图象的交点即为△AED的周长等于CE的长的3倍值时对应x的值,即可得出结果.本题是三角形综合题目,考查了勾股定理、三角形中位线定理、描点法画函数图象、图象的交点等知识;本题综合性强,熟练掌握勾股定理和三角形中位线定理,理解图象的意义是解题关键.25.【答案】6 7.1 甲甲或乙【解析】解:(1)由条形统计图可知,甲组3分的1人,6分的5人,∴中位数是6,乙组的平均分为×(5×2+6×1+7×2+8×4+9×1)=7.1,(2)∵甲组的中位数是6,乙组的中位数是7.5,小明竞赛得了7分,在小组中排名属中游略偏上,∴小明是甲组学生,故答案为:甲;(3)推荐甲或乙,甲组:甲组的合格率、优秀率均高于乙组.乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定,故答案为:甲或乙.(1)根据条形图得到甲组的得分情况,根据中位数的概念求出甲组的中位数,根据平均数的计算公式求出乙组的平均分;(2)根据中位数的概念解答;(3)分别从合格率、优秀率和平均分、中位数的角度进行比较.本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.【答案】解:(1)∵二次函数y=x2-ax+b在x=0和x=4时的函数值相等.∴对称轴为直线x==2;(2)①不妨设点M在点N的左侧.∵对称轴为直线x=2,MN=2,∴点M的坐标为(1,1),点N的坐标为(3,1),∴x=-=2,1=1-a+b,∴a=4,b=4;②1≤b<5.【解析】(1)利用x=0和x=4时的函数值相等可得二次函数图象的对称轴x==2;(2)①不妨设点M在点N的左侧.由MN=2,根据对称性可知点M(1,1),点N(3,1);②由图象直接可得.考查知识点:二次函数图象的对称性.对称轴两侧的点到对称轴的距离相等是解题的关键点.27.【答案】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴[180°-(60°-2α)]=60°+α,∴∠BCF=∠ACE-∠ACB=60°+α-60°=α.(2)结论:AF=EF=CF.证明:如图,作∠FCG=60°交AD于点G,连接BF.∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴△FCG是等边三角形,∴GF=FC,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α,在△ACG和△BCF中,,∴△ACG≌△BCF.∴AG=BF,∵点B关于射线AD的对称点为E,∴BF=EF,∴AF-AG=GF,∴AF=EF+CF.【解析】(1)连接AE.根据∠BCF=∠ACE-∠ACB,求出∠ACE,∠ACB即可.(2)结论:AF=EF=CF.如图,作∠FCG=60°交AD于点G,连接BF.证明△ACG≌△BCF即可解决问题.本题考查作图-轴对称变换,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.【答案】C(2,1),D(2,0)【解析】解:(1)在点C(2,1),D(2,0),E(1,2)中,可以与点M关于直线y=x对称的点是C(2,1),D(2,0).故答案为:C(2,1),D(2,0);(2)由题意可知,点B在直线y=x上.∵直线y=x与直线y=x+b平行.过点A作直线y=x的垂线交x轴于点G,∴点G是点A关于直线y=x的对称点,∴G(2,0),过点B作直线y=x的垂线交x轴于点H,∴△OBH是等腰直角三角形,∴点G是OH的中点,∴直线y=x+b过点G,∴b=-2.∴b的取值范围是-2≤b≤0;(3)设AG与y=x的垂足为P,易知△ABP为等腰直角三角形,∴AP=,当l经过一三象限时,点N横坐标n的取值范围为:,当l经二,四象限时,点N横坐标n的取值范围为.(1)根据点A(0,2),B(2,2)可知与点M关于直线y=x对称的点是点C(2,1),D(2,0);(2)根据题意可知直线y=x与直线y=x+b平行,过点A作直线y=x的垂线交x轴于点G,求出点G的坐标;过点B作直线y=x的垂线交x轴于点H,根据等腰直角三角形的性质即可求出求b的取值范围;(3)由(2)即可直接写出点N横坐标n的取值范围.本题考查了一次函数综合题,等腰直角三角形的性质,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.。
2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是() A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM≌△DON. A. 由△COM≌△DON.,可得∠COM=∠COD,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR≌△NOS,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN∥CD,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为() A .-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为() A.0 B.1 C.2 D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题. 故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男7 31 25 30 4 女8 29 26 32 8 学段初中25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm 2.(结果保留一位小数) 【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号) 【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②第11题图③圆锥②圆柱①长方体第12题图PBA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”) 【解析】本题考查方差的性质。