八年级数学期末难题压轴题汇总
- 格式:doc
- 大小:1011.50 KB
- 文档页数:23
期末难点特训二和一次函数的实际应用有关的压轴题1.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.2.用充电器给某手机充电时,其屏幕画面显示目前电量为20%(如图1).经测试,在用快速充电器和普通充电器对该手机充电时,其电量y(单位:%)与充电时间x(单位:h)的函数图象分别为图2中的线段AB、AC.根据以上信息,回答下列问题:(1)在目前电量20%的情况下,用充电器给该手机充满电时,快速充电器比普通充电器少用______小时.(2)求线段AB对应的函数表达式;(3)先用普通充电器充电a h后,再改为快速充电器充满电,一共用时3h,请在图2中画出电量y(单位:%)与充电时间x(单位:h)的函数图象,并标注出a所对应的值.3.已知A、B 两地相距3km,甲骑车匀速从A 地前往B 地,如图表示甲骑车过程中离A 地的路程y 甲(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方1.2km 的C处,两人均沿同一路线同时匀速出发前往B 地,在第4 分钟甲追上了乙,两人到达B 地后停止.请在下面同一平面直角坐标系中画出乙离B 地的距离y 乙(km)与所用时间x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.4.如图()1所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图()2是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.()1填空:a=______km,AB两地的距离为______km;()2求线段PM、MN所表示的y与x之间的函数表达式;()3求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?5.某动物园内的一段线路如图1所示,动物园内有免费班车从处出发,沿该线路开往熊猫馆,途中停靠珍禽馆(上下车时间忽略不计),第一班车上午9:15出发,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是他从入口处出发,沿该路线步行25分钟后到达珍禽馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示:(1)第一班车从入口处到达珍禽馆所需的时间为 分钟:(2)求第一班车离入口处的路程y (米)与时间x (分)的函数关系式并写出自变量x 的取值范围: (3)小明在珍禽馆游玩35分钟后,想乘班车到熊猫馆,则小明最早能够乘上第 班车;(4)如果小明在珍禽馆游玩35分钟后,乘最早的班车到熊猫馆,那么比他在珍禽馆游玩结东后立即步行到熊猫馆提前 分钟到(假设小明步行速度不变).6.某数学小组探究下列问题:商场将甲、乙两种糖果按照质量比为1:2混合成什锦糖售卖、设甲、乙糖果的单价分别为m 元/千克、n 元/千克,求什锦糖的单价.列式可以求解:(1)小红根据题目中的数量关系,通过列式得出什锦糖的单价,请你按小红的思路完成解答:不列式,画图可以求解吗?(2)小莉设计了一幅算图(如图①),设计方案与使用方法如下:设计方案:过点1,0A ,()3,0C 分别作x 轴的垂线AB ,CD .使用方法:把乙糖果的单价用y 轴上的点E 的纵坐标表示,甲糖果的单价用直线CD 上的点F 的纵坐标表示,连接EF ,EF 与AB 的交点记为P ,则点P 的纵坐标就是什锦糖的单价.请你用一次函数的知识说明小莉方法的正确性;(3)小明将原问题的条件改为:甲、乙、丙三种糖果按照质量比为1:2:3混合成什锦糖售卖,已知甲、乙、丙三种糖果的单价分别为12元/千克、15元/克、16元/千克.请你帮小明在图②中设计一幅算图,求出什锦糖的单价.要求:标注必要的字母与数据,不写设计方案与使用方法,不必说明理由.7.实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.数学研究:如图,折线A B C --、A D E --分别表示甲、小狗在行进过程中,离乙的路程y (km )与甲行进时间x (h )之间的部分函数图像.(1)求线段AB 对应的函数表达式;(2)求点E 的坐标;(3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x 为何值时,它离乙的路程与它离甲的路程相等?8.数学兴趣小组的同学们受《乌鸦喝水》故事的启发,在数学实验室中,利用带刻度的容器和匀速流水的水龙头进行数学实验.(1)如图,有三种不同形状的容器,现向三种容器匀速注水,恰好注满时停止.已知注水前 图①的容器中有200ml 的水,图②容器中有100ml 的水,图③容器中没有水,是空的.图①和图②的注水速度均为 5/ml s ,图③的注水速度为10/ml s .设容器中水的体积为y (单位:ml ),注水时间为x (单位:s ).请分别写出三个容器中y 关于x 的函数表达式,填写在图中对应的横线上.(2)如图④,同学们自己制作了一个特殊的容器,这个特殊容器有上、下两个高度相同的圆柱体组合而成,且上圆柱体底面圆的半径是下圆柱体底面圆的半径的一半.已知这个特殊容器的高为20cm ,注水前,容器内的水面高度是4cm ,现向容器匀速注水,直至容器恰好注满时停止,每5s 记录一次水面的高度h (单位:cm ),前5次数据如下表所示. 注水时间/t s0 5 10 15 20 … 水面高度/h cm 4 5 6 7 8 …①在平面直角坐标系中,请画出水面高度h 关于注水时间t 的函数图像,并标注相关数据;②在水面高度h 满足616h ≤≤时,则注水时间t 的取值范围是__________.9.一辆货车从甲地匀速驶往乙地,到达乙地停留一段时间后,沿原路以原速返回甲地.货车出发一段时间后,一辆轿车以120km/h 的速度从甲地匀速驶往乙地.货车出发h a 时,两车在距离甲地160km 处相遇,货车回到甲地的同时轿车也到达乙地.货车离甲地的距离()1km y 、轿车离甲地的距离()2km y 分别与货车所用时间()h x 之间的函数图像如图所示.(1)货车的速度是______km/h ,a 的值是______,甲、乙两地相距______km ;(2)图中D 点表示的实际意义是:______.(3)求2y 与x 的函数表达式,并求出b 的值;(4)直接写出货车在乙地停留的时间.10.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段OA 、折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.(1)线段OA 与折线BCD 中,______(填线段OA 或折线BCD )表示货车离甲地的距离y 与时间x 之间的函数关系.(2)求线段CD 的函数关系式(标出自变量x 取值范围);(3)货车出发多长时间两车相遇?11.快车从M 地出发沿一条公路匀速前往N 地,慢车从N 地出发沿同一条公路匀速前往M 地,已知快车比慢车晚出发0.5小时,快车先到达目的地.设慢车行驶的时间为t (h ),快慢车辆车之间的距离为s (km ),s 与t 的函数关系如图1所示.(1)求图1中线段BC 的函数表达式;(2)点D 的坐标为 ,并解释它的实际意义;(3)设快车与N 地的距离为y (km ),请在图2中画出y 关于慢车行驶时间t 的函数图象.(标明相关数据)12.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校.如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注相关数据......) 13.快车和慢车分别从A 市和B 市两地同时出发,匀速行驶,先相向而行,慢车到达A 市后停止行驶,快车到达B 市后,立即按原路原速度返回A 市(调头时间忽略不计),结果与慢车同时到达A 市.快、慢两车距B 市的路程y 1、y 2(单位:km )与出发时间x (单位:h )之间的函数图像如图所示.(1)A 市和B 市之间的路程是 km ;(2)求a 的值,并解释图中点M 的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20 km ?14.某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.(1)设某家庭月用水量为x 吨,水费为y 元,请写出y 与x 之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;(2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?15.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图像;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?16.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x =20时,y 的值为_________;当x =40时,y 的值为________;(2)兴趣小组成员发现了y 与x 的函数关系,并画出了部分函数图像(如图2中的线段OM ,但不包括点O ,因此点O 用空心画出)①请直接写出:a =_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(3)设甲、乙第一次迎面相遇时,相遇地点与点A 之间的距离为x 个单位长度,他们第三次迎面相遇时,相遇地点与点A 之间的距离为z 个单位长度.若z 不超过40,则x 的取值范围是_______(直接写出结果).17.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC 表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y 与x 之间的函数表达式,并写出x 的取值范围;(2)若该节能产品的日销售利润为W(元),求W 与x 之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?18.在平面直角坐标系中,对于()11,A x y 、()22,B x y 两点,用以下方式定义两点间的“极大距离”(),d A B ;若1212x x y y -≥-,则()12,d A B x x =-;若1212x x y y -<-,则()12,d A B y y =-.例如:如图,点()2,3P ,则(),3d P O =.【理解定义】(1)若点()3,2A 、()1,1B --,则(),d A B =______.(2)在点()2,2C 、()1,2D -、()3,2E --、()1,2F -中,到坐标原点O 的“极大距离”是2的点是______.(填写所有正确的字母代号)【深入探索】(3)已知点13,22M a a ⎛⎫ ⎪⎝⎭,(),2d M O =,O 为坐标原点,求a 的值. 【拓展延伸】(4)经过点()1,3的一次函数y kx b =+(k 、b 是常数,0k ≠)的图像上是否存在点P ,使(),2d P O =,O 为坐标原点,直接写出点P 的个数及对应的k 的取值范围.19.如图①,长方体长AB 为8 cm ,宽BC 为6 cm ,高BF 为4 cm .在该长体的表面上,蚂蚁怎样爬行路径最短?(1)蚂蚁从点A 爬行到点G ,且经过棱EF 上一点,画出其最短路径的平面图,并标出它的长.(2)设该长方体上底面对角线EG 、FH 相交于点O (如图②),则OE =OF =OG =OH =5 cm .①蚂蚁从点B 爬行到点O 的最短路径的长为 cm ;②当点P 在BC 边上,设BP 长为a cm ,求蚂蚁从点P 爬行到点O 的最短路的长(用含a 的代数式表示).20.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y (件),与甲车间加工时间x (天),y 与x 之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z (件)与甲车间加工时间x (天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?答案与解析1.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x≤28);(3)4 s.【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;(3)利用一次函数图象结合水面高度的变化得出t的值.【详解】(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,所以正方体的棱长为10cm;故答案为10cm;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴120 2820k bk b+=⎧⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:5582y x=+(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.2.用充电器给某手机充电时,其屏幕画面显示目前电量为20%(如图1).经测试,在用快速充电器和普通充电器对该手机充电时,其电量y (单位:%)与充电时间x (单位:h )的函数图象分别为图2中的线段AB 、AC .根据以上信息,回答下列问题:(1)在目前电量20%的情况下,用充电器给该手机充满电时,快速充电器比普通充电器少用______小时.(2)求线段AB 对应的函数表达式;(3)先用普通充电器充电a h 后,再改为快速充电器充满电,一共用时3h ,请在图2中画出电量y (单位:%)与充电时间x (单位:h )的函数图象,并标注出a 所对应的值. 【答案】(1)4;(2)线段AB 的函数表达式为: y =40x +20 ;(3)作图见解析.【分析】(1)由图象可知快速充电器给该手机充满电需2小时,普通充电器给该手机充满电需6小时,即可求解;(2)利用待定系数法可求解析式;(3)由时间恰好是3h ,列出方程可求解,即可画出函数图像.(1)解:由图象可知快速充电器给该手机充满电需2小时,普通充电器给该手机充满电需6小时,∴用充电器给该手机充满电时,快速充电器比普通充电器少用4小时;故答案为4;(2)解:设线段AB 的函数表达式为y =k 1x +b 1,将(0,20),(2, 100)代入y = k 1x +b 1,111210020k b b +=⎧⎨=⎩解得114020k b =⎧⎨=⎩ , ∴线段AB 的函数表达式为: y =40x +20 ;(3)解:设线段AC 的函数表达式为y =k 2x +b 2,将(0, 20),(6, 100)代入y = k 2x +b 2,222610020k b b +=⎧⎨=⎩ , 解得2240320k b ⎧=⎪⎨⎪=⎩ , 线段AC 的函数表达式为:40203y x =+; ∴()40403100203a a +⨯-=-,解得32a =, 把32a =代入40203y x =+得40y =, ∴点,3402⎛⎫ ⎪⎝⎭是先用普通充电器充电,再用快速充电器充电时电量y 与充电时间x 的函数图象的转折点,作图如下图所示,作点D ,3402⎛⎫ ⎪⎝⎭,E (3,100),连接AD ,DE ,折线ADE 即为所求作的图形, .【点睛】本题考查了一次函数的应用,待定系数法求解析式及一元一次方程的应用,求出解析式是解答本题的关键.3.已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方1.2km 的C处,两人均沿同一路线同时匀速出发前往B 地,在第4 分钟甲追上了乙,两人到达B 地后停止.请在下面同一平面直角坐标系中画出乙离B 地的距离y 乙(km)与所用时间x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.【答案】(1)0.5(2)见解析(3)(187,97),它的意义是当出发187min后,乙离B的距离和甲离A地的距离都是97km【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发187min后,乙离B的距离和甲离A地的距离都是97 km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B 地的距离y 乙(km )与所用时间x (min )的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.4.如图()1所示,在A ,B 两地间有一车站C ,一辆汽车从A 地出发经C 站匀速驶往B 地.如图()2是汽车行驶时离C 站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.()1填空:a =______km ,AB 两地的距离为______km ;()2求线段PM 、MN 所表示的y 与x 之间的函数表达式;()3求行驶时间x 在什么范围时,小汽车离车站C 的路程不超过60千米?【答案】(1)240 390;(2)PM 所表示的函数关系式为:1y 15060x =-,MN 所表示的函数关系式为:2y 60x 150=-;(3)1.5h x 3.5h ≤≤,小汽车离车站C 的路程不超过60千米.【分析】(1)根据图象中的数据即可得到A ,B 两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【详解】解:()1由题意和图象可得,150a 42402.5=⨯=千米, A ,B 两地相距:150240390+=千米,故答案为240,390()2由图象可得,A 与C 之间的距离为150km汽车的速度15060km /h 2.5=, PM 所表示的函数关系式为:1y 15060x =-MN 所表示的函数关系式为:2y 60x 150=-()3由1y 60=得 15060x 60-=,解得:x 1.5=由2y 60=得 60x 15060-=,解得:x 3.5=由图象可知当行驶时间满足:1.5h x 3.5h ≤≤,小汽车离车站C 的路程不超过60千米【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.5.某动物园内的一段线路如图1所示,动物园内有免费班车从处出发,沿该线路开往熊猫馆,途中停靠珍禽馆(上下车时间忽略不计),第一班车上午9:15出发,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是他从入口处出发,沿该路线步行25分钟后到达珍禽馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示:(1)第一班车从入口处到达珍禽馆所需的时间为 分钟:(2)求第一班车离入口处的路程y (米)与时间x (分)的函数关系式并写出自变量x 的取值范围: (3)小明在珍禽馆游玩35分钟后,想乘班车到熊猫馆,则小明最早能够乘上第 班车;(4)如果小明在珍禽馆游玩35分钟后,乘最早的班车到熊猫馆,那么比他在珍禽馆游玩结东后立即步行到熊猫馆提前 分钟到(假设小明步行速度不变). 【答案】(1)9;(2)2003000(1533)y x x =-≤≤;(3)5;(4)12【分析】(1)先求出第一班车速度,行到珍禽馆行程1800÷速度计算即可;(2)设y =kx+b ,运用待定系数法求解即可得出第一班车离入口处的距离y (米)与时间x (分)的解析式;把(15,0),(33,3600)代入y =kx+b ,得015360033k b k b=+⎧⎨=+⎩解方程组即可; (3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.(4)先求出第5班车行程解析式,第5班车到熊猫馆时间即可,再求出用小明步行与游玩一共时间-第5班车到熊猫馆时间即可【详解】解:(1)从入口到熊猫馆一共用33-15=18分钟。
八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。
八年级下册数学难题压轴题一、选择题(每题3分,共30分)1. 若关于x的分式方程(m)/(x - 1)+(3)/(1 - x)=1的解为正数,则m的取值范围是()- A. m>2- B. m<2- C. m>2且m≠3- D. m<2且m≠ - 3解析:首先将分式方程(m)/(x - 1)+(3)/(1 - x)=1化简,方程变形为(m)/(x - 1)-(3)/(x - 1)=1。
两边同乘以(x - 1)得:m-3=x - 1,解得x=m - 2。
因为方程的解为正数,所以x=m - 2>0,即m>2。
又因为分母不能为0,即x-1≠0,m - 2-1≠0,m≠3。
所以m的取值范围是m>2且m≠3,答案为C。
2. 已知四边形ABCD是平行四边形,下列结论中不正确的是()- A. 当AB = BC时,四边形ABCD是菱形。
- B. 当AC⊥BD时,四边形ABCD是菱形。
- C. 当∠ ABC = 90^∘时,四边形ABCD是矩形。
- D. 当AC = BD时,四边形ABCD是正方形。
解析:- 选项A:一组邻边相等的平行四边形是菱形,当AB = BC时,四边形ABCD 是菱形,该选项正确。
- 选项B:对角线互相垂直的平行四边形是菱形,当AC⊥BD时,四边形ABCD是菱形,该选项正确。
- 选项C:一个角是直角的平行四边形是矩形,当∠ ABC=90^∘时,四边形ABCD是矩形,该选项正确。
- 选项D:对角线相等的平行四边形是矩形,当AC = BD时,四边形ABCD是矩形,而不是正方形,该选项错误。
答案为D。
二、填空题(每题3分,共15分)1. 化简frac{x^2-1}{x^2+2x + 1}的结果是______。
解析:先对分子分母进行因式分解,分子x^2-1=(x + 1)(x - 1),分母x^2+2x + 1=(x + 1)^2。
所以frac{x^2-1}{x^2+2x + 1}=((x + 1)(x - 1))/((x + 1)^2)=(x - 1)/(x + 1)。
期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
人教版八年级数学上学期期末压轴精选30题考试范围:全册的内容,共30小题.【点睛】本题考查了等腰三角形的性质,三角形外角定义,直角三角形等知识,熟悉掌握有关知识是解题关键.2.(2022·湖南常德·八年级期中)A.0个B.1【答案】C,∵BF 是ABC Ð的角平分线,∴HBO EBO Ð=Ð,在△HBO 和EBO V 中,BH BE HBO EBO BO BO =ìïÐ=Ðíï=î,∵BAC Ð和ABC Ð的平分线相交于点∴点O 在C Ð的平分线上,∴OH OM OD a ===,∵2AB AC BC b ++=,∴1122ABC S AB OM AC OH =×+×V形一边边长大于另两边之差,小于它们之和,即可得中线长m 的取值范围.【详解】由2212161000a a b b -+-+=可得22680a b -+-=()()\ 6a = ,8b =如图,设AC b =,BC a =,CO 是对边AB 的中线,延长CO 至D 点,使得DO CO =,并连接AD ,Q AOD BOC Ð=Ð , AO BO =,DO CO=\ AOD BOCD D ≌\ AD BC a==\b a CD b a-<<+\214CD <<\17CO <<\中线长m 的取值范围为:17m <<.故答案为:17m <<【点睛】本题考查了因式分解,全等三角形的证明以及三角形的三边关系,掌握相应的知识点是解题的关键.12.(2022·山东济宁·八年级期中)已知一张三角形纸片ABC (如图甲),其中AB AC =,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD (如图乙),再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,BAC Ð的大小为______.【答案】36°##36度【分析】由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,由等腰三角形的性质可得,C ABC Ð=Ð,求解即可.【详解】解:由等腰三角形的性质可得,C ABC Ð=Ð,由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,【答案】11802n -æö´ç÷èø°【分析】根据内角和定理及外角的定义解题即可.【详解】解:∵在1A BC V 中,20B Ð=°,1A B CB =∴()118020280BA C Ð=°-°¸=°,④BD CE DE +=.其中正确的是 _____.【答案】①②③【分析】先根据垂直定义和等角的余角相等证得BAD CAF Ð=Ð,B ACF Ð=Ð,再利用ASA 可判断①正确;再证明ADE AFE △≌△可判断②正确;利用全等三角形的面积相等可判断③正确;根据全等三角形的性质和三角形的三边关系可判断④错误.【详解】解:Q 在Rt ABC V 中,=90BAC Ðo ,=AB AC ,45B ACB \Ð=Ð=o ,90BAD DAC Ð+Ð=o ,Q AF AD ^,90CAF DAC \Ð+Ð=°,BAD CAF \Ð=Ð,CF BC ^Q ,9045ACF ACB \Ð=°-Ð=o ,则B ACF Ð=Ð,在ABD △和ACF △中,BAD CAF AB ACB ACF Ð=Ðìï=íïÐ=Ðî()ABD ACF ASA \V V ≌,故①正确;AD AF \=,45DAE Ð=o Q ,AF AD ^,9045FAE DAE DAE \Ð=-Ð==Ðo o ,在ADE V 和AFE △中,AD AF DAE FAEAE AE =ìïÐ=Ðíï=î()ADE AFE SAS \V V ≌,∴=DE EF ,故②正确;∵ADE AFE △≌△,ABD ACF ≌△△,ABD ACF S S \=V V ,ADE AFE S S =V V ,BD CF =,DE EF =,ABC ABD ADE AECS S S S \=++V V V VÐ的度数;(1)如图1,求BFC(2)如图2,连接ED交BC于点G,连接AG,若【答案】(1)90°(2)见解析∵AE AD ^,∴90BAC DAE °Ð==Ð,∴BADCAE Ð=Ð,在ABD △和ACE △中,AB AC BAD CAE AD AE ìïÐÐíïî=== ,∴(SAS)ABD ACE @V V ,∴ABD ACF Ð=Ð,∵AHB FHC Ð=Ð,∴90BFC BAC °Ð=Ð=;(2)设AC 交EG 于点H ,在AB 上截取AK AD =,连接KG ,如图2所示:∵,90AD AE DAE °=Ð=∴45,AED ACG °Ð==Ð∵,AHE GHC Ð=Ð∴,EAC CGE Ð=Ð由(1)知:,BAD CAE Ð=Ð∴,BAD CGD Ð=Ð设2,BAD a CGD Ð==Ð∴2,EAC BAD a Ð=Ð=∴1802,BGD a °Ð=-∴180,BAD BGD °Ð+Ð=∴180,ABG ADG °Ð+Ð=∵AG 平分,BAD Ð∴,KAG DAG a Ð=Ð=在AKG △和ADG △中,,AK AD KAG DAG AG AG =ìïÐ=Ðíï=î(2)解:∵221012610a b a b +--+=,∴22221051260a a b b -++-+=,∴()()22560a b -+-=,∵()()225060a b -³-³,,∴()()22560a b -=-=,∴5060a b -=-=,,∴56a b ==,,∵b a c a b -<<+,∴111c <<,∵c 是最大边,∴611c £<;(3)解:∵2261P x y x =-+-,22413Q x y =++,∴222612413P Q x y x x y -=-+----,226414x x y y =-+---2269441x x y y =-+-----()()22321x y =---+-,∵()()223020x y -³+³,,∴()()22320x y ---+£,()()223210x y ---+-<∴0P Q -<,∴P Q <.【点睛】本题主要考查了因式分解的应用,三角形三边的关系,平方的非负性,熟知完全平方公式是解题的关键.22.(2022·福建·莆田锦江中学八年级期中)如图,AB AD ^,且AB AD =,AC AE ^,且AC AE =(1)如图1,连接DC 、BE ,求证:DC BE =;(2)如图2,求证:ABC ADE S S D D =(3)如图3,GF 经过A 点与DE 交于G 点,且GF BC ^于F 点.求证:G 为DE 的中点.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据垂直可得90BAE CAE ==°∠∠,得出DAC BAE Ð=Ð,根据全等三角形的判定证明DAC BAE @V V ,可得答案;(2)作EM AD ^交DA 的延长线于M ,作CN AB ^,进而可得CAN MAE =∠∠,根据全等三角形的判定证明ACN AEM @V V ,进而得出CN EM =,根据三角形的面积公式可得;(3)作DM AG ^交AG 的延长线于M ,作EN AG ^,先证明C NAE =∠∠,再证FCA NAE @V V ,得出AF NE =;再证明BAF ADM @V V ,得出AF DM =,进而得出DM NE =,再证明DMG ENG @V V ,即可得出答案.【详解】(1)∵AB AD ^,AC AE ^,∴90BAE CAE ==°∠∠∴BAD BAC BAC CAE +=+∠∠∠∠∴DAC BAE Ð=Ð在DAC △和BAE V 中,AD AB DAC BAE AC AE =ìïÐ=Ðíï=î∴DAC BAE@V V ∴DC BE=(2)作EM AD ^交DA 的延长线于M ,作CN AB^∴90EMD CNA ==°∠∠∵90MAN CAE ==°∠∠∴MAN CAM CAE CAM-=-∠∠∠∠∴CAN MAE=∠∠在ACN △和AEM △中,)DM AG ^交AG 的延长线于M ,作90EMA DMG AFC ===°∠∠90FAC CAF NAE +=+=∠∠∠NAE =∠CAF 和NEA V 中,90CFA ENA C NAE AC AE =Ð=°Ð=Ð=根据三角形三边关系,易得0a b c +->∴0a b -=∴a b=∴ABC V 为等腰三角形【点睛】本题考查了因式分解、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.24.(2022·浙江·八年级专题练习)(1)阅读理解:如图1,在ABC V 中,若10AB =,6AC =.求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连接BE (或将ACD V 绕着点D 逆时针旋转180°得到EBD △),把AB ,AC ,2AD 集中在ABE V 中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图2,在ABC V 中,D 是BC 边上的中点,DE DF ^于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图3,在四边形ABCD 中,180B D Ð+Ð=°,CB CD =,140BCD Ð=°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.【答案】(1)28AD <<;(2)见解析;(3)BE DF EF +=,证明见解析【分析】(1)延长AD 至E ,使DE AD =,连接BE ,证明SAS BDE CDA ≌()V V ,根据三角形三边关系即可求解;(2)延长FD 至点M ,使DM DF =,连接BM ,EM ,同(1)得,(SAS)BMD CFD D V V ≌,证明(SAS)EDM EDF V V ≌在BME D 中,由三角形的三边关系得BE BM EM +>,即可得证;(3)延长AB 至点N ,使BN DF =,连接CN ,证明(SAS)NBC FDC V V ≌,(SAS)NCE FCE V V ≌,根据求的三角形的性质即可得证.【详解】(1)解:延长AD 至E ,使DE AD =,连接BE ,如图①所示:∵AD 是BC 边上的中线,∴BD CD =,在BDE △和CDA V 中,BD CD BDE CDADE AD =ìïÐ=Ðíï=î∴SAS BDE CDA ≌()V V,∴6BE AC ==,在ABE V 中,由三角形的三边关系得:AB BE AE AB BE -<<+,∴106106AE -<<+,即416AE <<,∴28AD <<;故答案为:28AD <<;(2)证明:延长FD 至点M ,使DM DF =,连接BM ,EM ,如图所示同(1)得,(SAS)BMD CFD D V V ≌,BM CF\=DE DF ^Q ,DM DF =,DE DE=(SAS)EDM EDF \V V ≌,EM EF\=在BME D 中,由三角形的三边关系得BE BM EM +>,BE CF EF\+>(3)BE DF EF+=证明如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示180ABC D Ð+Ð=°Q ,180NBC ABC Ð+Ð=°NBC D\Ð=Ð在NBC V 和FDC △中,BN DF NBC D BC DC =ìïÐ=Ðíï=î,(SAS)NBC FDC \V V ≌CN CF \=,NCB FCDÐ=Ð140BCD Ð=°Q ,70ECF Ð=°70BCE FCD \Ð+Ð=°,70ECN ECF\Ð=°=Ð在NCE △和FCE △中,(1) (2)(1)求证:PAB AQE ≌△△;(2)连接CQ 交AB 于M ,求证:BM EM =;(3)如图(2),过Q 作QF AQ ^于AB 的延长线于点F ,过PQ,HA AC^QA AP^QAH HAP HAP \Ð+Ð=Ð\Ð=Ð,QAH PADPAQQ为等腰直角三角形,D\=,AQ AP(1)请用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:.(2)观察图2写出()2m n +,()2m n -,mn 三个代数式之间的等量关系:(3)根据(2)中你发现的等量关系,解决如下问题:若【点睛】本题主要考查完全平方差公式和完全平方和公式的联系,会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到.28.(2022·广东·江门市新会尚雅学校八年级阶段练习)(1)如图1,已知,在ABC V 中,10AB AC ==,BD 平分ABC Ð,CD 平分ACB Ð,过点D 作EF BC ∥,分别交AB 、AC 于E 、F 两点,则图中共有________个等腰三角形:EF 与BE 、CF 之间的数量关系是________,AEF △的周长是________.(2)如图2,若将(1)中“ABC V 中,10AB AC ==”改为“若ABC V 为不等边三角形,8AB =,10AC =”其余条件不变,则图中共有________个等腰三角形;EF 与BE 、CF 之间的数量关系是什么?证明你的结论,并求出AEF △的周长.(3)已知:如图3,D 在ABC V 外,AB AC >,且BD 平分ABC Ð,CD 平分ABC V 的外角ACG Ð,过点D 作DE BC ∥,分别交AB 、AC 于E 、F 两点,则EF 与BE 、CF 之间又有何数量关系呢?写出结论并证明.【答案】(1)5,EF BE CF =+,20(2)2,EF BE CF =+,证明见详解,18(3)EF BE CF =-,证明见详解【分析】(1)根据角平分线的定义可得,EBD CBD FCD BCD Ð=ÐÐ=Ð,再根据平行线的性质,“两直线平行,同位角相等”、“两直线平行,内错角相等”可知DB DC =,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可求出AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,根据“等角对等边”可知,,BE DE CF DF AE AF ===,即可确定等腰三角形的数量,EF 与BE 、CF 之间的数量关系以及AEF △的周长;(2)若ABC V 为不等边三角形,根据角平分线的定义可知,EBD CBD FCD BCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,然后解答即可;(3)根据角平分线的定义可知,EBD CBD FCD GCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC GCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,即可证明EF 与BE 、CF 之间的数量关系.【详解】解:(1)∵AB AC =,∴A ABC CB =Ð∠,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∴DBC DCB Ð=Ð,∴DB DC =,∵EF BC ∥,∴,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,,BE DE CF DF AE AF ===,∴等腰三角形有,,,,ABC AEF DEB DFC DBC V V V V V ,共计5个,∴EF DE DF BE CF =+=+,即EF BE CF =+,∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+1010=+20=,故答案为:5,EF BE CF =+,20;(2)若ABC V 为不等边三角形,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∵EF BC ∥,∴,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,BE DE CF DF ==,∴等腰三角形有,DEB DFC V V ,共计2个,故答案为:2;∵,BE DE CF DF ==,∴EF DE DF BE CF =+=+,即EF BE CF =+;∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+810=+18=;(3)大长方形的面积为()()222365122815a b a b a ab b ++=++,小图形的面积分别为22,,a b ab ,进一步即可得到答案.【详解】(1)拼成的大长方形面积之和()()2a b a b =++,各个小图形面积之和2232a ab b =++,∴图2所表示的数学等式是()()22232a b a b a ab b ++=++.故答案为:()()22232a b a b a ab b ++=++.(2)图(3)中大正方形的面积=()2a b c ++,各个小图形面积之和=222222a b c ab ac bc +++++,∴()2222222a b c a b c ab ac bc ++=+++++.∵8a b c ++=,19ab ac bc ++=.∴()222222228a b c a b c ab ac bc ++=+++++=,即()222264a b c ab ac bc +++++=,∴()2226426421926a b c ab ac bc ++=-++=-´=.(3)大长方形的面积为:()()2222236512101815122815a b a b a ab ab b a ab b ++=+++=++,∵小图形的面积分别为22,,a b ab ,∴12,15,28x y z ===.∴12152855x y z ++=++=.【点睛】本题考查多项式乘多项式的计算,整体代入思想,数形结合思想,能够通过几何图形找到代数之间的等量关系是解决此类题型的关键.30.(2022·全国·八年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(1)探究1:如图1,在ABC V 中,O 是ABC Ð与ACB Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(2)探究2:如图2中,O 是ABC Ð与外角ACD Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(3)探究3:如图3中,O 是外角DBC Ð与外角ECB Ð的平分线BO 和CO 的交点,则BOC Ð与A Ð有怎样的∵BO 和CO 分别是ABC Ð∴111,222ABC Ð=ÐÐ=Ð又∵ACD Ð是ABC V 的一个外角,(112ACD A Ð=Ð=Ð在PCD V 中,()()1801801808595CPD PCD PDC PCD PDC °°°°°Ð=-Ð+Ð=-Ð+Ð=-=.【点睛】本题主要考查了三角形外角的性质与三角形内角和定理,多边形内角和定理,熟练掌握三角形外角的性质与三角形内角和定理,多边形内角和定理,利用类比思想解答是解题的关键.。
10.如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB 、BC 上分别找一点E 、F ,使△DEF 的周长取最小,此时∠EDF =( )A .αB .90°-αC .2αD .180°-2α16.如图,在△ABC 中,已知∠CAB =60°,D 、E 分别在边AB 、AC 上,∠AED =60°,DE +DB =CE ,∠CDB =2∠CDE ,则∠DCB = .23.(10分)(1)已知3x =2y =5z ≠0,求23x y zx y z ++−+的值.(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150.个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,间甲、乙两家工厂每天各生产路灯多少个?24.(12分) 如图,已知A (-3,0),B (0,7),C (7,0),∠ABC +∠ADC =180°,BC ⊥C D .(1)如图1,求证:∠ABO =∠CAD ; (2)求四边形ABCD 的面积;(3)如图2,E 为∠BCO 的邻补角的平分线上的一点,且∠BEO =45°,OE 与BC 交于点F ,求BF 的长.第10题图AB CDE Fα第16题图A BCD E图110.如图,将等边△ABC 折叠,使得点B 恰好落在AC 边上的点D 处,折痕为EF ,O 为折痕EF 上一动点,若AD =1,AC =3,△OCD 周长的最小值是( )A .4B .5C .6D .716.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,且AC +CD =BD ,若BD =6,则CD = .23.(本题满分10分)已知,D 为等边△ABC 的边BC 上一点,点E 在射线AD 上,连接BE ,CE . (1)如图1,点E 在线段AD 上,CE 平分∠ACB ,求证:AE =BE ; (2)∠CED =60°;①如图2,点E 在线段AD 的延长线上,求BED ∠的度数; ②如图3,点E 在线段AD 上,CE AE 2=,求BED ∠的度数.24.(本题满分12分)如图,A (-2,6),C (6,2),AB ⊥y 轴于点B ,CD ⊥x 轴于点D . (1)求证:△AOB ≌△COD ;(2)连接AC ,BD 交于点P ,求证:点P 为AC 中点;(3)如图2,点E 为第一象限内一点,点F 为y 轴正半轴上一点,连接AF ,EF ,EF ⊥CE 且EF =CE ,点,求证:∠OEG =45°.OF E DC BAAB C D E 图3图2图1ABCD ABCD E D CBAE图1图2图3AA10.如图,点E 在等边△ABC 的边BC 上,BE =6,射线CD ⊥BC 于点C ,点P 是射线CD 上一动点,点F 是线段AB 上一动点,当EP +PF 的值最小时,BF =7,则AC 为( ) A .14 B .13 C .12 D .1016.在△ABC 中,AC =BC ,∠ACB =90°,点E 是射线CB 上的一个动点,作AF ⊥AE ,且AF =AE ,连接BF 交射线AC 于点G ,若52BC BE =,则AG CG= .23.(10分) CD 是△ABC 的高.(1)如图1,若∠ACB =90°,∠BAC 的平分线AE 交CD 于点F ,交BC 于点E ,求证:CE =CF ;(2)如图2,若∠A =2∠B ,∠ACB 的平分线CG 交AB 于点G ,求BC BGDG-的值;(3)如图3,若△ABC 是以AB 为斜边的等腰直角三角形,再以AD 为斜边作等腰Rt △AMD ,Q是DB 的中点,连接CQ 、MQ ,试判断线段CQ 与MQ 的关系,并给出证明.24.(12分) 在平面直角坐标系中,已知A (-m ,0),B (0,n ),C (m ,0).(1)如图1,若AC =AB ,CM ⊥AB 于点M ,MN ∥y 轴交AO 于点N (-2,0),则m =__________; (2)如图2,若m 2+2mn +n 2=0,∠ACB 的平分线CD 交AB 于点D ,过AC 上一点E 作EF ∥CD ,交AB 于点F ,AG 是△AEF 的高,探究AG 与EF 的数量关系;(3)如图3,在(1)的条件下,AC 上点H 满足AH MACH MC=,直线MH 交y 轴于点Q ,求点Q 的坐标.DPCEBFA图3图2图1Q MD ABCD BCD FABEC图2图3CBA10.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF =12∠BAD ,若DF =1,BE =5,则线段EF 的长为( ). A .3 B .4 C .5 D .616.P 是△ABC 内一点,∠PBC =30°,∠PBA =8°,且∠P AB =∠P AC =22°,则∠APC 的度数为 .23.(本题10分)如图所示,已知△ABC 中,AB =AC =10,BC =8,点D 是AB 中点,点P 在线段BC 上以每秒3个单位长度的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 以每秒a 个单位长度的速度运动.设运动的时间为t 秒.(1)求CP 的长(用含t 的式子表示); (2)若以点C 、P 、Q 为顶点的三角形和以点B 、D 、P 为顶点的三角形全等,并且∠B 和∠C 是对应角,求a 和t 的值.24.(本题12分)在平面直角坐标系中,M (m ,n )且m 、n 满足m 2+2n 2-2mn +4n +4=0,B (0,b )为y 轴上一动点,绕B 点将直线BM 顺时针旋转45°交x 轴于点C ,过C 作AC ⊥BC 交直线BM 于点A (a ,t ).(1)求点M 的坐标;(2)如图1,在B 点运动的过程中,A 点的横坐标是否会发生变化?若不变,求a 的值;若变化,写出A 点的横坐标a 的取值范围;(3)如图2,过T (a ,0)作TH ⊥BM (垂足H 在x 轴下方),在射线HB 上截取HK =HT ,连OK ,求∠OKB 的度数.DABCEF BC PAA C DQB10.如图,Rt △ABC 中,∠ABC =90°,∠BAC =30°,AC =2,分别以三边为直径画半圆,则两个月形图案的面积之和(阴影部分的面积)是( )A BC D16.若m +2=3n ,则327m n −⋅的值是 .27.(本题12分)已知,关于x 的分式方程13111m x m x x +−+−=+.(1)当m =-1时,请判断这个方程是否有解并说明理由; (2)若这个分式方程有实数解,求m 的取值范图.28.(本题12分)在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE DE ;(3)如图3,若m =,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.图1 图2 图3CAB10.如图,已知△ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点D 为直线AB 上一动点,将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接ED 、BE ,当BE 最小时,线段AD 的值为( )A .3B .4C .5D .616.如图,已知∠AOB =α( 0°<α<60°),射线OA 上一点M ,以OM 为边在OA 下方作等边△OMN ,点P 为射线OB 上一点,若∠MNP =α,则∠OMP = .23.(本题10分)如图1,已知等边三角形ABC ,点P 为AB 的中点,点D 、E 分别为边AC、BC 上的点,∠APD +∠BPE =60°.(1)①若PD ⊥AC ,PE⊥BC ,直接写出PD 、PE 的数量关系: ; ②如图1,证明:AP =AD +BE(2)如图2,点F 、H 分别在线段BC 、AC 上,连接线段PH 、PF ,若PD ⊥PF 且PD =PF ,HP ⊥EP . ①求∠FHP 的度数;②如图3,连接DE ,直接写出PF DEPH+= .24.(本题12分)已知,平面直角坐标系中,A (0,4) ,B (b ,0) (-4<b <0),将线段AB 绕点A 逆时针旋转90°得到线段AC ,连接B C .(1)如图1,直接写出C 点的坐标: ;(用b 表示)(2)如图2,取线段BC 的中点D ,在x 轴取一点E 使∠DEB =45°,作CF ⊥x 轴于点F . ①求证:EF =OB ;②如图3,连接AE ,作DH ∥y 轴交AE 于点H ,当OE =EF 时,求线段DH 的长度.图1 图2 图3EDCBA αNMBAO图1PEDCBA HF ABCDEP图2HF ABCDEP 图310.如图,∠AOC =∠BOC =10°,OC =20,在OA 上找一点M ,在OB 上找一点N ,则CM +MN 的最小值是( )A .20B .16C .12D .1016.如图,Rt △ ABC 中,∠C =90°,AC =BC =8,AB =,将Rt △ABC 折叠,使得点C 恰好落在AB边上的点E 处,折痕为AD ,P 为折痕AD 上一动点,则△PEB 周长的最小值是 .23. (本题满分10分)已知:在△ABC 中,AB =AC ,∠BAC =90°,点E 在边BC 上,点F 在射线EC 上,且∠EAF =45°.(1)如图1,画出△AEF 关于直线AF 对称的△AEF ,并写出画法;(2)如图2,若AFE =75°,求BEEF的值;(3)如图3,若BE =CF ,直接写出∠AFE 的度数为 .24.(本题满分12分)在平面直角坐标系中,点A (a ,0)、C (b ,0)、B (0),a 、b 满足: a 2+2ab +2b 2-4b +4=0,且AB =AC (1)判断△ABC 的形状并证明;(2)如图1,点D 为BA 延长线上一点,AD =AB ,E 为x 轴负半轴上一点,F 为DE 上一点,连接CF 交AD 于点G ,∠EFC =120°,求的值;(3)如图2,R (3a ,0),点P 为线段BR 上一动点,以AP 为边作等腰△APQ ,P A =PQ ,且∠APQ =∠RAB ,连接AQ ,当点P 运动时,△ABQ 的面积是否变化?若不变,求其值;若变化,求其变化范围.CBANMOPED C BAABCE FFE CBA10.如图,四边形ABCD 中,AB =AD ,BC =BD ,若∠ABD =12∠BAC =α,则∠BDC 的度数为( ) A .2αB .45°+12α C .90°-α D .180°-3α16 . 如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,E 为BD 延长线上一点,∠E =∠C ,∠BAC 的平分线交BD 于F . 若BD DE =94,则ADCD的值为 .23.(本题10分)如图,在△ABC 中,∠BAC =60°,D 为AB 上一点,连接C D . (1)如图1,若∠BCA =90°,CD ⊥AB ,则ADBD=______(直接写出结果). (2)如图2,若BD =AC ,E 为CD 的中点,AE 与BC 存在怎样的数量关系,判断并说明理由; (3)如图3,CD 平分∠ACB ,BF 平分∠ABC ,交CD 于F .若BF =AC ,求∠ACD 的度数.24.(本题12分)在平面直角坐标系中,点A (a ,0),B (0,b ),且a ,b 满足a 2-20b +b 2+(b -4)2=0,点C 为线段AB 上一点,连接O C . (1)直接写出a =____,b =_____;(2)如图1,P 为OC 上一点,连接P A ,P B .若P A =B 0,∠BPC =30°.求点P 的纵坐标;(3)如图2,在(2)的条件下,点M 是AB 上一动点,以OM 为边在OM 的右侧作等边△OMN ,连接CN .若OC =t ,求ON +CN 的最小值(结果用含t 的式子表示).DABC图3图2图1A BCDFABCD EABCD图2图110.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个 D .无数个16 . 在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且P A =2,以PB 为边作等边△PBM ,则线段AM 的长最大值为 .23.(10分) 如图,分别以△ABC 的边AB ,AC 向外作两个等边三角形△ABD ,△ACE .连接BE 、CD 交点F ,连接AF .(1)求证:△ACD ≌△AEB ; (2)求证:AF +BF +CF =C D .24.(12分) (本题满分12分)问题背景:如图1,在四边形ABCD 中,∠ABC =90°,AB =CB =DB ,DB ⊥A C . ①直接写出∠ADC 的大小; ②求证:AB 2+BC 2=AC 2.迁移应用:如图2,在四边形ABCD 中,∠BAD =60°,AB =BC =CD =DA =2,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE 、CF . ①求证:△CEF 是等边三角形; ②若∠BAF =45°,求BF 的长.D CBA B C C B b a FEDBAE DCBAMF EDCBA东湖高新区10.如图,AD 为△ABC 的高,点H 为AC 的垂直平分线与BC 的交点,点F 为BC 上一点,若∠B =2∠C ,且AC =AB +BF ,AC FCDF−的值为( )A .1B .2C .1.5D .316.如图,∠AOB =35°,C 为OB 上的定点,M 、N 分别为OA 、OB 上两个动点,当CM +MN 的值最小时,∠OCM 的度数为 .23.(本题10分)如图1,△ABC 为等腰直角三角形,△ABD 为等边三角形,连接C D . (1)求∠ACD 的度数;(2)如图1,作∠BAC 的平分线交CD 于点E ,求证:DE =AE +CE ; (3)如图2,在(2)的条件下,M 为线段BC 右侧一点,满足∠CMB =60°,求证:EM 平分∠CM B .图1 图224.(本题12分)如图,在平面直角坐标系中,A (a ,0)、B (0,b ),且│a +4│+b 2-8b +16=0. (1)求a 、b 的值; (2)如图1,C 为y 轴负半轴上一点,连CA ,过点C 作CD ⊥CA ,使CD =CA ,连BD ,求证:∠CBD =45°; (3)如图2,若有一等腰Rt △BMN ,∠BMN =90°,连AN ,取AN 中点P ,连PM 、PO .试探究PM 和PO 的关系.图1 图2AB C MN AB CDE MABCE D10.如图,在平面直角坐标系中,有一个正三角形ABC ,其中B 、C 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个正三角形沿着x 轴向右滚动,则在滚动的过程中,这个正三角形的顶点A 、B 、C 中,会过点(2018,1)的是点( )A .A 和B B .B 和C C .C 和AD .C16.正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE =DF时,∠BAE 的大小是 .23.(本题10分)如图1,点A 在x 轴上,点D 在y 轴上,以OA 、AD 为边分别作等边△OAC 和等边△ADE ,A (2,0).(1)若∠DAC =10°,求∠AEC 的度数.(2)如图2,若点P 为x 轴正半轴上一动点,点P 在点A 的右边,连PC ,以PC 为边在第一象限内作等边△PCM ,延长MA 交y 轴于点N ,当点P 运动时,①∠ANO 的值是否发生变化?若不变,求其值;若变化,请说明理由;②AM ﹣AP 的值是否发生变化?若不变,求其值;若变化,请说明理由.图1 图224.(本题12分)已知等边△ABC 中,点D 为射线BA 上一点,作DE =DC ,交直线BC 于点E .(1)当点D 在线段AB 上时,如图1,线段CE 、AD 、AC 之间的数量关系是 ;(2)当点D 在BA 的延长线上时,如图2,求证:CE =AC ﹣AD ;(3)在(2)的条件下,∠ABC 的平分线BF ,交CD 于点F ,过点A 作AH ⊥CD 于H ,当∠EDC =30°,CF=10时,求DH 的长.图1 图2 备用图E DC B A ED C B A F HA B C DE10.在△ABC 中,∠ACB =90°,∠B =60°,AB =4,点D 是直线BC 上一动点,连接AD ,在直线AD的右側作等边△ADE ,连接CE ,当线段CE 的长度最小时,线段CD 的长度为( )A .1B .2C .3 D16.如图,△ABC 中,∠ BAC =60°,D 为线段AC 上一点,若BD 平分∠ABC ,∠C =80°,AD =m ,AC =n ,则BC = .(用含m ,n 的式子表示)23.(本题满分10分)已知△ABC ,AB =AC ,∠BAC =2α.(1)如图1,∠ABG =∠BCG ,则∠G = (用α表示);(2)如图2,点E ,M 分别为BC 、AC 上的点,AE 交BM 于点F ,连接CF ,若∠BFE =2∠CFE =2α,求ABF ACFS S ∆∆的值; (3)如图3,CD 为AB 边上的高,∠ACD 的平分线CP 交AB 于P ,过P 作PH ⊥BC 于H ,PH 与CD 交于点Q ,连接BQ .若PD =a ,BD =b ,请直接用含有a ,b 的代数式表示△BQC 的面积为 .图1 图2 图324.(本题满分12分)已知△ABC 是等边三角形.(1)如图1,点D 是BC 边的中点,点P 在直线AC 上,若△P AD 是轴对称图形,则∠APD 的度数为 ;(2)如图2,点D 在BC 边上,∠ADG =60°,DG 与∠ACB 的外角平分线交于G ,GH ⊥AC 于H ,当点D 在BC 边上移动时,请判断线段AH ,AC ,CD 之间的数量关系,并说明理由;(3)如图3,点D 在BC 延长线上,连接AD ,E 为AD 上一点,AE =AC ,连接BE 交AC 于F ,若AF =2ED =3,则线段CF 的长为 .图1 图2 图3A B C D EA B C DA BC G E MF AB C QPH A B C D A BC D H G M A B C D AB C D E F。
八年级数学压轴题精选数学是一门理科学科,也是学生们在学习过程中常常遇到的难题之一。
在八年级数学学习中,有一些压轴题常常考察学生对各种数学知识的理解和应用能力。
下面将为大家精选几道八年级数学的压轴题,希望能帮助大家更好地理解和掌握这些知识点。
1. 题目:计算下列各式的值,并写出每一步的计算过程。
① 3.6 × 4.2 × 5② (8.5 - 3.2) × (2.7 + 4.1)解析:① 3.6 × 4.2 × 5 = 3.6 × 21 = 75.6这道题目是一个简单的乘法题,按照乘法的运算法则,我们可以先计算3.6 ×4.2,得到15.12,然后再将15.12乘以5,得到最终的结果75.6。
② (8.5 - 3.2) × (2.7 + 4.1) = 5.3 × 6.8 = 36.04这道题目是一个含有括号的乘法题,根据运算法则,我们首先需要计算括号里的加法和减法,然后再进行乘法运算。
首先计算括号里的加法和减法,得到8.5 - 3.2 = 5.3,2.7 + 4.1 = 6.8。
然后将5.3乘以6.8,得到最终的结果36.04。
2. 题目:已知等差数列的首项为3,公差为4,求该数列的前20项之和。
解析:等差数列的通项公式为an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差,n为项数。
根据已知条件,我们可以得到该等差数列的通项公式为an = 3 + (n-1)4。
要求该等差数列的前20项之和,我们可以使用等差数列的求和公式Sn =(n/2)(a1 + an)。
将n取值为20,a1取值为3,an取值为3 + (20-1)4,代入公式计算即可得到结果。
Sn = (20/2)(3 + (3 + (20-1)4)) = 10(3 + (3 + 19×4)) = 10(3 + (3 + 76)) = 10(3 + 79) = 10×82 = 820所以,该等差数列的前20项之和为820。
八年级下册数学期末压轴题专辑(含解析)1.如图,ON 为∠AOB 中的一条射线,点P 在边OA 上,PH ⊥OB 于H ,交ON 于点Q ,PM ∥OB 交ON 于点M, MD ⊥OB 于点D ,QR ∥OB 交MD 于点R ,连结PR 交QM 于点S 。
(1)求证:四边形PQRM 为矩形; (2)若OP=12PR ,试探究∠AOB 与∠BON 的数量关系,并说明理由。
(1)证明:∵PH ⊥OB ,MD ⊥OB ,∴PH ∥MD ,∵PM ∥OB ,QR ∥OB ,∴PM ∥QR ,∴四边形PQRM 是平行四边形, ∵PH ⊥OB ,∴∠PHO=90°,∵PM ∥OB ,∴∠MPQ=∠PHO=90°,∴四边形PQRM 为矩形; (2)∠AOB=3∠BON .理由如下: ∵四边形PQRM 为矩形,∴PS=SR=SQ=12PR ,∴∠SQR=∠SRQ , 又∵OP=12PR ,∴OP=PS ,∴∠POS=∠PSO , ∵QR ∥OB ,∴∠SQR=∠BON ,在△SQR 中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON ,∴∠POS=2∠BON , ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON ,即∠AOB=3∠BON . 2.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴上,点B 的坐标分别为( ,点E 是BC 的中点,点H 在OA 上,且AH=12,过点H 且平行于y 轴的HG 与EB 交于点G ,现将矩形折叠,使顶点C 落在HG 上,并与HG 上的点D 重合,折痕为EF ,点F 为折痕与y 轴的交点。
(1)求∠CEF 的度数和点D 的坐标; (2)求折痕EF 所在直线的函数表达式;(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个?请求出点P 的坐标,并写出解答过程。
一次函数压轴题(一)1. 已知点A (-4,2),B (-1,5)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;(3) 在x 轴上取点D ,y 轴上取点C ,使四边形ABCD 的周长最小,最C 、D 的坐标;2. 已知点A (-4,2),B (1,-3)(1) 在x 轴上求一点P ,使PA+PB 最小;(2) 在x 轴上求一点Q ,使|QA -QB |最大;3. 如图,在平面直角坐标系中,点A 、B 、C 在坐标轴上,OA =OB =OC =2,点P 从C 点出发沿y 轴正方向以每秒1个单位长度的速度向上运动,连PB 。
(1) 求直线BC 的解析式;(2) 点P 为第二象限的直线BC 上一点,当P 运动2秒,且S △AQO =2S △OPQ 时,求点Q 的坐标;(3) 若D 为AC 的中点,连DP ,BD ,问点P 运动几秒时,△PDB 为等腰直角三角形?4. 如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A ,与y 轴交于B(0,-4)且OA=AB ,△OAB 的面积为6. (1)求两函数的解析式; (2)若M (2,0),直线BM 与AO 交于P ,求P 点的坐标;(3)在x 轴上是否存在一点E ,使S △ABE =5,若存在,求E 点的坐标;若不存在,请说明理由。
一次函数压轴题(二)1. 如图,直线l 交x 轴、y 轴分别于A 、B 两点,A (a ,0),B (0,b ),且(a -b )2+|b -4|=0.(1) 求A 、B 两点的坐标;(2) C 是线段AB 上一点,C 点的横坐标为3,P 是y 轴正半轴上一点,且满足∠OCP =45°,求出P 点坐标;(3) 在(2)的条件下,过B 作BD ⊥OC ,交OC 、OA 分别于F 、D 两点,E 为OA 上一点,且∠CEA =∠BDO ,试判断线段OD 与AE 的数量关系,并说明理由。
人教版八年级上册数学期末动点问题压轴题专题训练(1)当时,点C 的坐标为 .(2)动点A 在运动的过程中,试判断发生变化,请说明理由.(3)当时,在坐标平面内是否存在一点若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)如图1,当点在边上时.①求证:;②求证:;(2)如图2,当点在边的延长线上时,其他条件不变,请写出2a =3a =D BC ABD ACE ≌△△BC DC CE =+D BC(1)请直接写出点A 和点B 的坐标;(2)请判断的形状并说明理由;(3)下列结论:①四边形为定值.请选择一个正确的结论并说明理由.(1)求证:;(2)求的面积;(3)点M ,N 分别是线段,上的动点,连接,求的最小值.DEF OEDF OEF DFE ∠+∠CD CE =CDE BC BD MN 12MN DN +(1)求出点的坐标.(2)求证:.(3)数学活动小组进行深入探究后发现变,你同意这个说法吗?请说明理由B OD BC =(1)如图①,请找出图中与相等的角,并说明理由;(2)如图②,交轴于点,过点作轴于点,求证:平分;(3)如图③,若,点在轴正半轴移动,且,取,连交轴OAB ∠BC x M C CD x ⊥,2D AM CD =AD BAC ∠()3,0A B y OB OA >()0,3P CP x边三角形,使其与点在直线的两侧,与直线相交于点(点与点A 不重合),连接.(1)如图,当时,①求证:;②在点A 运动的过程中,的度数是否会发生改变?如果会请说明理由,如果不会请求出的度数;(2)在点A 运动的过程中,试探究线段,,之间的数量关系.11.在平面直角坐标系中,点在轴的正半轴上,点在第一象限,,.(1)如图1,求证:是等边三角形;(2)如图1,若点M 为y 轴正半轴上一动点,以为边作等边三角形,连接并延长交轴于点,求证:;(3)如图2,若,,点为的中点,连接、交于,请问、与之间有何数量关系,并证明你的结论.12.在平面直角坐标系中,点A 为y 轴正半轴上一点,点B 为x 轴上一动点,连接ABD C AB DC l E E EB 120BAC ∠<︒ABE ACE =∠∠DCB ∠DCB ∠EA EB ED A y B OB AB =150BOP ∠=︒OAB BM BMN NA x P 2AP AO =BC BO ⊥BC BO =D CO AC DB E AE BE CE,以为腰作等腰,.(1)如图1,点B 在x 轴负半轴上,点C 的坐标是,直接写出点A 和点B 的坐标;(2)如图2,点B 在x 轴负半轴上,交x 轴于点D ,若平分.且点C 的纵坐标是,求线段的长;(3)如图3,点B 在x 轴正半轴上,以为边在左侧作等边,连接,,若,且,求的面积.13.等腰直角中,,,,点、分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.(1)如图1,已知点的横坐标为,直接写出点的坐标;(2)如图2,若点为轴上的固定点,且,当点在轴正半轴运动时,分别以、为直角边在第一、二象限作等腰直角和等腰直角,连接交轴于点,问当点在轴的正半轴上运动时,的长度是否变化?若变化请说明理由;若不变化,请求出的长度.14.在平面直角坐标系中,点为坐标原点,点、分别位于轴和轴AB AB Rt ABC △90BAC ∠=︒(2,2)-AC BD ABC ∠3-BD BC BC BCE EO CO 60COE ∠=︒8CO =AOC ABC 90BAC ∠=︒AB AC =ABC C ∠=∠B A x y AC x D BC y E C 2-A A x ()6,0A -B y OB AB BOD ABC CD y P B y BP BP O ()6,0B -()0,6A x y上,连接,交轴于点.(1)求点的坐标;(2)动点从出发以个单位/秒的速度沿轴向终点运动,连接,将线段绕着点逆时针旋转后得到线段,与为对应点.连接、,为的面积,用含的式子表示;(3)在()的条件下,连接,过点作于,交轴于,交于,若,求点的坐标.15.如图①,在中,,现有一动点,从点出发,沿着三角形的边运动,回到点停止,速度为,设运动时间为秒.(1)如图①,当的面积等于面积的一半时,求的值:(2)如图②,点在边上,点在边上,在的边上,若另外有一个动点与点同时从点出发,沿着边运动,回到点停止.在两点运动过程中的某一时刻,以为顶点的三角形恰好与全等,求点的运动速度.16.如图,在平面直角坐标系中,,点在轴正半轴上,.AB CA AB ⊥x C C P B 2x C AP AP A 90︒AQ P Q PQ CQ S PCQ △t S 2BQ A AH BQ ⊥G x H PQ AC M :2:1APM AQM S S = H Rt ABC △90,12cm,16cm,20cm B AB BC AC ∠=︒===P A AB BC CA →→A 2cm /s t ABP ABC t D BC 4cm CD =E AC 5cm,,3cm CE ED BC ED =⊥=ABC Q P A AC CB BA →→A ,,A P Q EDC △Q ()0,9A B x 45OAB ∠=︒(1)求出点坐标;(2)动点从点出发,以每秒个单位长度的速度沿轴正半轴运动,同时点从点出发,以相同速度沿轴向左运动,连接,过点作交直线于点,连接,设点的运动时间为,请用含的式子表示的面积;(3)在(2)的条件下,直线与直线交于点,当时,求点坐标.17.已知中,,过点的直线交轴于,其中是方程组的解,(1)求的值(2)动点从点出发,沿线段以每秒1个单位的速度运动,运动时间为秒;请用含的式子表示线段的长度;并直接写出此时的取值范围;(3)在(2)的条件下,当为何值时,直线与直线互相垂直.18.在平面直角坐标系中,O 为坐标原点,直线交x 轴的正半轴于点A ,交y 轴的B P O 1y Q B x PQ O OG PQ ⊥AB G PG P t t OPG PQ AB H 72OPG S =△H AOB OA OB a ==A AM x (),0M b ,a b 3830a b a b +=⎧⎨+=⎩,a b P A AO t t OP t t BP AM AB(1)如图1求的长;(2)如图2动点E 在第二象限,点E 的坐标为,连接,,请写出面积s 与t 的关系;(3)在(2)的条件下,如图3点F 在第一象限,连接、、,,连接,当,求的值.OD (,)t m DE OE ODE FE FD FA 30ADF ∠=FE FA =EB 12,4EBO ODA ODA EFA EOB ∠=∠∠+∠=∠t m +参考答案:1.(1)(2)动点A 在运动的过程中,的值不变,(3)或或【分析】本题考查全等三角形判定及性质.(1)根据题意过点C 作轴于点,证明出,利用全等性质即可得到本题答案;(2)由(1)得,利用全等性质及点坐标表示线段长即可得到本题答案;(3)根据题意分3种情况讨论P 点位置,利用全等三角形性质及判定即可得到本题答案.【详解】(1)解:如下图,过点C 作轴于点E ,则,,∵是等腰直角三角形,∴,∴,∴.在和中,∴(AAS ),∵,∴,∴,∴;(2)解:动点A 在运动的过程中,的值不变.理由如下:(2,3)-+c d (4,)1-(3,2)--(2,1)-CE y ⊥E ACE BAO ≌ACE BAO ≌CE y ⊥CEA AOB ∠=∠ABC ,90AC BA BAC =∠︒=90ACE CAE BAO CAE ∠+∠=︒=∠+∠ACE BAO ∠=∠ACE △BAO CEA AOB ACE BAOAC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ACE BAO ≌(0,1),(0,2)B A -12BO AE AO CE ====,123OE =+=2,3C -()+c d由(1)知,,∵,,∴,∴,∴,又∵点C 的坐标为,∴,即的值不变;(3)解:存在一点P ,使与全等,符合条件的点P 的坐标是或或,分为三种情况讨论:①如下图,过点P 作轴于点E ,则,∴,∴,在和中,,∴(AAS ),∴,∴,即点P 的坐标是,②如下图,过点C 作轴于点M ,过点P 作轴于点E ,ACE BAO ≌(0,1)B (0,)A a -1,BO AE AO CE a ====1OE a =+(,1)C a a --(,)c d 11c d a a +=--=-+c d PAB ABC (4,)1-(3,2)--(2,1)-PE x ⊥90PBA AOB PEB ∠=∠=∠=︒90,90EPB PBE PBE ABO ∠+∠=︒∠+∠=︒EPB ABO ∠=∠PEB △BOA △EPB OBA PEB BOA PB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩PEB BOA △≌△1,3PE BO EB AO ====314OE =+=(4,)1-CM x ⊥PE x ⊥则.∵,∴,∴,∴,∴,在和中,,∴(AAS ),∴.∵,∴,即点P 的坐标是;③如下图,过点P 作轴于点E ,则.∵,∴,∴,90CMB PEB ∠=∠=︒CAB PAB △≌△45,PBA CBA BC BP ∠=∠=︒=90CBP ∠=︒90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒MCB PBE ∠=∠CMB BEP △MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩CMB BEP △≌△,PE BM CM BE ==3,4),10C B -((,)2,413PE OE BE BO ==-=-=(3,2)--PE x ⊥90BEP BOA ∠=∠=︒CAB PBA △≌△,90AB BP CAB ABP =∠=∠=︒90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒∴.在和中,,∴(AAS ),∴,∴,即点P 的坐标是,综上所述,符合条件的点P 的坐标是或或.2.(1)①见解析;②见解析;(2),见解析【分析】本题主要考查了等边三角形,全等三角形.(1)①根据等边三角形的性质得出,,,根据得出,从而说明三角形全等;②根据全等的性质得出,然后根据即得;(2)根据等边三角形的性质得出,,,根据得出,从而说明,根据全等的性质得出,然后根据即得.【详解】(1)证明:①∵和是等边三角形,∴,,.∴,∴.在和中,,∴;②∵,ABO BPE ∠=∠BOA △PEB △ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩BOA PEB △≌△1,3PE BO BE OA ====312OE BE BO =-=-=(2,1)-(4,)1-(3,2)--(2,1)-BC CD CE +=AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠-∠=∠-∠BAD EAC ∠=∠BD CE =BC BD CD =+AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠+∠=∠+∠BAD EAC ∠=∠ABD ACE ≌△△BD CE =+=BC CD BD ABC ADE V 60BAC DAE ∠=∠=︒AB BC AC ==AD DE AE ==BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE △≌△ABD ACE ≌△△∵,,∴,∴是等腰直角三角形,即∵点D 是线段中点,∴,,(0,6)A (6,0)B 6O A O B ==AOB ∠AB OD AB ⊥12OD AD AB ==∠∵,,∴在中,∵在(1)中已求出根据翻折可知:、∴N 点关于的对称点H 在根据对称性有:∴,∴是等边三角形,∵N 点关于的对称点是点H ,3BD =30CBD ∠=︒DG Rt BDG △12DG BD =CE CD =11BDC BKC △BE BK DBC KBC ∠=∠60BDK DBC KBC ∠=∠+∠=︒BDK BE NH如图,,即:,在中,PNC DNC∠=∠24PNC αβ∠==2αβ=MCN DCM DCN x β∠=∠+∠=+MCN △180MCN DCN NMC ∠+∠+∠=2180x βαα+++=︒3180x βα++=︒解得:,.II.当点在线段上时,如图,,,即:,在中,,,即:联立得:,解得:,此时:,不合题意舍去;III .当点在线段上时,如图,,52550x βα=︒⎧⎪=︒⎨⎪=︒⎩∴5DCM ∠=︒N PD 180PNC DNC ∠+∠=︒∴24180αβ+=︒290αβ+=︒∴MCN DCM DCN x β∠=∠+∠=+ CMN PCN MCN CMN x βα∠=∠+∠=++∴4180PCN NDC x βαβ∠+∠=+++=︒5180x βα++=︒2602905180x x ααββα+=︒⎧⎪+=︒⎨⎪++=︒⎩11.2526.2537.5x βα=︒⎧⎪=︒⎨⎪=︒⎩11.2526.5PCN DCN ∠=︒<∠=︒N DM PNC DNC ∠=∠【详解】(1)解:过点B 作轴于点D ,∵,∴,∵轴,∴,∵,∴,∴,在和中,,∴,∴,∵,∴;(2)解:∵,∴,∴,∵轴,∴,∴,∴,在和中,BD y ⊥()()6,0,0,3A C -6,3OA OC ==BD y ⊥90BCD CBD ∠+∠=︒90ACB ∠=︒90BCD ACO ∠+∠=︒ACO CBD ∠=∠ACO △CBD △90AOC CDB ACO CBDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩≌ACO CBD 6,3OA CD OC BD ====()0,3C ()3,3B -90ACB ∠=︒90BCF ∠=︒90CBF F ∠+∠=︒BE y ∥90AEF ∠=︒90CAD F ∠+∠=︒CAD CBF ∠=∠CAD CBF V∴,∴,∵,∴∴.【点睛】本题主要考查了三角形综合,折叠的性质,全等三角形的判定和性质,角平分线的性质,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,对应角相等;折叠前后对应角相等;角平分线上的点到两边距离相等.7.(1)(2)见解析(3)的度数总是保持不变,理由见解析【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,坐标与图形;(1)根据等腰三角形的性质解答即可;(2)根据等式的性质得出,进而利用证明与全等,进而解答即可;(3)根据全等三角形的性质得出,进而利用平角的定义解答即可.【详解】(1)解:如图所示,过作轴于,()Rt Rt HL EFO EFN ≌FN FO =(),0F t FO t=-2FG HG t +=-()2,0-COD ∠BAC OAD ∠=∠SAS BAC OAD AOD ABO ∠=∠A AE x ⊥E),点C 是的中点,,D 作轴于点F ,,,4=AB 114222AB ==⨯=DF x ⊥90DFO =︒90FDO DOF +∠=︒),的坐标为,关于x 轴的对称点,则的坐标为,交x 轴于点,则为定值,此时的周长最小.作轴于点Q ,114222AB '==⨯=M '()0,2M '''M ''M AM ''P PAM C AM AP ''=+ AM 'PAM '△()4,4A -AQ y ⊥对于(3),作轴,先证明,可得,再得出,进而得出,根据等腰直角三角形的性质和判定即可得出答案.【详解】(1).理由:,;(2)证明:如图②中,延长交的延长线于点..∵,,,.,即.垂直平分,平分.(3)的长度不变,.理由:如图③中,过点作轴于点...CH y ⊥≌CHB BOA △△,3===CH BO BH OA 3==OA OP ==OB PH CH OAB OBC ∠=∠90,90OAB OBA OBC OBA ∠+∠=∠+∠=︒︒ OAB OBC ∴∠=∠AB CD T ,90,90,AD CD ADT T BAM BCT BAM ⊥∴∠=∴∠+∠=∴∠=∠︒︒ BC BA ===90CB T A B M ∠∠︒()CBT ABM ASA ∴≌△△CT AM ∴=2,2AM CD CT CD =∴= CD DT =,AD CT AD ⊥∴ CT ,AC AT AD ∴=∴BAC ∠OQ 3OQ =C CH y ⊥H 90,90CHB BOA HBC HCB ∴∠=∠=∴∠+∠=︒︒90,90,ABC OBA HBC HCB OBA ∠=∴∠+∠=︒︒∴∠=∠..,..,.【点睛】本题主要考查了全等三角形的性质和判定,同角的余角相等,线段垂直平分线的性质,等腰直角三角形的性质和判定等,构造辅助线是解题的关键.10.(1)①见解析;②不变,(2)或【分析】(1)①根据垂直平分线的性质得出,再由等边对等角及各角之间的数量关系求解即可;②设与交于点M ,根据等边三角形的性质及各角之间的关系得出,即可求解;(2)分两种情况进行分析:当时,当时,分别利用全等三角形的判定和性质及等边三角形的判定和性质分析求解即可.【详解】(1)证明:①点A 、E 在线段的垂直平分线l 上,∴,∴,∴,即;②在点A 运动的过程中,的度数不变,理由如下:如图,设与交于点M ,(),CB AB CHB BOA AAS =∴ ≌△△,3∴===CH BO BH OA ()()3,0,0,3,3A P OA OP ∴== ,BH OP OB PH CH ∴=∴==90,45CHP CPH OPQ ∠=∴∠=∠=︒︒ 90,45∠=∴∠=︒=︒∠ POQ OQP OPQ 3OQ OP ∴==30DCB ∠=︒ED EB EA =+EB ED EA=+AC AB EC EB ==,AB CD 260ECB ∠=︒120BAC ∠<︒120BAC ∠>︒BC ,AC AB EC EB ==,ABC ACB EBC ECB ∠∠∠∠==ABC EBC ACB EBC ∠∠∠∠-=-ABE ACE ∠∠=DCB ∠AB CD∵是等边三角形,∴ ,∴,∴,∴,∴,∴,∵,∴,即;(2)当时,在上截取,连接,∵,∴,由(1)得直线,,∴,∴是等边三角形,∴ ,∴,即,ABD ,60AB AD BAD ∠==︒AD AC =ADC ACE ∠∠=,ABE ADC EBC ECB ∠∠∠∠==,180,180AMD EMB BED ABE EMB BAD ADC AMD ∠∠∠∠∠∠∠∠==︒--=︒--60BED BAD ∠∠==︒,EBC ECB BED EBC ECB ∠∠∠∠∠+==260ECB ∠=︒30DCB ∠=︒120BAC ∠<︒ED EF EA =AF ED DF EF =+ED DF EA =+l BC ⊥30DCB ∠=︒903060AED ∠=︒-︒=︒AEF 60,EAF BAD AE AF ∠∠==︒=–EAF BAF BAD BAF ∠∠∠∠=-BAE DAF ∠∠=∴,∴,∵,∴;当时,如图所示在上截取,连接,∵,∴,由(1)得直线,,,∴,∴F 是等边三角形,∴,∴,∴,∴,∴,∵,∴;综上可得:或.【点睛】题目主要考查线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等,理解题意,作出相应辅助线是解题关键,同时注意进行分类讨论.11.(1)见解析(2)见解析(3),证明见解析【分析】(1)根据有一个角是的等腰三角形是等边三角形可得结论;(SAS)BAE DAF ≌ EB DF =ED DF EA =+ED EB EA =+120BAC ∠>︒EB EF EA =AF EB BF EF =+EB BF EA =+l BC ⊥30DCB ∠=︒BE BC =903060AEB AEC ∠∠==︒-︒=︒AE 60,EAF BAD AE AF ∠∠==︒=–EAF DAF BAD DAF ∠∠∠∠-=EAD BAF ∠∠=(SAS)BAF DAE ≌ BF ED =EB BF EA =+EB ED EA =+ED EB EA =+EB ED EA =+AE BE CE =+60︒(2)根据证明,得,由8字形可得,最后由含角的直角三角形的性质可得结论;(3)如图2,在上截取,先证,方法是根据题意得到三角形为等边三角形,三角形为等腰直角三角形,确定出度数,根据,且,得到度数,进而确定出为,再由,得到,再由,且夹角,利用得到三角形与三角形全等,利用全等三角形的对应边相等得到,得到三角形为等边三角形,得到,由,等量代换即可得证.【详解】(1)解:证明:,,,,是等边三角形;(2)证明:由(1)知:是等边三角形,,是等边三角形,,,,,,,,,,,,SAS MBO NBA ≌OMB ANB ∠∠=60FAM FBN ∠∠==︒30︒AC AG CE =60AEB ∠=︒ABO BOC ABD ∠AB BC =150ABC ∠=︒BAE ∠AEB ∠60︒AG CE =AE CG =AB CB =BAC BCA ∠=∠SAS BCG BAE BG BE =BEG BE EG =AE EG AG =+150BOP ∠=︒ 90AOP ︒=∠60AOB ∴∠=︒OB AB = OAB ∴ OAB 60ABO ∴∠=︒BMN BM BN ∴=60MBN ∠=︒MBO NBA ∴∠=∠AB OB = (SAS)MBO NBA ∴△≌△OMB ANB ∴∠=∠AFM BFN ∠=∠ 60FAM FBN ∴∠=∠=︒60OAP FAM ∠=∠=︒ 90AOP ︒=∠30APO ∴∠=︒;(3),理由如下:如图2,在上截取,连接,,即,,,,为的中点,平分,即,,,,,,,在和中,,,,为等边三角形,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的性质和判定,全等三角形的判定和性质,以及含角的直角三角形的性质,添加辅助线.12.(1),2AP AO ∴=AE BE CE =+AC AG EC =BG AG EG CE EG +=+AE CG =BC BO ⊥ BC BO =90OBC ∴∠=︒D CO BD ∴OBC ∠45CBD OBD ∠=∠=︒60ABO ∠=︒ 105ABD ∴∠=︒150ABC ∠=︒AB OB BC == 15BAC BCA ∴∠=∠=︒154560AEB ∴∠=︒+︒=︒ABE CBG AB CB BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CBG ∴△≌△BG BE ∴=BEG ∴△BE EG ∴=AE AG EG CE BE ∴=+=+30︒()02A ,()40B -,∴,∵∴,∵,∴,,90ADC BOA ∠=︒=∠90CAD BAO ABO ∠+∠=︒=∠CAD ABO ∠=∠(2,2)C -2CD =2OD =∴,,∴,;(2)解:如图2,作轴,交轴于,交的延长线于,∴,∵平分,∴,,,∴,∴,∵,∴,∵,∴,∴,∵,,∴,∴,∴的长为6;(3)解:∵为等边三角形,∴,,如图3,在上截取,使,连接,2AO CD ==4BO AD AO OD ==+=()02A ,()40B -,CM x ⊥x N BA M 90BNM BNC ∠=︒=∠BD ABC ∠MBN CBN ∠=∠BN BN =90BNM BNC ∠=︒=∠()ASA MBN CBN ≌3MN CN ==∥CM AO ACM CAO ∠=∠90CAO BAO ABD BAO ∠+∠=︒=∠+∠CAO ABD ∠=∠ACM ABD ∠=∠AC AB =90MAC DAB ∠=︒=∠()ASA ACM ABD ≌6BD CM CN MN ==+=BD BCE BE CE =60BEC EBC ECB ∠=∠=∠=︒OC OF OF OE =EF∴是等边三角形,∴,∴∵,∴,∴,OEF OE EF =60OEF ∠=︒=∠OEF BEF BEC ∠-∠=∠-∠OE EF =BEO CEF ∠=∠()SAS BEO CEF ≌OBE FCE ∠=∠13.(1)(2)【分析】(1)如图①,过作 轴于, 证明可得从而可得答案;(2)如图①,过点作 轴于点.证明 ,可得 ,再证明,从而可得: .【详解】(1)解: 如图①,过作 轴于,∴,∵,∴,∴,∵,∴.∴,,∴,∴,故答案为 : .(2)的长度不变,理由如下:如图②, 过点作 轴于点.()0,23BP =C CF y ⊥F ,ACF BAO ≌CF AO =C CE y ⊥E CBE BAO ≌,6CE BO BE AO ===CPE DPB ≌3BP EP ==C CF y ⊥F 90,90CFA AOB ACF CAF ∠=∠=︒∠+∠=︒90BAC ∠=︒90CAF OAB ∠+∠=︒ACF OAB ∠=∠AC AB =()AAS ACF BAO ≌CF AO =2c x =- 2CF AO ==()0,2A ()0,2BP C CE y ⊥E∵ ,∴∵∴ .∵90ABC ∠=︒90CBE ABO ∠+∠=︒90BAO ABO ∠+∠=︒CBE BAO ∠=∠90CEB AOB ∠=∠=∵,∴,在和中,90BAC PAQ ∠=∠=︒BAP CAQ ∠=∠BAP △CAQ AB AQ =⎧∴四边形为正方形,∴,过作于点,∵AOCN 6OA CN OC ===T TL CN ⊥L AH BQ⊥AOH TLQ ≌∴,解得;②当点在上,点∴,解得;3AP DE cm AQ EC ===,352x =103x =cm/s P AB 5AP EC cm AQ ==,532x =65x =cm/s∴点P 的路程为∴点P 的路程为3AP ED AQ EC ===,AB +1216205AQ =++-=4543x =5AP EC cm AQ ==,AB +1216203AQ =++-=4345x =从出发,以每小时从出发,以相同速度沿,①当在线段上时,P O Q B OQ ∴=AP =t P AO,等腰,,设,,为的一个外角,RO PO ∴=∴POR 45R BAO ∴∠=∠=︒QPO α∠=45RPQ α∴∠=︒-QON BOG α∠==∠ABO ∠ OBG,,,,90HTA ∴∠=︒45HAT OAB ∠=∠=︒45HAT AHT ∴∠=∠=︒HT AT ∴=由(1)知,,则,∵直线与直线互相垂直,∴,()1.0M -1OM =BP AM 90MNB ∠=︒。
20XX年八年级下册数学期末压轴题汇编1.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4)一次函数23y x b=-+的图象与边OCAB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方的平面内的一点,当四边形OM DN是菱形时,求点N的坐标;2.如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q,⑴求证:PA=PQ;⑵用等式表示PB2、PD2、AQ2之间的数量关系,并证明;⑶点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径为---------------;(直接写出答案)3.已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC= 4(如图1);(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P 、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由,若不变,求出线段FH的长度;4.如图,在四边形ABCD 中,AD ∥BC ,∠B=90°,AD=6,BC=9,动点P 从D 点出发沿DA 以每秒1个单位的速度向A 点运动,动点Q 从B 点出发沿BC 以每秒3个单位的速度向C 点运动.两点同时出发,当Q 点到达C 点时,点P 随之停止运动.设点P 运动的时间为t 秒;(1)求t 的取值范围;(2)求t 为何值时,PQ 与CD 相等?5.已知:四边形ABCD 是正方形,E 是AB 边上一点,连接DE ,过点D 作DF ⊥DE 交BC 的延长线于点F ,连接EF .(1)如图1,求证:DE =DF ;(2)若点D 关于直线EF 的对称点为H ,连接CH ,过点H 作PH ⊥CH 交直线AB 于点P ;①在图2中依题意补全图形; ②求证:E 为AP 的中点;(3)如图3,连接AC 交EF 于点M ,求2AM AB AE+的值;6.如图,在平面直角坐标系xOy 中,直线l 与x 轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥x 轴于点A ;(1)求点C 的坐标; (2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在x 轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标;7.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;8有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率.设甲的工作量为y甲(件),乙的工作量为y乙(件),甲、乙合作完成的工作量为y(件),工作时间为x(时),y与x之间的部分函数图象如图①所示,y乙与x之间的部分函数图象如图②所示;(1)分别求出甲2小时、6小时的工作量;(2)当0≤x≤6时,在图②中画出y甲与x的函数图象,并求出y甲与x之间的函数关系式;(3)求工作几小时,甲、乙完成的工作量相等;(4)若6小时后,甲保持第6小时的工作效率,乙改进了技术,提高了工作效率,当x=8时,甲、乙之间的工作量相差30件,求乙提高工作效率后平均每小时做多少件;9.如图,在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于点F,以CF为邻边作平行四边形ECFG;(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数;。
八下期末考试几何综合压轴题1、如图,已知△ABC 是等边三角形,AB =8,M 为AC 中点,D 为BC 边上一动点,将AD 绕点A 逆时针旋转60°得到AE ,连接CE 、DE 、ME .(1)求证:CD +CE =CA ;(2)求出点M 到CE 所在直线距离;(3)当ME =72时,求CE 的值.2、在△ABC 中,∠ACB =90°,AC =BC ,点D 为AB 中点,点E 是AC 上一点.连接DE ,过D 作DF ⊥DE 交BC 点于F ,连接EF .(1)如图1,EF 与CD 相交于点G :①来证:AE =CF ;②当AD =CE ,AC =6时,求DG ;(2)如图2,点M 为BC 上一点,且∠CME =2∠ADE ,AE =2,CE =5,求EM 的长.3、如图,AC为▱ABCD的对角线,∠BAC=90°,CE平分∠ACB,F为射线BC上一点.(1)如图1,F在BC延长线上,连接AF与CD交于点G,若AC=8,CD=6;①当G为CD中点时,求证:CF=BC;②当CF=CA时,求CG长度;(2)如图2,F在线段BC上,连接AF与CE交点于H,若∠D=3∠ACE,FA=FC,试探究AD,AC,AH三条线段之间的数量关系,并说明理由.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,M为AB中点,D为射线AB上一动点,在CD右侧作等边△CDE,直线DE与直线CB交于点F.(1)如图1,当点D与点M重合时,求证:CE=BE;(2)如图2,当点D在线段AM上(不包括端点A,M),CE=BE是否仍然成立,请说明理由;(3)点D在射线AB运动过程中,当△BEF为等腰三角形时,请直接写出∠ABE的度数.5、已知点E是正方形ABCD的边CD上的动点,连接AE,过点A作AF⊥AE,交CB 的延长线于点F.(1)如图1,求证:FB=ED;(2)点G为正方形ABCD的对角线BD上一点,连接AG,GC,GF,且GC=GF.①如图2,求∠GFA的度数;②如图3,过点G作MH//AE,分别交AF,AB,DC于点M,N,H.若AB=3,BF=1,求MH的长.6、已知在 ABC中,∠ECF的两边与 ABC的边AB从左至右依次交于点E,F,且∠ECF=12∠ACB.(1)如图1,若AC=BC,∠ACB=90°,将△ACE绕点C逆时针旋转90°后,得到 BCG,连接FG.求证: ECF≌ GCF;(2)如图2,若AC=BC,∠ACB=120°,BF=3,AE=2,求线段EF的长;(3)如图3,若∠ACB=90°,AC=25,BC=5,设AE=y,BF=x(0<x<1),请用含x的代数式表示y(直接写出结果,不必写解答过程).7、如图1,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF、CE、CF,G为EF的中点,连接BG.(1)若CE=2,求FE的长;(2)连接AC,求证:BG垂直平分AC;(3)如图2,在菱形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF的中点,连接BG、CG,过F作FH//DC交CB的延长线于H,那么(2)中的结论还成立吗?若成立,请加以证明,若不成立,请说明理由.8、如图,在矩形ABCD中,对角线AC与BD相交于点O,AB=BO=12,将矩形ABCD 翻折,使得B与D重合,A的对应点为A ,折痕为EF,连接B A ,DF.(1)求证:四边形BFDE是菱形;(2)若M,N为矩形边上的两个动点,且运动过程中,始终保持∠MON=60°不变,请回答下列两个问题:①如图2,当点M在边BC上,点N在边CD上,ON与ED交于点G,请猜想EO、EM、EG三条线段的数量关系,并说明理由;②如图3,若M,N都在BC边上,将△ONM沿ON所在直线翻折至 ONP,取线段CD 的中点Q,连接PQ,则当PQ最短时,求PM的长.9、在学习了图形的旋转知识后,某数学兴趣小组对教材中有关图形旋转的问题进行了进一步探究.(1)问题梳理,问题呈现:如图1,点D 在等边A B C 的边B C 上,过点C 画A B 的平行线l ,在l 上取C E B D ,连接A E ,则在图1中会产生一对旋转图形.请结合问题中的条件,证明:A B D A C E △≌△;(2)初步尝试:如图2,在A B C 中,A B A C ,点D 在B C 边上,且B D D C ,将A B D ♀沿某条直线翻折,使得A B 与A C 重合,点D 与B C 边上点F 重合,再将A C F 沿A C 所在直线翻折,得到A C E ,则在图2中会产生一对旋转图形.若30B A C ,6A D ,连接D E ,求A D E 的面积;(3)深入探究:如图3,在A B C 中,60A C B ,75B A C ,6A C ,点D 是边B C 上的任意一点,连接A D ,将线段A D 绕点A 按逆时针方向旋转75°,得到线段A E ,连接C E ,求线段C E 长度的最小值.10、如图1,四边形A B C D 是正方形,点E 在边A B 上任意一点(点E 不与点A ,点B 重合),点F 在A D 的延长线上,B E D F .(1)求证:C E C F ;(2)如图2,作点D 关于C F 的对称点G ,连接B G 、C G 、D G ,D G 与C F 交于点P ,B G 与C F 交于点H .与C E 交于点Q .①若20B C E ,求C H B 度数;②用等式表示线段C D ,G H ,B H 之间的数量关系,并说明理由.。
八下期末难点特训(三)与平行四边形有关的压轴题1. (1)问题背景:如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,BE =DF ,M 为AF 的中点,求证:①∠BAE =∠DAF ;②AE =2DM .(2)变式关联:如图2,点E 在正方形ABCD 内,点F 在直线BC 的上方,BE =DF ,BE ⊥DF ,M 为AF 的中点,求证:①CE ⊥CF ;②AE =2DM .(3)拓展应用:如图3,正方形ABCD 的边长为2,E 在线段BC 上,F 在线段BD 上,BE =DF ,直接写出()2AE AF +的最小值.2. 已知:正方形ABCD 中,点E 在对角线BD 上,连接CE ,作EF CE ⊥交AB 于点F .(1)如图(1),求证:CE EF =;(2)如图(2),作EM BD ⊥交AD 于点M ,连接BM ,求证:BM =;(3)如图(3),延长CE 交DA 于点N ,若BE =6AN =,则CE =_________.3. 已知,在菱形ABCD 中,120ABC ∠=︒,6AB =,E 、F 分别为AD 、CD 上一点.(1)如图1,若60EBF ∠=︒,求证:AE DF =;(2)如图2,E 为AD 中点,1DF =,线段EG 交BC 于G ,FH 交AB 于H ,60EOF ∠=︒,若BH x =,CG y =.①求y 与x 之间的函数关系式;②若6x y +=,则HF =______.4. (1)问题背景:如图1,E 是正方形ABCD 的边AD 上的一点,过点C 作CB CD ⊥交AB 的延长线于F 求证:CE CF =;(2)尝试探究:如图2,在(1)的条件下,连接DB 、EF 交于M ,请探究DM 、BM 与BF 之间的数量关系,并证明你的结论.(3)拓展应用:如图3,在(2)的条件下,DB 和CE 交于点N ,连接CM 并延长交AB 于点P ,已知DE =,15DME ∠=︒,直接写出PB 的长________.5. 正方形ABCD 的边长为4.(1)如图1,点E 在AB 上,连接DE ,作AF D E ⊥于点F ,CG DE ⊥于点G .①求证:DF CG =;②如图2,对角线AC ,BD 交于点O ,连接OF ,若3AE =,求OF 的长;(2)如图3,点K 在CB 的延长线上,2BK =,点N 在BC 的延长线上,4CN =,点P 在BC 上,连接AP ,在AP 的右侧作PQ AP ⊥,PQ AP =,连接KQ .点P 从点B 沿BN 方向运动,当点P 运动到BC 中点时,设KQ 的中点为1M ,当点P 运动到N 点时,设KQ 的中点为2M ,直接写出12M M 的长为________.6. 如图,已知四边形ABCD ,∠A =∠C =90°,BD 是四边形ABCD 的对角线,O 是BD 的中点,BF 是∠ABE 的角平分线交AD 于点F ,DE 是∠ADC 的角平分线交BC 于点E ,连接FO 并延长交DE 于点G .(1)求∠ABC +∠ADC 的度数;(2)求证:FO =OG ;(3)当BC =CD ,∠BDA =∠MDC =22.5°时,求证:DM =2AB7. 如图,已知在ABC 和ADE 中,AB AC =.(1)如图1,若90BAC ∠=︒,=90DAE ∠︒,AD AE =,4AC =,3CE =,连接CD ,求线段CD 的长;(2)如图2,若60BAC DAB ∠=∠=︒,AD AB =,E 、F 分别为BC AB 、边上的动点,CF 与AE 相交于点M ,BCF CAE ≌,连接DM ,点N 是DM 的中点,证明:2AM CM AN +=;(3)在(2)的条件下,G 是AC 的中点,1AC =,连接GE ,H 是ABC 所在平面内一点,连接HE HG 、,HGE 和CGE 关于直线GE 成轴对称图形,连接HD ,求HD 的最小值.8. 在□ABCD 中,对角线AC AB =,且AC AB ⊥,E 为CD 边上一动点,连接BE 交AC 于点F ,M 为线段BE 上一动点,连接AM .(1)如图1,若8AB =,2CF =,M 为BF 的中点,求AM 的长;(2)如图2,若M 在线段BF 上,45AME ∠=︒,作CN AM ∥交BE 于点N ,连接AN ,求证:AN AB =;(3)如图3,若M 在线段EF 上,将△ABM 沿着AM 翻折至同一平面内,得到AB M ' ,点B 的对应点为点B '.当30ABE ∠=︒,90BMB '∠=︒时,请直接写出B M EM AM'-的值.9. 在菱形ABCD 中,点E 、F 分别为BC 、CD 边上的点,连接AC 、AF 、EF .(1)如图1,EF 与AC 交于点G ,若CE CF =,5AF =,6EF =,求AG 的长;(2)如图2,若60ABC ∠=︒,DAF EFC ∠=∠,求证:BE CF =;(3)如图3,在(2)的条件下,将BEF △沿BF 翻折至同一平面内,得到BE F ' ,连接CE '与BF 交于点O ,记CEF △、CE F ' 、BCF △的面积分别为1S 、2S 、3S ,当O 为BF 中点时,请直接写出3213S S S -的值.10. 在菱形ABCD 中,60ABC ∠=︒,E 为对角线BD 上一动点,连接AE .(1)如图1,点F 为DE 的中点,连接AF ,若BE AE =,求FAD ∠的度数;(2)如图2,BEM △是等边三角形,连接DM ,H 为DM 的中点,连接AH ,猜想线段AH 与AE 之间的数量关系,并证明.(3)在(2)的条件下,N 为AD 的中点,连接AM ,以AM 为边作等边 AMP ,连接PN ,若AD =PN 的最小值.11. 问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.12. 矩形ABCD 中,将矩形沿AE 、AG 翻折,点B 的对应点为点F ,点D 的对应点为点Q ,A 、F 、Q 三点在同一直线上.(1)如图1,求EAG ∠的度数;(2)如图2,当AB BC =时,连接BD ,交AE 、AG 于点M 、N ,若3BM =,4DN =,求MN 的长度;(3)如图3,当8AB =,9AD =时,连接EG ,45GEC ∠=︒,求BE 的长.13. 如图,正方形ABCD 中,6AB =,点E 在CD 边上运动(不与点C 、D 重合).过点B 作AE 的平行线交DC 的延长线于点F ,过点D 作AE 的垂线DN 分别交于AE ,BF 于点M 、N .(1)求证:四边形ABFE 是平行四边形;(2)若13DE DC =,求线段MN 的长;(3)点E 在CD 边上运动过程中,CND ∠的大小是否改变?若不变,求出该值,若改变请说明理由.14. (1)如图1,在正方形ABCD 中,AE ,DF 相交于点O 且AE ⊥DF .则AE 和DF 的数量关系为 .(2)如图2,在正方形ABCD 中,E ,F ,G 分别是边AD ,BC ,CD 上的点,BG ⊥EF ,垂足为H .求证:EF =BG .(3)如图3,在正方形ABCD中,E,F,M分别是边AD,BC,AB上的点,AE =2,BF=4,BM=1,将正方形沿EF折叠,点M的对应点与CD边上的点N重合,求CN的长度.15. 已知:在边长为6的正方形ABCD中,点P为对角线BD上一点,且BP .将三角板的直角顶点与点P重合,一条直角边与直线BC交于点E,另一条直角边与射线BA交于点F(点F不与点B重合),将三角板绕点P旋转.(1)如图,当点E、F在线段BC、AB上时,求证:PE=PF;(2)当∠FPB=60°时,求△BEP的面积;(3)当△BEP为等腰三角形时,直接写出线段BF的长.16. 已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D 不与B、C重合).以AD为边作正方形ADEF,连接CF.=-.(1)如图①,当点D在线段BC上时,求证:CF BC CD(2)如图②和③,当点D在线段BC的延长线上或反向延长线上时,其它条件不变,请判断CF、BC、CD三条线段之间的关系,并证明之;(3)如图③,若连接正方形ADEF对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.17. 在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.18. 在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC 的中点,连接DQ,MQ,求证:DM=2DQ.八下期末难点特训(三)与平行四边形有关的压轴题【1题答案】【答案】(1)①见解析;②见解析;(2)①见解析;②见解析;(3)8【解析】【分析】(1)问题情景:①证明△ABE≌△ADF(SAS),由全等三角形的性质得出∠BAE=∠DAF;②由全等三角形的性质得出AE=AF,由直角三角形的性质可得出结论;(2)变式关联:①延长BE交DF于G,BG交CD于H,证明△CBE≌△CDF (SAS),由全等三角形的性质得出∠BCE=∠DCF,则可得出结论;②延长DM到N,使DM=MN,连接AN,证明△AMN≌△FMD(SAS),由全等三角形的性质得出AN=DF,证明△ABE≌△DAN(SAS),由全等三角形的性质得出AE=DN=2DM;(3)拓展应用:过点D作DP⊥DF,且使PD=AB,连接PF,PA,过点P作PQ⊥AD,交AD的延长线于点Q,证明△ABE≌△PDF(SAS),由全等三角形的性质得出AE=PF,AF+AE=AF+PF≥AP,即当A,F,P三点共线时,AE+AF的最小值为AP,求出2AP则可得出答案.【详解】解:(1)问题情景:①证明:∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF;②证明:∵△ABE≌△ADF,∴AE=AF,∵M为AF的中点,AF,∴DM=12∴AE=AF=2DM;(2)变式关联:①证明:延长BE交DF于G,BG交CD于H,∵四边形ABCD为正方形,∴∠BCD=90°,CD=CB,∵BE⊥DF,∴∠BGD=∠BCD=90°,∵∠BHD=∠CBE+∠BCD,∠BHD=∠BGD+∠CDF,∴∠CBE+∠BCD=∠BGD+∠CDF,∴∠CBE=∠CDF,又∵BE=DF,∴△CBE≌△CDF(SAS),∴∠BCE=∠DCF,∵∠BCD=90°,∴∠ECF=∠ECD+∠DCF=∠ECD+∠BCE=90°,∴CE⊥CF;②延长DM到N,使DM=MN,连接AN,∵M为AF的中点,∴AM=MF,∵MD=MN,∠AMN=∠FMD,∴△AMN≌△FMD(SAS),∴AN=DF,∵△CBE ≌△CDF ,∴BE =DF =AN ,∠NAM =∠DFM ,∴AN ∥DF ,∴∠DAN +∠ADF =180°,∵四边形ABCD 为正方形,∴∠BAD =90°,AB =DA ,∵∠BGD =90°,∴∠ABE +∠ADF =180°,∴∠ABE =∠DAN ,∴△ABE ≌△DAN (SAS),∴AE =DN =2DM ;(3)拓展应用:过点D 作DP ⊥DF ,且使PD =AB ,连接PF ,PA ,过点P 作PQ ⊥AD ,交AD 的延长线于点Q ,∴△ABE ≌△PDF (SAS),∴AE =PF ,∵∠ADB =45°,∴∠PDQ =45°,DQ =PQ ,∴AF +AE =AF +PF ≥AP ,即当A ,F ,P 三点共线时,AE +AF 的最小值为AP ,∵AD =AB =DP =2,∴PQ =DQ ,∴(2222228AP AQ QP =+=++=+∴()2AE AF +的最小值为.【点睛】本题属于四边形综合题,考查了正方形的性质,直角三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【2题答案】【答案】(1)见解析(2)见解析(3)【解析】【分析】(1)过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,由“ASA ”可证△ECH =△EFG ,可得CE =EF ;(2)过点E 作EH ⊥BC 于H ,交AD 于Q ,EG ⊥AB 于G ,交CD 于P ,由正方形的性质和矩形的性质可证△CEF 是等腰直角三角形,从而得到CF =,再证得四边形AGPD 是矩形,四边形DQHC 是矩形,四边形DQEP 是矩形,从而得到DQ =QM =GF =AG ,由“SAS ”可证△ABM ≌△BCF ,可得BM =CF ,可得结论;(3)过点E 作GE ⊥AB 于点G ,EQ ⊥AD 于点Q ,可得△EGB 是等腰直角三角形,进而得到BG =EG =7,再根据四边形AGEQ 是矩形,可得AQ =EG =7,从而得到QN =1,再由勾股定理列出方程可求EF 的长.【小问1详解】证明:如图,过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,∵四边形ABCD 是正方形,∴∠ABD =∠CBD =45°,∵EG ⊥AB ,EH ⊥BC ,∠ABC =90°,∴四边形FGBH 是正方形,∴GE=EH,∠GEH=90°,∴∠CEF=∠GEH=90°,∴∠CEH=∠GEF=90°-∠HEF,在△ECH和△EFG中,∵∠CEH=∠GEF,EH=EG,∠EHC=∠EGF=90°,∴△ECH≌△EFG(ASA),∴CE=EF;【小问2详解】证明:如图,过点E作EH⊥BC于H,交AD于Q,EG⊥AB于G,交CD于P,∵四边形ABCD是正方形,∴AD∥BC,CD∥AB,∴PG⊥CD,QH⊥AD,∵CE=EF,CE⊥EF,∴△CEF是等腰直角三角形,∴CF ,∵PG⊥AB,QH⊥AD,∴∠A=∠ADC=∠DCB=∠ABC=90°,∴四边形AGPD是矩形,四边形DQHC是矩形,四边形DQEP是矩形,∴DQ=CH,DP=AG,∵∠ADB=∠CDB=45°,EQ⊥AD,EP⊥CD,∴EP=EQ,∴四边形DPEQ是正方形,∴DQ=DP=PE=QE=CH=AG,∵△ECH≌△EFG,∴GF=CH=DQ,∵ME⊥BD,∠ADB=45°,∴△DEM是等腰直角三角形,∵EQ⊥AD,∴DQ=QM,∴DQ=QM=GF=AG,∴DM=AF,∵AD=AB,∴AM=BF,又∵AB=BC,∠A=∠CBF=90°,∴△ABM≌△BCF(SAS),∴BM=CF,∴BM=;【小问3详解】解:如图,过点E作GE⊥AB于点G,EQ⊥AD于点Q,由(2)得:AG=GF=QE,∵EG⊥AB,∠ABD=45°,∴△EGB是等腰直角三角形,∵BE=,∴BG=EG=7,∵EQ⊥AD,EG⊥AB,∠A=90°,∴四边形AGEQ是矩形,∴AQ=EG=7,∵AN =6,∴QN =1,∵22222NF EN EF AN AF =+=+,222EN QE QN =+,222EF EG GF =+,∴222364149GF GF GF +=+++,∴27GF =,∴249756EF =+=,∴EF CE ==.故答案为:.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【3题答案】【答案】(1)证明见解析(2)①4y x =+;②【解析】【分析】(1)连接DB ,由菱形的性质得出∠ABD =∠BDC =60°,60,A C ∠=∠=︒证出△ABD 为等边三角形, AB =BD ,证明△ABE ≌△DBF (ASA ),由全等三角形的性质可得出结论;(2)①过点B 作,BM EG BN HF ∥∥交EG 于点I ,证明四边形BMEG 为平行四边形,由平行四边形的性质得出BG =EM =6-y ,得出AM =y -3,同理DN =1+x ,由(1)得AM =DN ,得出y -3=x +1,则可得出答案; ②过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由题意求出x =1,y =5,得出BH =1,CG =5,由直角三角形的性质求出AM =3,由勾股定理求出答案即可.【小问1详解】证明:如图1,连接DB ,∵四边形ABCD 为菱形,∠ABC =120°,∴∠ABD =∠BDC =60°,,,AB CD AD BC ∥∥60,A C ∴∠=∠=︒∴△ABD 为等边三角形,∴AB =BD ,∵∠EBF =60°,∴∠ABE =∠DBF ,在△ABE 和△DBF 中, ,ABE DBF AB BD A BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△DBF (ASA ),∴AE =DF ;【小问2详解】解:①如图2,过点B 作,BM EG BN HF ∥∥交EG 于点I ,∵,AD BC BM EG ∥∥,∴四边形BMEG 为平行四边形,而6,,,AB BC CD AD CG y BH x ====== ∴BG =EM =6-y ,∵E 是AD的中点,∴3,AE DE ==∴AM =y -3, 同理DN =1+x ,∵BN HF ∥,∴∠EOF =∠EIN =60°,∵BM EG ∥,∴∠MBN =∠EIN =60°,由(1)得,AM =DN ,∴y -3=x +1,∴y =x +4;②如图3,过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由①知y =x +4,又∵x +y =6,∴x =1,y =5,∴BH =1,CG =5,∵DM ⊥AB ,AB CD ∥,∴DM ⊥CD ,∴四边形MDFN 为矩形,∴DM =NF ,DF =MN =1,∵∠A =60°,AD =6,∴AM =12AD =3,∴DM ==,∵AB =6,∴NH =AB -AM -MN -BH =6-3-1-1=1,∴HF ===,故答案为:.【点睛】本题属于四边形综合题,考查了菱形的性质,矩形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.【4题答案】【答案】(1)证明见解析;(2)DM=BMBF;(3【解析】【分析】(1)由“ASA”可证△CDE≌△CBF,可得CE=CF;(2)由“AAS”可证△DME≌△HMF,可得DM=MH,可得结论;(3)由直角三角形的性质可得AFAE,可求AB的长,由勾股定理可求PF的长,即可求解.【详解】(1)证明:在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°−∠ABC=90°,∵CF⊥CE,∴∠ECF=90°,∴∠DCB=∠ECF=90°,∴∠DCE=∠BCF,在△CDE和△CBF中,D CBF DC BCDCE BCF ∠∠⎧⎪⎨⎪∠∠⎩===∴△CDE≌△CBF(ASA),∴CE=CF;(2)DM=BMBF,理由如下:如图,过点F作FH⊥AF,交DB的延长线于H,∵△CDE≌△CBF,∴DE=BF,∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,∴∠FBH=45°,∵FH⊥AB,∴∠FBH=∠H=45°,∴BF=FH=DE,∴BH BF,∵∠EDM=∠H=45°,∠EMD=∠HMF,DE=FH,∴△DME≌△HMF(AAS),∴DM=MH,EM=MF,∴DM=MB+BH=MB BF;(3)连接EP,∵∠DME=15°,∠ABD=45°,∴∠AFE=30°,∴AF,∴AB+BF AB−DE),∴AB +=-+,∴AB =,∴AE =,AF =,∵EC =CF ,∠ECF =90°,EM =MF ,∴CP 是EF 的垂直平分线,∴EP =PF ,∵PE 2=AE 2+AP 2,∴PF 2=24+(−PF )2,∴PF =,∴PB +,【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.【5题答案】【答案】(1)①见解析;(2)【解析】【分析】(1)①证明△ADF ≌△DCG ,即可求证;②连接OG ,由①得:△ADF ≌△DCG ,可得AF =DG ,可证得△AOF ≌△DOG ,从而得到OG =OF ,∠DOG =∠AOF ,进而得到△FOG 为等腰直角三角形,可得到OF FG =,再由1122ADE S AE AD AF DE =⨯=⨯ ,求出125DG AF ==,从而得到165DF =,进而得到FG = 45,即可求解;(2)取CK 的中点Y ,连接MY ,CQ ,可得12YM CQ =,从而得到点M 的运动轨迹为线段YM ,然后分别计算出当点P 运动到BC 中点时,当点P 运动到N 点时,YM 1,YM 2的长, 即可求解.【小问1详解】①证明:在正方形ABCD 中,AD =CD ,∠DAB =∠ADC =90°,∴∠ADF +∠CDG =90°,∵AF D E ⊥,CG DE ⊥,∴∠AFD =∠CGD =90°,∴∠ADF +∠DAF =90°,∴∠DAF =∠CDG ,∴△ADF ≌△DCG ,∴DF =CG ;②解:如图,连接OG ,在正方形ABCD 中,OA =OD ,∠BAO =∠ADO =45°,∠AOD =∠BAD =90°,∴∠DAF +∠EAF =90°,∠EAF +∠OAF =∠ODG +∠ADF =45°,由①得:△ADF ≌△DCG ,∴AF =DG ,∵AF ⊥DE ,∴∠AFD =90°,∴∠ADF +∠DAF =90°,∴∠ADF =∠EAF ,∴∠OAF =∠ODG ,在△AOF 和△DOG 中,∵AF =DG ,∠OAF =∠ODG ,OA =OD ,∴△AOF ≌△DOG ,∴OG=OF,∠DOG=∠AOF,∴∠FOG=∠AOF+∠AOG=∠DOG+∠AOG=∠AOD=90°,∴△FOG为等腰直角三角形,∴FG==,∴OF FG=,在Rt AED△中,AD=4,AE=3,∠DAE=90°,∴5DE=,∵AF⊥DE,∴1122ADES AE AD AF DE=⨯=⨯,∴125 DG AF==,∴165 DF=,∴FG=DF-DG=45,∴OF==;【小问2详解】解:如图,取CK的中点Y,连接MY,CQ,∵点M为KQ的中点,∴12YM CQ=,YM∥CQ,∴点M的运动轨迹为线段YM,如图,当点P运动到BC中点,即BP=CP=2时,过点Q作QJ⊥CN于点J,在正方形ABCD中,∠ABC=90°,∴∠BAP+∠APB=90°,∵AP⊥PQ,∴∠APQ=90°,∴∠APB+∠QPJ=90°,∴∠BAP=∠QPJ,∵∠PJQ=∠ABP=90°,AP=PQ,∴△ABP≌△PJQ,∴QJ=BP=2,PJ=AB=4,∴CJ=2,∴CQ==YM=∴1如图,当点P运动到N点,即BP=BC+CN=8时,过点Q作QL⊥CN交CN延长线于点L,同理:△ABP≌△PLQ,∴QL=BP=8,PL=AB=4,∴CL=8,∴CQ ==,∴2YM =,∴12M M 的长为21YM YM -==.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识,熟练掌握全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识是解题的关键.【6题答案】【答案】(1)180°(2)见解析(3)见解析【解析】【分析】(1)在四边形ABCD 中,内角和为360°,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°;(2)由(1)可知,∠ABF +∠CBF +∠ADE +∠CDE =180°,根据BF 、DE 分别是∠ABE 、∠ADC 的角平分线,得到∠ABF +∠ADE =90°,由∠ABF +∠AFB =90°,得∠ADE =∠AFB ,求出BF ∥ED ,所以∠BFG =∠FGD ,得证BFO ∆≌DOG ∆,由此得出结论;(3)证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN ,易证BCD BKD ∆≅∆,所以BK =CD ,可证∆≅∆BAD NAD ,所以2=NB AB ,由22.5∠=∠=∠=︒ABK KDA MDC ,可证∆≅∆BKN MCD ,所以2==MD BN AB ;证法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L ,可得∆≅∆BAD BND ,所以=AB NB ,再由∆≅∆LND BND 得=NB NL ,所以2=BL AB ,易证LBC MDC ∠=∠,则∆≅∆LCB MCD ,所以2==BL MD AB .【小问1详解】解:∵四边形ABCD 的内角和为360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°.【小问2详解】证明:由(1)可知,∠ABF +∠CBF+∠ADE +∠CDE =180°,∵BF 、DE 分别是∠ABE 、∠ADC 的角平分线∴∠ABF =∠CBF ;∠ADE =∠CDE ,∴2∠ABF +2∠ADE =180°,∴∠ABF +∠ADE =90°,又∵∠ABF +∠AFB =90°,∴∠ADE =∠AFB ,∴BF ∥ED ,∴∠BFG =∠FGD .在BFO ∆和DOG ∆中BFO DGO BO ODBOF DOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆≅∆BFO DOG ,∴OF OG =;【小问3详解】证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN,∴四边形BCDK 是矩形,∵BC=CD ,∴四边形BCDK 是正方形,∴BCD BKD ∆≅∆,∴BK =CD ,∵∠BDA =∠MDC =22.5°,∠BDK =45°,∴∠ADN =22.5°=∠BDA ,在△BAD 和△NAD 中ADB ADN AD AD BAD NAD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BAD NAD (ASA )∴2=NB AB ,∵22.5∠=∠=∠=︒ABK KDA MDC ,在△BKN 和△MCD 中22.5ABK MDC BK CD BKN MCD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BKN MCD (ASA )∴2==MD BN AB ;解法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L .∵BC=CD ,∠BCD =90°,∴∠CBD =∠BDC =45°,∵∠BDA =∠MDC =22.5°,∴∠BDM =22.5°,在△BAD 和△BND 中ADB BDN BD BDBAD BND ∠=∠⎧⎪=⎨⎪∠=∠⎩,BAD BND ∴∆≅∆(ASA ),AB NB ∴=,在△LND 和△BND 中90BND LDN ND ND BDN LDN ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,LND BND ∴∆≅∆(ASA ),NB NL ∴=,2BL AB ∴=,∴LBC MDC ∠=∠,在△LCB 和△MCD 中BCL BCD BC CD LBC MDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,LCB MCD ∴∆≅∆(ASA ),2BL MD AB ∴==.【点睛】本题考查了全等三角形的性质与判定,正方形的性质与判定,第(2)问作出辅助线构造全等三角形是解题的关键.【7题答案】【答案】(1(2)证明见解析(312-【解析】【分析】(1)先证明45ABC ACB ∠=∠=︒,BAD CAE ∠=∠,再证明BAD CAE ≌,得到45ABD ACE ∠=∠=︒,3BD CE ==,则90CBD ∠=︒,求出BC =CD =;(2)如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,先求出60CAQ ∠=︒,再由已知条件得到AD AB AC AQ ===,即可证明ABC ACQ △,△都是等边三角形,得到60ACB ACQ CQ AC ==︒=∠∠,,由全等三角形的性质得到CAE BCF ∠=∠,即可证明60CMH ∠=︒,推出MCH △是等边三角形,则60CM HM CH MCH ===︒,∠,证明QCM ACH △≌△得到QM AH =,再证明AN 是DMQ △的中位线,得到2QM AN =,即可证明2AM CM AN +=;(3)如图所示,连接AH CH ,,DH DG ,,根据轴对称的性质得到CG HG =,则12AG CG HG ===,由三角形三边的关系得到HD DG HG ≤-,则当D G H 、、三点共线时,HD 最小,最小值为12DG -,过点G 作GT AD ⊥交DA延长线于T ,求出14AT =,TG =54DT =,即可求出DG =,则12HD =-最小值.【小问1详解】解:如图所示,连接BD ,∵90BAC ∠=︒,=90DAE ∠︒,AB AC =,∴BAC BAE DAE BAE ∠-∠=∠-∠,45ABC ACB ∠=∠=︒,∴BAD CAE ∠=∠,又∵AD AE =,∴()SAS BAD CAE ≌△△,∴45ABD ACE ∠=∠=︒,3BD CE ==,∴90CBD ∠=︒,∵4AC =,∴BC ==,∴CD ==【小问2详解】证明:如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,∵60BAC DAB ∠=∠=︒,∴60CAQ ∠=︒,∵AD AB =,AB AC =,∴AD AB AC AQ ===,∴ABC ACQ △,△都是等边三角形,∴60ACB ACQ CQ AC ==︒=∠∠,,∵BCF CAE ≌,∴CAE BCF ∠=∠,∴60CMH CAE ACM BCF ACM ACB =+=+==︒∠∠∠∠∠∠,∴MCH △是等边三角形,∴60CM HM CH MCH ===︒,∠,∴MCH ACM ACQ ACM +=+∠∠∠∠,即QCM ACH =∠∠,∴()SAS QCM ACH △≌△,∴QM AH =,∵N 是DM 的中点,AD AQ =,∴AN 是DMQ △的中位线,∴2QM AN =,∴2AH AN =,即2AM MH AN +=,∴2AM CM AN +=;【小问3详解】解:如图所示,连接AH CH ,,DH DG ,,∵HGE 和CGE 关于直线GE 成轴对称图形,∴CG HG =,∵G 是AC 的中点,∴1122AG CG HG AC ====,∴HD DG HG ≤-,∴当D G H 、、三点共线时,HD 最小,最小值为12DG HG DG -=-,过点G 作GT AD ⊥交DA 延长线于T ,∵60BAC DAB ∠=∠=︒,∴60GAT =︒∠,∴30AGT =︒∠,∴1124AT AG ==,∴TG ==,54DT AD AT =+=,∴DG ==,∴12HD =-最小值.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,勾股定理,含30度角的直角三角形的性质,轴对称图形的性质,三角形三边的关系,正确作出辅助线是解题的关键.【8题答案】【答案】(1)5;(2)证明过程见解析;(3)'B M EM AM-=.【解析】【分析】(1)先根据已知条件求出AF 的长度,再用勾股定理求出BF 的长度,最后根据直角三角形斜边中线定理求出AM 的长度即可;(2)过点A 作AG ⊥AM ,交BE 于点G ,连接CG ,先证出△ABM 和△ACG 全等,再证出BG ⊥CG ,再证出△ACG 和△ANG 全等,得到AC =AN ,即可得到结论;(3)根据已知条件使用勾股定理、等腰直角三角形的性质和直角三角形30°所对的直角边等于斜边的一半,用含有字母的代数式表示出NF 、AN 、MN 、AB 、AM 的长度,然后表示出BM 、EM 的长度,最后求出答案即可.【小问1详解】∵8AC AB ==,2CF =,∴826AF AC CF =-=-=,∵AC AB ⊥,∴在Rt ABF 中由勾股定理得:10BF ===,∵M 为BF 的中点,∴1110522AM BF ==⨯=.【小问2详解】作AG AM ⊥交BE 于点G ,连接CG ,∵AC AB ⊥,AG AM ⊥,∴1+3=90∠∠︒,2390∠+∠=︒,∴12∠=∠.∵45AME ∠=︒,∴AMG 为等腰直角三角形,∴AM AG =.在ABM 和ACG 中,∵12AB AC AM AG =⎧⎪∠=∠⎨⎪=⎩,∴ABM ≌ACG (SAS ),∴45∠=∠.∵67∠=∠,∴90CGF BAF ∠=∠=︒,∵//CN AM ,∴845AME ∠=∠=︒,∴CNG △为等腰直角三角形,∴GN CG =,∵45AGM ∠=︒,∴9135∠=︒,∴3609135AGC CGN ∠=︒-∠-∠=︒.在ACG 和ANG 中,∵9AG AG AGC CG NG =⎧⎪∠=∠⎨⎪=⎩,∴ACG ≌ANG (SAS ),∴AC AN =,∴AN AB =.【小问3详解】'B M EM AM-=.解析:作AN BE ⊥于点N ,设FN a =,∵130∠=︒,90BMB '∠=︒,∴根据折叠知2690245∠=∠=︒÷=︒,又AN ⊥BE ,∴5360∠=∠=︒,430∠=︒,∴22AF FN a ==,在Rt △AFN 中根据勾股定理得AN ==,∴AN MN ==,同理AM ==,2AB AN ==,同理3BN a ==,'3B M BM BN NM a ==+=+.∵2222BE BF EF AF FC AC AB =+=+===,∴()26BM EM BM BE BM BM BE a -=--=-=-,∴'B M EM AM -==.【点睛】本题考查了等腰直角三角形的判定和性质、直角三角形斜边中线定理、直角三角形30°所对的直角边等于斜边的一半、勾股定理、全等三角形的判定和性质;考查的内容比较多,按照阶梯难度逐级上升,熟练掌握那些定理并能画出辅助线是解决本题的关键.【9题答案】【答案】(1)4(2)证明见解析 (3)16【解析】【分析】(1)根据等腰三角形三线合一可知AG EF ⊥,EG FG =,可得132FG EF ==,根据勾股定理即可求出AG 的长;(2)在AD 上截取DH DF =,连接FH ,则AH CF =,因为60ABC ∠=︒,所以120AHF ECF ∠=∠=︒,则可证AHF △≌FCE △(ASA ),所以CE HF DF ==,又因为BC =CD ,所以BE CF =;(3)延长CE '交AB 于点I ,连接FI ,则△BOI ≌△FOC ,所以BI =CF ,又因为BI ∥CF ,所以四边形ACFI 是平行形,BFI BFC S S =△△,由BOI FOI S S =△△,''BOE FOE S S =△△,设''BE I FE I S S x ==△△,则32''CFI CE F FE I S S S S S x -=-==△△△,1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x =-=-=+=△△△△△△,代入计算可得321136-=S S S .【小问1详解】解:∵在菱形ABCD 中,AC 平分BCD ∠,CE CF = ,∴AG EF ⊥,EG FG =.∵6EF =,∴116322FG EF ==⨯=在Rt AFG 中,90AGF ∠=︒,5AF =,∴4AG ===.【小问2详解】证明:在AD 上截取DH DF =,连接FH .∵在菱形ABCD 中,DA DC =,∴DA DH DC DF -=-,即AH CF =.∵60ABC ∠=︒,∴60D ABC ∠=∠=︒.∴DFH 为等边三角形.∴60DHF ∠=︒.∴180********AHF DHF ∠=︒-∠=︒-︒=︒.∵//AD BC ,∴180********BCD D ∠=︒-∠=︒-︒=︒.∴AHF ECF ∠=∠.在AHF △和FCE △中,∵DAF EFC AH FC AHF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AHF △≌FCE △(ASA ).∴CE HF DF ==.∵BC DC =,∴BC CE DC DF -=-,即BE CF =.【小问3详解】321136-=S S S.解析:延长CE '交AB 于点I ,连接FI .∵AB ∥CD ,∴∠ABF =∠BFC ,∵点O 是BF 的中点,∴BO =FO ,∵∠BOI =∠FOC ,∴△BOI ≌△FOC ,∴BI =FC ,∴四边形ACFI 是平行形,∴BFI BFC S S =△△,∵BOI FOI S S =△△,''BOE FOE S S =△△,∴''BE I FE I S S x ==△△.∴3BCF CFI S S S ==△△.∴32''CFI CE F FE I S S S S S x -=-==△△△.∵BEF △沿BF 翻折至同一平面内得到BE F ' ,∴'BEF BE F S S =△△,∴1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x=-=-=+=△△△△△△∴32113326S S x S x -==⨯.【点睛】本题考查了菱形,熟练运用菱形的性质,结合三角形的相关知识(等腰三角形、等边三角形、全等三角形等)是解题的关键.【10题答案】【答案】(1)30°;(2)AE=2AH,证明见解析;(3【解析】【分析】(1)根据菱形的性质以及等腰三角形的性质可得∠ABD=∠ADB=30°,∠EAD=∠BAD−∠BAE=90°,根据直角三角形斜边上的中线得AF=DF,即可得∠FAD=∠ADB=30°;(2)延长DA至F点,使得AF=DA,连接AM,CE,FM,证明△AMB≌△CEB (SAS),根据全等三角形的性质得AM=CE,∠MAB=∠ECB,可得出∠FAM=∠ECA,再证△FAM≌△ACE(SAS),可得MF=AE,根据三角形中位线定理即可得出结论;(3)连接NC、PC、NP,证明△AMB≌△APC(SAS),可得PC=BM=BE,∠PCA=∠BMA=30°,根据等边三角形的性质得CN⊥AD,∠ACN=∠DCN=30°,则∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN 长度最短,根据含30°角的直角三角形的性质即可求解.【小问1详解】解:∵四边形ABCD为菱形,∠ABC=60°,∴AB=AD,∠ABD=∠ADB=30°,∠BAD=120°,∵BE=AE,∴∠ABE=∠BAE=30°,∴∠EAD=∠BAD−∠BAE=90°,∵点F为DE的中点,DE,∴AF=DF=12∴∠FAD=∠ADB=30°;【小问2详解】AE=2AH,证明:延长DA至F点,使得AF=DA,连接AM,CE,FM,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴∠ACB=60°,∵△BEM是等边三角形,∴∠ABM十∠ABE=∠ABE+∠EBC=60°,MB=BE,∴∠ABM=∠EBC,∴△AMB≌△CEB(SAS),∴AM=CE,∠MAB=∠ECB,∵AD=DC,且∠ADC=∠ABC=60°,∴△ADC为等边三角形,∴AD=AC,∵AD=AF,∴AF=AC,∵∠FAB=180°−∠BAD=60°,∴∠FAB=∠ACB=60°,∴∠FAM=∠FAB−∠MAB=∠ACB−∠ECB=∠ECA,∴△FAM≌△ACE(SAS),∴MF=AE,∵FA=AD,H为DM的中点,MF,∴AH=12∴AE=MF=2AH;【小问3详解】连接NC、PC、NP,∵△AMP为等边三角形,∴∠MAP=60°,AM=AP,∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC=CD=AD,∴△ABC为等边三角形,△ADC为等边三角形,∴∠BAC=60°,AB=AC=CD,∠ACD=60°,∴∠MAB=∠MAP−∠BAP=∠BAC−∠BAP=∠PAC,∴△AMB≌△APC(SAS),∴PC=BM=BE,∠PCA=∠BMA=30°,∵AC=CD,N为AD的中点,∴CN⊥AD,∠ACN=∠DCN=30°,∴∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN长度最短,∵AD=,∴DN=12AD,∴NC DN=3,∵∠PCN=60°,NP⊥PC,∴∠PNC=30°,∴PC=12NC=32,∴PN PC PN.【点睛】本题是四边形综合题,考查了菱形的性质,等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质等,添加恰当辅助线构造全等三角形是解题的关键.【11题答案】【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【解析】【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和=90DAE ∠︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解;(2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,∵四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠= .BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴= ≌.∴矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒= ,,ABH DAE AH DE ∴∴= ≌.又,DE AF AH AF =∴= ,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .∵四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆ ≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴= .60,AHB AHF ∠=︒∴ 是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.【12题答案】【答案】(1)45°(2)5(3)4【解析】【分析】(1)由折叠的性质得()290EAQ GAQ ∠+∠=︒,则45EAG EAQ GAQ ∠=∠+∠=︒;(2)连接MF ,NF ,BF ,DF ,由折叠的性质知AE 垂直平分BF ,AG 垂直平分DF ,则3BM MF ==,4DN NF ==,再求出90MFN ∠=︒,利用勾股定理可得答案;(3)设BE x =,则9EC x =-,()891DG CD GC x x =-=--=-,1QF =,过点G 作GH 垂直EF 交EF 的延长线于H ,证明四边形FQGH 是矩形,求出EH ,在Rt GHE 中,利用勾股定理列方程求解可得答案.【小问1详解】解:由折叠的性质可知:BAE QAE ∠=∠,DAG QAG ∠=∠,四边形ABCD 是矩形,90BAD ∴∠=︒,90BAE QAE DAG QAG ∴∠+∠+∠+∠=︒,()290EAQ GAQ ∴∠+∠=︒,45EAG EAQ GAQ ∴∠=∠+∠=︒;【小问2详解】如图,连接MF ,NF ,BF ,DF ,若AB BC =,则四边形ABCD 是正方形,由题意可知点Q 与点F 重合,由折叠的性质可知:点B 与点F 关于AE 对称,点D 与点F 关于AG 对称,AE ∴垂直平分BF ,AG 垂直平分DF ,3BM MF ∴==,4DN NF ==,BD 为正方形ABCD 的对角线,1452MBE MFE ABC ∴∠=∠=∠=︒,1452NDG NFG ADC ∠=∠=∠=︒,18090MFN MFE NFG ∴∠=︒-∠-∠=︒,在Rt MFN 中,由勾股定理得:5MN ==.【小问3详解】设BE x =,由题意可知:45GEC ∠=︒,90ECG ∠=︒,180EGC GEC ECG ∴∠=︒-∠-∠ 1804590=︒-︒-︒ 45=︒,GEC EGC ∴∠=∠,EC CG ∴=,ECG ∴ 是等腰直角三角形,在矩形ABCD 中,9BC AD ==,8CD AB ==,BE x = ,9EC GC BC BE x ∴==-=-,()891DG CD GC x x =-=--=-,)9EG x ∴==-,由折叠的性质可知:BE EF x ==,1DG QG x ==-,90AFE ABE ∠=∠=︒,90AQG ADG ∠=∠=︒,9AQ AD ==,8AF AB ==,1QF AQ AF ∴=-=,如图,过点G 作GH 垂直EF 交EF 的延长线于H ,则90FHG HFQ FQG ∠=∠=∠=︒,∴四边形FQGH 是矩形,1FH QG x ∴==-,1GH QF ==,121EH EF FH x x x ∴=+=+-=-,在Rt GHE 中,由勾股定理得:222GH EH EG +=,即)2221(21)9]x x +-=-,整理得:()()2040x x +-=,解得4x =或20(x =-舍去),4BE ∴=.【点睛】本题是四边形综合题,主要考查了翻折的性质,矩形的判定和性质,正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,熟练掌握翻折的性质是解题的关键,同时注意方程思想的运用.【13题答案】【答案】(1)见解析 (2)MN = (3)点E 在CD 边上运动过程中,CND ∠的大小不改变,且45CND ∠=︒【解析】【分析】(1)根据正方形的性质,得出AB CD ,再根据AE BF ∥,即可证明四边形ABFE 是平行四边形;(2)根据正方形的性质,结合勾股定理,求出AE =,再根据平行四边形的面积求出EF 的长即可;(3)在DN 上截取DG =BN ,连接CG ,根据“SAS ”证明DGC BNC ≌,得出CG =NC ,DCG BCN ∠=∠,说明△GCN 为等腰直角三角形,即可得出结果.【小问1详解】证明:∵四边形ABCD 为正方形,∴AB CD ,即AB EF ∥,∵AE BF ∥,∴四边形ABFE 是平行四边形.【小问2详解】解:∵四边形ABCD 为正方形,∴6AB BC CD AD ====,90ABC BCD CDA DAB ∠=∠=∠=∠=︒,∵123DE DC ==,∴在Rt △ADE 中根据勾股定理得:AE ===,∵ABFE S AB BC AE MN =⨯=⨯ ,∴AB BC MN AE ⨯===【小问3详解】解:点E 在CD 边上运动过程中,CND ∠的大小不改变;在DN 上截取DG =BN ,连接CG ,如图所示:∵DN ⊥AE ,∴90DME ∠=︒,∵AE BF ∥,∴90DNF DME ∠=∠=︒,∴90F NDF ∠+∠=︒,∵18090BCF BCD ∠=︒-∠=︒,∴90F FBC ∠+∠=︒,∴NDF FBC ∠=∠,∵在△DGC 和△BNC 中DC BC CDG CBN DG BN =⎧⎪∠=∠⎨⎪=⎩,∴DGC BNC ≌(SAS ),∴CG =NC ,DCG BCN ∠=∠,∴90BCN BCG BCG DCG ∠+∠=∠+∠=︒,∴190452CND CGN ∠=∠=⨯︒=︒.【点睛】本题主要考查了正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,平行四边形的面积,作出辅助线,构造全等三角形,是解题的关键.【14题答案】【答案】(1)AE =DF ;(2)见解析;(3)CN 的长度为3【解析】【分析】(1)证明∠BAE =∠ADF ,则△ABE ≌△DAF (AAS ),即可求解;(2)由正方形的性质得出∠CBG =∠MEF ,证明△BCG ≌△EMF (ASA ),即可求解;(3)证明△EHF ≌△MGN (ASA ),则NG =HF ,而AE =2,BF =4,故NG =HF =4-2=2,进而求解.【详解】解:(1)∵∠DAO +∠BAE =90°,∠DAO +∠ADF =90°,∴∠BAE =∠ADF ,在△ABE 和△DAF 中,BAE ADF ABE DAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DAF (AAS ),∴AE =DF ,故答案为:AE =DF ;(2)如图1,过点E 作EM ⊥BC 于点M ,则四边形ABME 为矩形,则AB =EM ,在正方形ABCD 中,AB =BC ,∴EM =BC ,∵EM ⊥BC ,∴∠MEF +∠EFM =90°,∵BG ⊥EF ,∴∠CBG +∠EFM =90°,。
1.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2.(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm.一动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动.P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t s,则(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)AB边的长是否存在一数值,使四边形PQCD为菱形.如果存在,请求出AB 边的长,如果不存在,请说出理由.3.(本题10分)已知:在正方形ABCD 中,AB =6,P 为边CD 上一点,过P 点作PE ⊥BD 于点E ,连接BP(1) O 为BP 的中点,连接CO 并延长交BD 于点F① 如图1,连接OE ,求证:OE ⊥OC② 如图2,若53=EF BF ,求DP 的长 (2) CP EP 22+=___________4.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________(2) 若S △COE =S △ADE ,求点D 的坐标(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.5.(11分)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)菱形ABCO的边长是 ;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒.①求S 与t 之间的函数关系式;②在点P 运动过程中,当S =3,请直接写出t 的值.6.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.7、如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、D Q、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x 的值.8、如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P 作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.1.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.2.【解答】解:(1)由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∵四边形PQCD为平行四边形,∴DP=CQ,∴24﹣t=3t,∴t=6;(2)如图2,过点D作DE⊥BC于E,过点P作PF⊥BC于F,∴四边形EFPD是矩形,∴DE=PF,[来源:Z|xx|]∵四边形PQCD是等腰梯形,∴∠PQC=∠DCQ,∵∠PFQ=∠DEC=90°,∴△PFQ≌△DEC,∴FQ=CE,∴BE=AD=24,∴CE=BC﹣BE=2,∵四边形PQCD为等腰梯形,∴CQ=DP+2CE,由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∴24﹣t+2×2=3t,∴t=7,(3)AB边的长是8时,四边形PQCD为菱形,理由:由(1)知,t=6时,四边形PQCD是平行四边形,∴DP=24﹣6=18,∵平行四边形PQCD是菱形,∴CD=DP=18,如图2,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴AB=DE,在Rt△CDE中,CE=2,CD=18,∴DE==8.3.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点∴OE =OB =OP =OC∴∠POE =2∠DBP ,∠POC =2∠CBP∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90°∴OE ⊥OC② 连接OE 、CE∵△COE 为等腰直角三角形∴∠ECF =45°在等腰Rt △BCD 中,BF 2+DE 2=EF 2设BF =3x ,EF =5x ,则DE =4x∴3x +4x +5x =26,解得x =22 ∴DP =2DE =424=x(2) ∵62==-+=+CD C DP CP EP ∴2322=+CP EP4.解:(1) (3,0)、x <3(2) ∵S △COE =S △ADE∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF∵∠CDF =60°∴△CDF 为等边三角形连接AC∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-) 令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6.解:根据题意得:PA=2t ,CQ=3t ,则PD=AD-PA=12-2t .(1)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,在直角△CDE 中,∵∠CED=90°,DC=10cm ,DE=8cm ,∴22DC DE -,∴BC=BE+EC=18cm .…………………………………………………………………2分(直接写出最后结果18cm 即可)(2)∵AD ∥BC ,即PD ∥CQ ,∴当PD=CQ 时,四边形PQCD 为平行四边形,即12-2t=3t ,解得t=125秒, 故当t=125秒时四边形PQCD 为平行四边形;………………………………………4分(3)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,当PQ=CD 时,四边形PQCD 为等腰梯形.过点P 作PF ⊥BC 于点F ,过点D 作DE ⊥BC 于点E ,则四边形PDEF 是长方形,EF=PD=12-2t ,PF=DE .在Rt △PQF 和Rt △CDE 中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103;②当DQ=DC时,36 2t=∴t=4;③当QD=QC时,3t×65 10=∴t=259.故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=25 97.解:(1);-1;(2)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°∵Q点为A点关于BP的对称点∴AB=QB,∠A=∠PQB=90°∴QB=BC,∠BQE=∠BCE∴∠BQC=∠BCQ∴∠EQC=∠EQB-∠CQB=∠ECB-∠QCB=∠ECQ∴EQ=EC在Rt△ABC中∵∠QDE=90°-∠QCE,∠DQE=90°-∠EQC∴∠QDE=∠DQE∴EQ+ED∴CE=EQ=ED即E是CD的中点②(3)或或8.解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵PQ∥y轴,且点Q在y=x﹣4 上,∴Q(t, t﹣4),∴d=(﹣t+6)﹣(t ﹣4)=﹣t+10;(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ,∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=8,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QMN=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∴∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN,∴HN=RM=k,NR=QH=4+k,∵HR=HN+NR,∴k+4+k=8,∴k=2,∴GH=NH=RM=2,∴HQ=6,∵Q(t,t﹣4),∴N(t+2,t﹣4+6)即 N(t+2,t+2)∵N在直线AB:y=﹣x+6上,∴t+2=﹣(t+2)+6,∴t=2,∴P(2,),N(4,3),∴PH=,NH=2,∴PN==.。
期末考前压轴题精选(绝密资料)1、如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.2、如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.3、如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.4、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.5、如图,在Rt△ABC中,∠B=90°,.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.6、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?7、台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1)该城市是否会受到这次台风的影响?为什么?(提示:过A作AD⊥BC于D)(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?8、已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.9、A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得:y=300x+200(42﹣x)+150(50﹣x)+250(x﹣2),即y=200x+15400,所以y与x的函数关系式为:y=200x+15400,又∵,解得:2≤x≤42,且x为整数,所以自变量x的取值范围为:2≤x≤42,且x为整数;(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000 解得:x≤3,∴x可以取:2或3,方案一:从A市运往C县的农用车为2辆,从B市运往C县的农用车为40辆,从A市运往D县的农用车为48辆,从B市运往D县的农用车为0辆,方案二:从A市运往C县的农用车为3辆,从B市运往C县的农用车为39辆,从A市运往D县的农用车为47辆,从B市运往D县的农用车为1辆,∵y=200x+154000是一次函数,且k=200>0,y随x的增大而增大,∴当x=2时,y最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元。
26.(本题满分10分)已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分)(2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示);(5分)26.解:(1)如图①,过点G 作GM BC ⊥于M .1分) 在正方形EFGH 中, 90,HEF EH EF ∠==. (1分) 又∵90A B ∠=∠=, ∴⊿AHE ≌⊿BEF …………………………………………………………(1分)同理可证:⊿MFG ≌⊿BEF . …………………………………………………………(1分)∴GM=BF=AE =2.∴FC=BC-BF =10. …………………………………………………………(1分) (2)如图②,过点G 作GM BC ⊥于M .连接HF . …………………………………………(1分).AHE MFG ∴∠=∠ …………………………………………………(1分)又90,,A GMF EH GF ∠=∠==∴⊿AHE ≌⊿MFG . ………………………………………………………(1分)∴GM=AE =2. ……………………………………………………………(1分)C B (第26题图2) F G11(12)12.22GFC S FC GM a a ∴=⋅=-=- …………………………………………(1分)如图,直线y =+与x 轴相交于点A,与直线y =相交于点P .(1) 求点P 的坐标.(2) 请判断△OPA 的形状并说明理由.(3) 动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求S 与t 之间的函数关系式.解:(1)y y ⎧=+⎪⎨=⎪⎩解得:2x y =⎧⎪⎨=⎪⎩………………………1′ ∴ 点P 的坐标为(2, ………………………1′(2)当0y =时,4x = ∴点A 的坐标为(4,0) ………………………1′∵4OP ==4PA == ……………1′∴ OA OP PA ==∴POA 是等边三角形 ………………………1′(3)当0<t ≤4时, ………………………1′21328S OF EF == ………………………1′ 当4<t <8时, ………………………1′28S =-+-………………………1′ 25、(本题8分)已知直角坐标平面上点A ()0,2,P 是函数()0>=x x y 图像上一点,PQ ⊥AP 交y 轴正半轴于点Q (如图).(1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当APQ AOQ S S ∆∆=32时,求点P 的坐标.证:(作x 轴、y 轴的垂线,垂足分别为H 、T , ∵点P 在函数x y =()0>x 的图像上, ∴PH =PT ,PH ⊥PT ,(1分) 又∵AP ⊥PQ , ∴∠APH =∠QPT ,又∠PHA =∠PTQ ,∴⊿PHA ≌⊿PTQ ,------------------------------------------------------(1分)∴AP =PQ . ---------------------------------------------------------------(1分)(2)22-=a b . -------------------------------------------------------------(2分)(3)由(1)、(2)知,2221-=⨯=∆a OQ OA S AOQ ,222122+-==∆a a AP S APQ ,------------(1分) ∴()2232222+-=-a a a , 解得255±=a ,--------------------------------------------------------(1分)所以点P 的坐标是⎪⎪⎭⎫ ⎝⎛--255,255与⎪⎪⎭⎫ ⎝⎛++255,255.---(1分)]26.(本题满分10分,第(1)小题6分,第(2)小题4分)已知点E 是正方形ABCD 外的一点,EA=ED ,线段BE 与对角线AC 相交于点F ,(1)如图1,当BF=EF 时,线段AF 与DE 之间有怎样的数量关系?并证明;(2)如图2,当△EAD 为等边三角形时,写出线段AF 、BF 、EF 之间的一个数量关系,并证明.26.(1)解:AF =DE 211 分) 证明如下:联结BD 交AC 于点O ,…………………………………………………(1 分)∵四边形ABCD 是正方形,∴BO =DO ,∵BF =EF ,∴OF =21DE ,OF //DE .………………………………………(1 分)∵BD ⊥AC ,∴∠DEO =∠AOB =90º,…………………………………(1 分)∵∠ODA =∠OAD =︒=︒⨯459021,EA =ED ,∴∠EAD =∠EDA =45º,∴∠OAD =∠OED =∠AOD =90º,∴四边形AODE 是正方形.………………………………………………(1 分)∴OA =DE ,∴OF=21AO ,∴AF ==AO 21DE 21.………………………(1 分) (2)解:AF+BF=EF 、AF 2+EF 2=2BF 2等(只要其中一个,BF =)31(+AF 、EF =)32(+AF 、BF =()13-EF 也认为正确).…………………………(1 分)AF+BF=EF 的证明方法一:联结BD 交AC 于O ,在FE 上截取FG =BF ,联结DG .与第(1)同理可证∠GDA =45º,……………………………………………(1 分) ∵四边形ABCD 是正方形,△ADE 是等边三角形,∴∠GDE =60º–45º=15º.∵AB=AD=AE ,∠BAE =∠BAC +∠DAE =90º+60º=150º,∴∠ABE =∠AEB =︒=︒-︒152150180,∴∠ABF =∠GDE . 又∵∠DEG =∠DEA –∠AEB =60º–15º=45º=∠BAC ,DE=AD=AB ,(第26题) C B C∴△ABF ≌△EDG ,……………………………………………………………(1 分) ∴EG =AF ,∴AF+BF=EG+FG=EF .……………………………………………(1 分)AF+BF=EF 的证明方法二(简略):在FE 上截取FG =AF ,联结AG .证得△AFG 为等边三角形.………………(1 分) 证得△ABF ≌△AEG .……………………………………………………………(1 分) 证得AF+BF=EF .………………………………………………………………(1 分)AF 2+EF 2=2BF 2的证明方法(简略):作BG ⊥BF ,且使BG =BF ,联结CG 、FG ,证得△BGC ≌△BF A .…………(1 分) 证得FC =FE ,FG =BE 2,……………………………………………………(1 分) 利用Rt △FCG 中,得出AF 2+EF 2=2BF 2.……………………………………(1 分)27.(本题满分10分,第(1)小题3分,第(2)小题3分, 第(3)小题4分)如图,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OC=AB=4,BC=6,∠COA=45°,动点P 从点O 出发,在梯形OABC 的边上运动,路径为O →A →B →C ,到达点C 时停止.作直线CP.(1)求梯形OABC 的面积;(2)当直线CP 把梯形OABC 的面积分成相等的两部分时,求直线CP 的解析式;(3)当∆OCP 是等腰三角形时,请写出点P 的坐标(不要求过程,只需写出结果)27.如图已知一次函数y =-x +7与正比例函数y =x 34的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O ﹣C ﹣A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒)0( t .①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是QA=QP 的等腰三角形?若存在,求t 的值;若不存在,请说明理由.解:(1)∵一次函数y =-x +7与正比例函数x y 34=的图象交于点A ,且与x 轴交于点B . ∴y =-x +7,0=x +7,∴x =7,∴B 点坐标为:(7,0),----------------------------1分∵y =-x +7=x 34,解得x =3,∴y =4,∴A 点坐标为:(3,4);-------------------1分(2)①当0<t <4时,PO =t ,PC =4-t ,BR =t ,OR =7-t ,--------------1分过点A 作AM ⊥x 轴于点M∵当以A 、P 、R 为顶点的三角形的面积为8,∴S 梯形ACOB -S △ACP -S △POR -S △ARB =8, ∴21(AC +BO )×CO -21AC ×CP -21PO ×RO -21AM ×BR =8,∴(AC +BO )×CO -AC ×CP -PO ×RO -AM ×BR =16,∴(3+7)×4-3×(4-t )-t ×(7-t )-4t =16,∴t 2-8t +12=0. -----------------1分解得t 1=2,t 2=6(舍去).--------------------------------------------------------------------1分 当4≤t ≤7时,S △APR =21AP ×OC =2(7-t )=8,t=3(舍去);--------------1分 ∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8;②存在.当0<t ≤4时,直线l 与AB 相交于Q ,∵一次函数y =-x +7与x 轴交于B (7,0)点,与y 轴交于N (0,7)点,∴NO =OB ,∴∠OBN =∠ONB =45°.∵直线l ∥y 轴,∴RQ =RB=t ,AM=BM=4∴QB=t 2,AQ=t 224-----------------1分∵RB =OP =QR =t ,∴PQ//OR,PQ=OR=7-t --------------------------------------1分 ∵以A 、P 、Q 为顶点的三角形是等腰三角形,且QP =QA ,∴7-t=t 224-,t=1-32(舍去)--------------------------------------------1分当4<t ≤7时,直线l 与O A 相交于Q ,若QP =QA ,则t -4+2(t -4)=3,解得t =5;---------------------------------------1分∴当t =5,存在以A 、P 、Q 为顶点的三角形是PQ =AQ 的等腰三角形.已知边长为1的正方形ABCD 中, P 是对角线AC 上的一个动点(与点A 、C 不重合), 过点P 作 PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F .(1)当点E 落在线段CD 上时(如图10),① 求证:PB=PE ;② 在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值, 若变化,试说明理由;(2)当点E 落在线段DC 的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能,试求出AP 的长,如果不能,试说明理由.27.(1)① 证:过P 作MN ⊥AB ,交AB 于点M ,交CD 于点N ∵正方形ABCD ,∴ PM=AM ,MN=AB ,从而 MB=PN ………………………………(2分)∴ △PMB ≌△PNE ,从而 PB=PE …………(2分)② 解:PF 的长度不会发生变化,设O 为AC 中点,联结PO ,∵正方形ABCD , ∴ BO ⊥AC ,…………(1分)从而∠PBO =∠EPF ,……………………(1分)∴ △POB ≌△PEF , 从而 PF=BO 22= …………(2分)(2)图略,上述(1)中的结论仍然成立;…………(1分)(1分)(3)当点E 落在线段CD 上时,∠PEC 是钝角,从而要使⊿PEC 为等腰三角形,只能EP=EC ,…………(1分)这时,PF=FC ,∴ 2==AC PC ,点P 与点A 重合,与已知不符。