自动控制系统仿真教案
- 格式:doc
- 大小:158.00 KB
- 文档页数:20
实验一、控制系统典型环节的模拟
教学目标:
1、掌握传递函数的涵义;熟悉常见环节传递函数及单位阶跃响应特性。
2、验证常见环节的单位阶跃响应特性。
教学重点:
1、分析实验结果。
教学难点:
1、正确接线
2、示波器的调试。
教具、教学素材准备:
1、 实验仪器。
2、 教案
教学方法:
采用传统的教学方法与实验演示相结合的方法。
教学时数:
2学时
教学过程:(教师授课思路、设问及讲解要点)
一、典型环节的介绍。
1.比例环节
微分方程: C(t) = Kr(t)
其中:K ——比例环节系数
拉氏变换:C(s)=KR(s)
比例环节的传递函数:
C (s )
G(s) K
R (s ) 比例环节的方框图如下:
特点:输出不失真,不延迟,成比例地复现输入信号的变化。
比例环节实例:
K R(s) C(s)
(a ) 由运算放大器构成的比例环节 R
R 1
2. 惯性环节
惯性环节的微分方程:
dc (t )
T c (t ) K r (t )
d (t )
K
——比例系数其中:
T ——时间常数
拉氏变换: TsC(s) C(s) K R (s ) 惯性环节的传递函数:
C (s ) K G(s) R (s ) Ts
1
惯性环节方框图
单位阶跃信号作用下的响应: 1
R(s)
s
K 1
C (s )
11 Ts 2 K。
一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉自动控制系统的实验方法和步骤;3. 掌握自动控制系统的分析和设计方法;4. 培养实验操作能力和团队协作精神。
二、实验原理1. 自动控制系统的基本原理:根据输入信号和系统状态,通过控制器对系统进行调节,使系统输出满足期望值。
2. 自动控制系统的组成:控制器、被控对象、反馈环节、输入输出环节等。
3. 自动控制系统的分类:线性控制系统、非线性控制系统、离散控制系统、连续控制系统等。
4. 自动控制系统的性能指标:稳态性能、动态性能、鲁棒性能等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:模拟控制器、数字控制器;3. 被控对象:电机、Servo 电机、液体阻尼器等;4. 传感器:位置传感器、速度传感器、压力传感器等;5. 信号发生器:正弦信号发生器、方波信号发生器;6. 示波器、数字万用表、频率分析仪等实验仪器。
四、实验内容与步骤1. 实验一:模拟控制系统基本原理验证(1)搭建模拟控制系统实验台;(2)给定输入信号,观察系统输出;(3)调整控制器参数,观察系统性能变化。
2. 实验二:数字控制系统基本原理验证(1)搭建数字控制系统实验台;(2)给定输入信号,观察系统输出;(3)调整控制器参数,观察系统性能变化。
3. 实验三:PID 控制器参数调整与优化(1)搭建PID 控制器实验台;(2)给定输入信号,观察系统输出;(3)调整PID 控制器参数,使系统性能达到最佳。
4. 实验四:自动控制系统鲁棒性分析(1)搭建鲁棒性分析实验台;(2)给定输入信号,观察系统输出;(3)改变系统参数,观察系统性能变化。
5. 实验五:自动控制系统建模与仿真(1)利用数学软件建立系统模型;(2)进行系统仿真,观察系统性能;(3)对比实验结果,分析建模与仿真的准确性。
五、实验要求与评价1. 实验要求:(1)按时完成实验任务;(2)认真观察实验现象,记录实验数据;2. 实验评价:(1)实验操作规范性;(2)实验数据准确性;(3)实验报告完整性;(4)实验分析深入程度。
实验教案课程名称:电力拖动自动控制系统授课教师:苗风东授课对象:07电气自动化授课地点:实验3号414实验一晶闸管直流调速系统参数的测定实验一、实验目的(1)熟悉晶闸管直流调速系统的组成及其基本结构。
(2)掌握晶闸管直流调速系统参数及反馈环节测定方法。
二、实验所需挂件及附件三、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理图如图1-1所示。
四、实验内容(1)测定晶闸管直流调速系统主电路总电阻值R。
(2)测定晶闸管直流调速系统主电路电感值L。
(3)测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD2。
五、预习要求学习教材中有关晶闸管直流调速系统各参数的测定方法。
图1-1 实验系统原理图六、实验方法为研究晶闸管-电动机系统,须首先了解电枢回路的总电阻R、总电感L以及系统的电磁时间常数T d与机电时间常数T M,这些参数均需通过实验手段来测定,具体方法如下:(1)电枢回路总电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a、平波电抗器的直流电阻R L及整流装置的内阻R n,即R = R a十R L十R n (1-1) 由于阻值较小,不宜用欧姆表或电桥测量,因是小电流检测,接触电阻影响很大,故常用直流伏安法。
为测出晶闸管整流装置的电源内阻须测量整流装置的理想空载电压Ud0,而晶闸管整流电源是无法测量的,为此应用伏安比较法,实验线路如图4-2所示。
将变阻器R1、R2接入被测系统的主电路,测试时电动机不加励磁,并使电机堵转。
合上S1、S2,调节给定使输出直流电压U d在30%U ed~70%U ed范围内,然后调整R2使电枢电流在80%I ed~90%I ed范围内,读取电流表A和电压表V2的数值为I1、U1,则此时整流装置的理想空载电压为U do=I1R+U1(1-2)调节R1使之与R2的电阻值相近,拉开开关S2,在U d的条件下读取电流表、电压表的数值I2、U2,则U do=I2R十U2 (1-3)求解(4-2)、(4-3)两式,可得电枢回路总电阻:R=(U2-U1)/(I1-I2) (1-4)如把电机电枢两端短接,重复上述实验,可得R L十R n=(U2'-U1')/(I1'-I2') (1-5)则电机的电枢电阻为R a=R-(R L十R n)。
自动控制系统的概述教案一、引言自动控制系统是现代工业、交通、航空和生活中广泛应用的关键技术之一。
它可以通过对各种控制器的组合和协调,实现对各种系统的自动化操作和监控。
本教案旨在介绍自动控制系统的基本概念、原理和应用,帮助学生全面理解自动控制系统的工作原理和应用领域。
二、教学目标1. 了解自动控制系统的基本概念和组成部分;2. 掌握自动控制系统的工作原理;3. 理解自动控制系统在不同领域的应用。
三、教学内容1. 自动控制系统的定义和基本概念;2. 自动控制系统的组成部分:传感器、执行器、控制器和反馈环路;3. 自动控制系统的工作原理:开环控制和闭环控制;4. 自动控制系统在工业、交通、航空和生活中的应用案例。
四、教学步骤1. 引入自动控制系统的概念,让学生了解自动控制系统的重要性和广泛应用;2. 介绍自动控制系统的基本概念,包括定义和组成部分;3. 解释自动控制系统的工作原理,通过开环控制和闭环控制的比较,让学生理解两种控制方式的区别和应用场景;4. 展示自动控制系统在工业、交通、航空和生活中的实际应用案例,增强学生对自动控制系统的理解和兴趣;5. 进行课堂练和讨论,帮助学生巩固所学知识;6. 总结本堂课的重点内容,并布置相关作业。
五、教学资源1. PPT 讲义:包括自动控制系统的基本概念、组成部分、工作原理和应用案例;2. 教学视频:展示自动控制系统的实际应用场景;3. 相关课程资料:提供给学生进一步阅读和研究的材料。
六、评估方法1. 课堂小测:检验学生对自动控制系统的基本概念和工作原理的理解程度;2. 作业:要求学生分析一个自动控制系统的实际应用案例,并撰写一份相关报告。
七、延伸拓展1. 了解更多自动控制系统的应用领域和发展趋势;2. 探索自动控制系统在智能化、网络化和可持续发展方面的创新应用。
八、参考资料1. 王明. 自动控制原理. 人民邮电出版社, 2018.2. 刘刚, 王艳. 基于自动控制系统的发展趋势与预测研究. 自动化技术与应用, 2019(1).。
自动控制原理教案一、教案概述本教案旨在介绍自动控制原理的基本概念、原理和应用。
通过本教案的学习,学生将能够理解自动控制的基本原理,掌握自动控制系统的设计和分析方法,并能够应用所学知识解决实际问题。
二、教学目标1. 理解自动控制原理的基本概念和术语;2. 掌握自动控制系统的基本原理和组成部分;3. 熟悉自动控制系统的数学模型和传递函数表示方法;4. 能够应用PID控制器进行系统设计和调节;5. 能够利用MATLAB等工具进行自动控制系统的仿真和分析。
三、教学内容和进度安排本教案按照以下内容进行教学,共分为10个单元。
单元一:自动控制原理概述- 自动控制的定义和分类- 自动控制系统的基本组成部分单元二:数学模型与传递函数- 控制系统的数学建模方法- 传递函数的定义和性质单元三:时域分析方法- 系统的单位脉冲响应和单位阶跃响应- 系统的稳态误差和稳定性分析单元四:频域分析方法- 系统的频率响应和频率特性- Bode图和Nyquist图的绘制和分析单元五:闭环控制系统- 闭环控制系统的基本概念和特性- 闭环控制系统的稳定性分析单元六:PID控制器- PID控制器的原理和调节方法- Ziegler-Nichols调参法和Chien-Hrones-Reswick调参法单元七:校正与补偿- 系统的校正和补偿方法- 前馈控制和后馈控制的比较单元八:系统的稳定性分析- 系统的稳定性判据和稳定裕度- 极点配置法和根轨迹法的应用单元九:多变量控制系统- 多变量控制系统的基本概念和结构- 多变量控制系统的设计方法单元十:自动控制系统的仿真与实验- 利用MATLAB进行自动控制系统的仿真- 实际系统的控制实验设计和实施四、教学方法和手段1. 理论讲授:通过讲解和示意图的展示,向学生介绍自动控制原理的基本概念和原理。
2. 实例分析:通过具体的案例分析,帮助学生理解自动控制原理的应用和实际意义。
3. 计算机仿真:利用MATLAB等工具进行自动控制系统的仿真,加深学生对理论知识的理解和应用能力。
《自动控制原理》电子教案自动控制原理是一门应用于工程系统中的基础课程,主要教授控制系统的基本原理、方法和技术。
本教案分为导入、教学过程、课堂活动、作业布置和教学总结五个部分。
一、导入控制系统是现代工程中不可或缺的部分,它在各个领域中都有着广泛的应用,如机械、电子、航空航天、化工等。
本课程将重点介绍控制系统的基本原理和常用的控制方法,通过理论与实践相结合的方式,让学生对自动控制有一个全面的了解。
二、教学过程1.引入控制系统的概念和意义-通过举例说明控制系统在日常生活中的应用,如电梯、温度调节器等。
-引导学生思考控制系统的目的是什么,如稳定性、精确度、鲁棒性等。
2.基本概念和术语-介绍控制系统的基本构成要素,如输入、输出、传感器、执行器等。
-解释控制系统的基本术语,如开环控制、闭环控制、反馈、控制器等。
3.数学模型建立与分析-介绍控制系统的数学建模方法,如微分方程、状态空间等。
-通过实例演示如何建立系统的数学模型,如电机控制系统、液位控制系统等。
-分析系统的稳定性和动态响应,引入根轨迹和频率响应的概念。
4.控制方法与技术-介绍常见的控制方法,如比例、积分、微分控制器,PID控制器等。
-讲解先进的控制技术,如自适应控制、鲁棒控制、优化控制等。
-针对不同的控制任务,介绍相应的控制算法和调参方法。
5.实验与仿真-安排实验课程,让学生通过实际操作来深入理解控制系统的原理和方法。
-使用仿真软件进行虚拟实验,提供学生自主学习和实践的机会。
三、课堂活动1.小组讨论:请学生分小组讨论不同控制系统的应用,并分享自己的观点和想法。
2.解答问题:教师提供一些与课程内容相关的问题,鼓励学生积极参与回答,加深对知识的理解。
3.实例分析:教师提供一些典型的控制系统实例,让学生逐步分析其数学模型和控制方法。
四、作业布置1.阅读相关文献资料,进一步了解控制系统的发展和应用。
2.完成课后习题,加强对知识的巩固。
3.准备下一堂课的报告,选择一个感兴趣的控制系统进行介绍。
自动控制系统仿真实验指导书王巧玲管萍编2004年9月实验要求:要求课前有预习报告,给出程序语句和结果预测,无预习报告不准进实验室!课后要求按时完成实验报告,实验报告的评分将作为平时成绩的一部分。
实验一 控制系统仿真中的MATLAB 语言熟悉1 用MATLAB 语言求下列系统的状态方程、传递函数、零极点增益和部分分式形式的模型参数,并分别写出其相应的数学模型表达式:(1)2450351024247)(23423+++++++=s s s s s s s s G (2)u X X ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------=022475.025.075.125.1125.15.025.025.025.125.425.25.025.1525.2 []X y 2020=2 已知单位反馈系统的开环传递函数如下)35.164,3)(6.4(1005)(2++++=s s s s s s G 用MATLAB 语句函数求取系统闭环零极点,并求取系统闭环状态方程的可控标准型实现。
3 用MATLAB 画出函数22y x z +=的三维图形,其中[]11-∈x ,[]11-∈y 。
4 采用循环控制命令程序,计算1~60之和。
5 首先生成一个周期余弦波的7个数据点,然后对这些点进行插值并绘制插值结果。
6 用ode45()语句解微分方程0)1(222=+--x dt dx x u dtx d 要求可修改参数u 。
实验二 RK4仿真实验1. x’=-x+t , u=t ,h=0.1,t=[0,10],在MATLAB 语言环境下构造.m 文件,编写RK4算法程序进行求解,绘图显示运算结果。
2. 对x’=-x+t ,x(0)=1,t=[0,10],h=0.1,调用ode45函数进行求解,绘图显示运行结果;并与上题的仿真结果进行对照;适当改变步长h ,观察仿真效果并进行分析。
3. 在Simulink 中调用状态空间模块对上题进行仿真,采用示波器模块进行输出显示,同时将结果输出到workspace 中进行查看;改变仿真参数和仿真方法,比较运行结果。
《自动控制原理》武汉工程大学电气信息学院2012年11月25日《自动控制原理》实验说明一、实验条件要求硬件:个人计算机;软件:MATLAB仿真软件(版本6.5或以上)。
带上课用教材和纸笔二、实验内容实验1 认识MATLAB实验2 基于MATLAB的控制系统建模实验3 基于MATLAB的控制系统时域及稳定性分析实验4 基于MATLAB的控制系统频域及根轨迹分析三、实验报告要求说明认真阅读教材,深刻理解和掌握自动控制原理的基本概念和原理,掌握利用MATLAB对控制系统进行仿真分析和设计。
针对每个命令,查看帮助文件,加强练习,认真完成实验报告。
实验1 认识MATLAB一、实验目的1.了解MA TLAB的发展过程及MATLAB在自动控制中的用途。
2.掌握MA TLAB的基本指令。
二、实验要求实验前复习教材中的相关内容,做好实验预习报告。
三、实验内容及步骤1.MA TLAB的基本操作(1) MATLAB命令窗口计算机安装好MATLAB之后,双击MA TLAB图标,即进入命令窗口,此时意味着系统处于准备接受命令的状态,可以在命令窗口中直接输入命令语句。
MATLAB语句形式为:》变量= 表达式但键入回车时,该语句被执行。
该语句执行之后,窗口自动显示出执行语句的结果。
如果不希望结果显示在命令窗口,只需要在该语句之后加一个分号“;”即可。
此时尽管没有显示结果,但它依然被赋值并在MATLAB的工作空间中分配了内存。
注意:a.用方向键和控制键可以编辑修改已输入的命令。
b.用命令窗口的分页输出“more off”表示不允许分页;“more on”表示允许分页;“more(n)”指定每页输出的页数。
c.多行命令为“…”。
(2)变量变量的名字必须以字母开头,之后可以是任意字母、数字或下划线;变量名称区分字母的大小写;变量中不能包含标点符号。
MATLAB规定了一些特殊的变量,如果没有特别定义,将其表示为默认值。
(3)数值显示格式任何MATLAB语句执行的结果都可以显示在屏幕上,同时赋值给指定的变量;没有指定变量时,赋值给一个特殊的变量“ans”。
自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 掌握自动控制系统的分析和设计方法;3. 熟悉自动控制系统的实验操作和调试技巧;4. 培养学生动手能力和团队协作精神。
二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、控制目标等;2. 自动控制系统的分类:线性系统、非线性系统、时间不变系统、时变系统等;3. 自动控制系统的数学模型:差分方程、微分方程、传递函数、状态空间表示等;4. 自动控制器的设计方法:PID控制、模糊控制、自适应控制等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:可编程逻辑控制器(PLC)、微控制器(MCU)等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、伺服阀等;5. 信号发生器:函数发生器、任意波形发生器等;6. 示波器、频率分析仪等测试仪器。
四、实验内容与步骤1. 实验一:自动控制系统的基本原理与组成(1)了解自动控制系统实验台的基本结构;(2)学习自动控制系统的原理和组成;(3)分析实验台上的控制系统。
2. 实验二:线性系统的时域分析(1)根据实验要求,搭建线性系统实验电路;(2)利用信号发生器和示波器进行实验数据的采集;(3)分析实验数据,得出系统特性。
3. 实验三:线性系统的频域分析(1)搭建线性系统实验电路,并连接频率分析仪;(2)进行频域实验,采集频率响应数据;(3)分析频率响应数据,得出系统特性。
4. 实验四:PID控制器的设计与调试(1)学习PID控制原理;(2)根据系统特性,设计PID控制器参数;(3)搭建PID控制实验电路,并进行调试。
5. 实验五:模糊控制器的设计与调试(1)学习模糊控制原理;(2)根据系统特性,设计模糊控制器参数;(3)搭建模糊控制实验电路,并进行调试。
五、实验要求与评价2. 实验操作:熟悉实验设备的操作,正确进行实验;3. 数据处理:能够正确采集、处理实验数据;4. 分析与总结:对实验结果进行分析,得出合理结论;5. 课堂讨论:积极参与课堂讨论,分享实验心得。
控制系统仿真教学大纲控制系统仿真教学大纲控制系统仿真是现代工程领域中一项重要的技术手段,它通过构建数学模型和仿真环境,对实际控制系统进行模拟和分析。
作为一门综合性学科,控制系统仿真在工业自动化、航空航天、能源等领域都有广泛的应用。
为了培养学生的控制系统仿真能力,制定一份科学合理的教学大纲是非常必要的。
一、课程简介本课程主要介绍控制系统仿真的基本概念、原理和方法。
通过理论讲解和实践操作,使学生能够掌握仿真软件的使用技巧,了解仿真模型的建立过程,掌握仿真结果的分析与评估方法,培养学生的问题分析和解决能力。
二、教学目标1. 掌握控制系统仿真的基本概念和原理;2. 熟练使用常见的仿真软件,如MATLAB/Simulink;3. 能够建立控制系统的数学模型,并进行仿真实验;4. 能够分析仿真结果,评估系统性能,并提出改进方案;5. 培养学生的团队合作和创新思维能力。
三、教学内容1. 控制系统仿真概述a. 控制系统仿真的定义和意义b. 控制系统仿真的基本流程和方法c. 常见的仿真软件及其特点介绍2. 数学建模与仿真环境a. 控制系统的数学建模方法b. 仿真环境的选择与搭建c. 仿真模型的参数设置和输入输出分析3. 控制系统仿真实验a. PID控制器的仿真实验b. 系统辨识与模型预测控制的仿真实验c. 状态空间控制的仿真实验4. 仿真结果分析与评估a. 仿真结果的可视化分析方法b. 性能指标的计算与评估c. 仿真结果与实际系统的对比分析5. 仿真实验设计与报告撰写a. 仿真实验设计的基本原则和方法b. 仿真实验报告的撰写要点和格式规范四、教学方法1. 理论讲解:通过课堂讲解,让学生了解控制系统仿真的基本概念和原理。
2. 实验操作:通过实验操作,让学生亲自动手建立仿真模型,进行仿真实验。
3. 课堂讨论:通过课堂讨论,让学生分享仿真结果,互相学习和交流。
4. 课程设计:通过课程设计,让学生能够独立设计控制系统的仿真实验。
自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉常见自动控制器的结构和功能;3. 掌握自动控制系统的设计和调试方法;4. 培养动手能力和实验技能。
二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、闭环、开环等;2. 自动控制器的分类:比例控制器、积分控制器、微分控制器、PID控制器等;3. 自动控制系统的设计方法:频率域设计、时域设计、状态空间设计等;4. 自动控制系统的稳定性分析:闭环系统、开环系统、李雅普诺夫稳定性定理等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:比例控制器、积分控制器、微分控制器、PID控制器等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、调节阀等;5. 仪器仪表:示波器、信号发生器、万用表等。
四、实验内容与步骤1. 实验一:比例控制器实验a. 了解比例控制器的工作原理;b. 搭建比例控制器实验电路;c. 调试比例控制器,观察控制效果;2. 实验二:积分控制器实验a. 了解积分控制器的工作原理;b. 搭建积分控制器实验电路;c. 调试积分控制器,观察控制效果;3. 实验三:微分控制器实验a. 了解微分控制器的工作原理;b. 搭建微分控制器实验电路;c. 调试微分控制器,观察控制效果;4. 实验四:PID控制器实验a. 了解PID控制器的工作原理;b. 搭建PID控制器实验电路;c. 调试PID控制器,观察控制效果;5. 实验五:自动控制系统稳定性分析a. 了解闭环系统稳定性分析方法;b. 搭建实验电路,进行稳定性分析;c. 改变系统参数,观察稳定性变化;五、实验要求与评价1. 实验要求:a. 按时完成实验任务;b. 正确操作实验设备,注意安全;c. 认真观察实验现象,记录实验数据;2. 实验评价:a. 实验操作的正确性;b. 实验数据的准确性;c. 实验分析的深入程度;六、实验六:模拟工业过程控制1. 目的:学习工业过程控制的基本原理。
自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉常见自动控制器的结构和功能;3. 掌握自动控制系统的设计方法和调试技巧;4. 培养动手能力和团队协作精神。
二、实验原理1. 自动控制系统的基本原理:根据给定的目标和条件,自动调节系统的输入和输出,使输出量达到期望值。
2. 自动控制系统的组成:控制器、被控对象、传感器、执行器等。
3. 常见自动控制器:PID控制器、模糊控制器、自适应控制器等。
4. 自动控制系统的设计方法:系统建模、系统分析、控制器设计、系统仿真等。
三、实验设备与材料1. 实验台:自动控制系统实验台;2. 控制器:PID控制器、模糊控制器等;3. 被控对象:电机、温度控制器等;4. 传感器:温度传感器、速度传感器等;5. 执行器:电机、电磁阀等;6. 实验软件:MATLAB/Simulink。
四、实验内容与步骤1. 实验一:PID控制器原理及应用(1)了解PID控制器的结构和工作原理;(2)通过实验台调试PID控制器,使被控对象达到期望输出;(3)分析PID控制器参数对系统性能的影响。
2. 实验二:模糊控制器原理及应用(1)了解模糊控制器的结构和工作原理;(2)通过实验台调试模糊控制器,使被控对象达到期望输出;(3)分析模糊控制器参数对系统性能的影响。
3. 实验三:自适应控制器原理及应用(1)了解自适应控制器的结构和工作原理;(2)通过实验台调试自适应控制器,使被控对象达到期望输出;(3)分析自适应控制器参数对系统性能的影响。
4. 实验四:自动控制系统设计及仿真(1)根据实际应用场景,选择合适的自动控制器;(2)利用MATLAB/Simulink进行系统建模和仿真;(3)调试系统,使输出量达到期望值。
5. 实验五:自动控制系统调试与优化(1)针对已设计的自动控制系统,进行实际运行调试;(2)分析系统运行过程中的问题和不足;(3)优化控制器参数,提高系统性能。
《自动控制系统》教学设计
(二)说一说:常见的自动控制系统
随着科学技术的发展,控制技术也得到了迅速发展,出现了自动控制。
自动控制系统在无人参与的情况下能自动实现目标。
1.水箱水位自动控制系统
2.全自动干手机
3.通过设定空调温度实现降温
4.汽车中的定速巡航
(三)想一想:计算机在自动控制系统中的作用各种不同的系统,都有一些共同的特点由两个或者两个以上部分组成;
1.由两个或者两个以上部分组成;
2.不同部分之间有关联;
3.能够提供特定的功能
你生活中接触到的系统有哪些?
(四)想一想:智慧农场还可以利用计算机实现什么控制?。
自动控制原理的仿真实验教学设计自动控制原理是现代工程技术中的重要学科之一,其应用广泛,涉及到许多领域,如工业控制、机械控制、电力系统控制等。
为了使学生更好地掌握自动控制原理,教学应该注重实践和应用,而仿真实验是一种非常有效的教学手段。
本文将介绍一种基于仿真实验的自动控制原理教学设计。
一、教学目标本教学设计的目标是让学生掌握以下内容:1.自动控制原理的基本概念和理论知识。
2.使用Simulink进行仿真实验,掌握仿真实验的基本操作和方法。
3.设计和实现常见控制系统的仿真实验,如比例控制、积分控制、微分控制等。
4.理解控制系统的动态特性,如稳态误差、超调量、调节时间等。
二、教学内容1.自动控制原理的基本概念和理论知识自动控制原理是研究自动控制系统的基本原理和方法的学科。
它主要研究控制系统的结构、动态特性和控制方法等方面的问题。
自动控制系统是由传感器、执行器、控制器和处理器等组成的,它可以自动地调节系统的输出,使其达到预定的目标。
2.使用Simulink进行仿真实验Simulink是MATLAB的一个工具箱,它可以用来建立和仿真动态系统。
在本教学设计中,我们将使用Simulink进行仿真实验。
学生需要掌握Simulink的基本操作和方法,包括建立模型、设置参数、运行仿真等。
3.设计和实现常见控制系统的仿真实验在本教学设计中,我们将设计和实现常见的控制系统仿真实验,如比例控制、积分控制、微分控制等。
学生需要了解这些控制方法的基本原理和实现方法,以及它们对控制系统的影响。
4.理解控制系统的动态特性控制系统的动态特性是指控制系统在响应外部信号时的特性。
它包括稳态误差、超调量、调节时间等。
学生需要理解这些动态特性的概念和意义,以及如何通过调整控制器的参数来改善控制系统的动态特性。
三、教学方法本教学设计采用“理论教学+仿真实验”的教学方法。
在理论教学中,教师将介绍自动控制原理的基本概念和理论知识,以及控制系统的动态特性。
《红绿灯自动控制系统的实现》教学案例张向红朱桂荣开源硬件项目设计是新课标中选择性必修模块6中的内容,Arduino开源硬件设计是高中信息技术的校本课程。
“用Arduino实现红绿灯系统”需要三节课完成,第一节内容为:认识Arduino的接口,认识Arduino 的编程软件界面,学会把程序编译并上传到Arduino 上,利用Arduino的5V输出口、接地口、电阻、发光二极管、面包板完成一个使发光二极管亮的硬件连接。
第二节内容为:完成红绿灯系统的硬件连接并用软件实现红绿灯系统的自动控制。
第三节内容为:完善、优化红绿灯系统和学生展示红绿灯系统。
本节课为第二节课。
本次课的授课对象是高一年级的学生,通过第一节课的学习,学生已经对Arduino的接口有一定的认识,已经可以利用Arduino的5V 输出口和接地口完成一个使灯亮的硬件连接;对Arduino的编程软件界面有了一定的认识,且知道编译程序并把程序上传到Arduino上;知道现实生活中十字路口的红绿灯是如何工作的。
导入新课,呈现任务情境导入师:过十字路口时我们都需要遵循红绿灯,通过上节课的学习我们已经知道红绿灯系统是怎么工作的了,这节课我们就来搭建一个红绿灯系统。
呈现任务师:红绿灯系统就是对红灯、绿灯、黄灯进行自动控制,我们首先完成对一个灯进行自动控制,以绿灯为例,这里我们使用绿色发光二极管代替(由此引出第一个任务:用程序控制绿灯的亮和灭)。
设计意图:十字路口的红绿灯系统是学生比较熟悉的,每个学生都知道红绿灯是如何工作的,通过解决生活中常见的实际问题,激发学生的学习兴趣,培养学生的问题解决意识。
完成任务,探究新知任务一:用程序控制绿灯的亮和灭师:第一节课我们已经学过利用Arduino的5V输出口和接地口搭建一个使绿灯亮、使发光二极管亮的硬件连接,在这个电路中为什么绿灯是一直亮的?生:因为Ardui no的5V输出口一直输出5 V电压,所以绿灯一直亮着。
自动控制系统实验教案一、实验目的与要求1. 实验目的(1)理解自动控制系统的原理和基本组成;(2)掌握自动控制系统的分析和设计方法;(3)熟悉自动控制系统的实验操作和调试技巧。
2. 实验要求(1)了解并掌握实验设备的使用方法;(2)能够正确进行实验数据的采集和处理;二、实验原理与内容1. 实验原理(1)反馈控制系统的基本原理;(2)PID控制算法;(3)模拟自动控制系统的实验方法。
2. 实验内容(1)实验设备的连接与调试;(2)系统的静态特性和动态特性测试;(3)PID控制器参数的整定与优化;(4)实验数据的处理与分析。
三、实验步骤与方法1. 实验步骤(1)设备准备:确保实验设备正常工作,连接好相关电路;(2)系统调试:调整系统参数,使系统处于稳定状态;(3)数据采集:采集系统的静态特性和动态特性数据;(4)参数整定:根据实验数据,调整PID控制器参数;2. 实验方法(1)模拟实验:使用模拟实验软件进行自动控制系统的仿真;(2)实际操作:在实验装置上进行实际操作,验证理论分析;(3)数据分析:运用数学软件对实验数据进行处理和分析。
四、实验注意事项1. 确保实验设备安全可靠,遵守实验规程;2. 操作过程中要注意保护仪器设备,防止损坏;3. 实验数据要真实可靠,不得篡改数据;4. 实验报告要详细记录实验过程和结果,阐述实验现象;5. 尊重实验指导教师,积极参与实验讨论。
五、实验报告要求4. 报告提交:实验结束后一周内提交。
六、实验评价与考核1. 实验评价标准(1)实验操作的正确性和规范性;(2)实验数据的准确性和可靠性;(3)实验分析的深度和逻辑性;(4)实验报告的完整性和规范性。
2. 考核方式(1)实验过程的表现;(2)实验报告的质量;(3)实验数据的合理性;七、实验常见问题与解答1. 问题一:系统不稳定,出现振荡怎么办?答:检查PID控制器参数是否合适,增加阻尼比或调整比例、积分、微分参数。
2. 问题二:实验数据采集过程中出现误差如何处理?答:提高测量精度,使用高精度的测量仪器;对数据进行处理,如滤波、平均等。
《自动控制系统仿真》教案
教案
2015 -2016 学年第 2 学期
课程名称:自动控制系统仿真
课程编号: 074100264 学院、专业、年级:自动141、142
任课教师:梁芬
教师所在单位:电气工程系
中原工学院信息商务学院
课程简介
本课程通过讲授控制系统仿真的基本原理、方法和特点,以及仿真软件MATLAB(含Simulink)的典型仿真程序,使学生了解控制系统仿真技术的基本原理,掌握将控制系统理论、计算方法与计算机技术相结合的知识和技能,具备运用控制系统仿真技术对控制系统进行分析、辅助设计与仿真的能力。
本课程授课对象主要为自动化专业的本科生,学生通过学习为日后从事相关领域的工程技术工作、科学研究以及开拓新技术领域,打下坚实的基础。
教案(首页)
教案(分教案)
教案(分教案)
教案(分教案)。
《控制系统仿真技术》教案编者:赵磊机电与信息工程学院黄山学院控制系统仿真技术课程教案黄山学院_自动控制原理课程教案纸主要教学过程时间分配教学过程:第一讲 MATLAB基础1.1目的和意义1.2 MATLAB操作界面1)命令窗口(Command Window)MATLAB的所有函数和命令都可以在命令窗口中执行。
MATLAB命令窗口中的“>>”为命令提示符,表示MATLAB正在处于准备状态。
在命令提示符后键入命令(或语句)并按下回车键后,MATLAB就会解释执行所输入的命令,并在命令后面给出计算结果。
指令,然后按回车键,会出现什么结果?例:命令窗口输入cos(/3)2)历史命令窗口(Command History)默认设置下历史命令窗口会保留自安装时起所有命令的历史记录,并标明使用时间,以方便使用者的查询。
3) 当前目录窗口(Current Directory)在当前目录窗口中可显示或改变当前目录,还可以显示当前目录下的文件,包括文件名、文件类型、最后修改时间以及该文件的说明信息等并提供搜索功能。
4) 工作空间窗口(Workspace)工作空间在MATLAB运行期间一直存在,关闭MATLAB后自动消失,当运行MATLAB 程序时,程序中的变量将被加载到工作空间中。
在一个程序中的运算结果以变量的形式保存在工作空间后,在MATLAB关闭之前该变量还可以被别的程序调用。
在工作空间窗口中将显示所有目前保存在内存中的MATLAB变量的变量名、数据结构、字节数以及类型,而不同的变量类型分别对应不同的变量名图标。
用户可用命令对工作空间中的变量进行显示、删除或保存等操作。
【注意】:内存变量的查阅和删除命令who %查看工作空间中变量的名字whos %查看工作空间中变量的详细信息clear %删除工作空间中的所有变量clear a b %删除变量a,bsize(a) %变量的大小length(a) %求取变量的长度,返回最大维数例:运行下面MATLAB命令,并查看内存变量。
控制系统仿真技术实验指导书
实验课程
专业班级
学生姓名
学生学号
指导教师
年月日
实验报告须知
实验的最后一个环节是实验总结与报告,即对实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。
每次实验,都要独立完成实验报告。
撰写实验报告应持严肃认真、实事求是的科学态度。
实验结果与理论有较大出入时,不得随意修改实验数据结果,不得用凑数据的方法来向理论靠拢,而要重新进行一次实验,找出引起较大误差的原因,同时用理论知识来解释这种现象。
并作如下具体要求:
1. 认真完成实验报告,报告要用攀枝花学院标准实验报告册,作图要用坐标纸。
2. 报告中的电路图、表格必须用直尺画。
绘制电路图要工整、选取合适比例,元件参数标
注要准确、完整。
3. 应在理解的基础上简单扼要的书写实验原理,不提倡大段抄书。
4. 计算要有计算步骤、解题过程,要代具体数据进行计算,不能只写得数。
5. 绘制的曲线图要和实验数据吻合,坐标系要标明单位,各种特性曲线等要经过实验教师
检查,曲线图必须经剪裁大小合适,粘附在实验报告相应位置上。
6. 应结合具体的实验现象和问题进行讨论,不提倡纯理论的讨论,更不要从其它参考资料
中大量抄录。
7. 思考题要有自己理解实验原理后较为详尽的语言表述,可以发挥,有的要画图说明,
不能过于简单,不能照抄。
8. 实验报告的分数与报告的篇幅无关。
9. 实验报告页眉上项目如实验时间、实验台号、指导教师、同组学生等不要漏填。
目录
目录
实验一:MATLAB语言的基本命令实验二:控制系统模型与转换
实验三:Simulink 仿真应用
实验四:控制系统工具箱的使用实验五:磁盘驱动系统综合分析实验六:单级倒立摆控制仿真设计
实验一MATLAB语言的基本命令
一、实验目的
1、掌握MATLAB的基本操作;掌握MATLAB矩阵运算基础;掌握MATLAB数值运算基础
2、掌握二维基本绘图;了解特殊图形基本;了解三维基本绘图;掌握图形的控制、表现与修饰
二、实验仪器和设备
计算机、Matlab7.0软件
三、实验内容
1. 用reshape指令生产下列矩阵,并取出方框内的数组元素。
2. 用两种方法取阴影部分元素,并构成一个数组[2,8,14,20,4,6]。
3.利用diag(),ones()生产如下矩阵,
4. 已知一维数组A=[2 4 5 8 10]、B=[4 9 6 7 4],用for 循环语句实现
1
1
n
i n i i A B
-+=∑。
求和函数可用sum()。
5. 二维曲线绘图基本指令演示。
本例运作后,再试验plot(t), plot(Y), plot(Y ,t) ,以观察产生图形的不同,并解释。
t=(0:pi/50:2*pi)';
k=0.4:0.1:1; Y=cos(t)*k; plot(t,Y)
6. 通过绘制二阶系统阶跃响应,综合演示图形标识。
本例比较综合,涉及的指令较广。
请耐心读、实际做、再看例后说明,定会有匪浅收
益,并把以下程序逐句标注解释。
clf;t=6*pi*(0:100)/100;y=1-exp(-0.3*t).*cos(0.7*t);
tt=t(find(abs(y-1)>0.05));ts=max(tt);
plot(t,y,'r-','LineWidth',3)
axis([-inf,6*pi,0.6,inf])
set(gca,'Xtick',[2*pi,4*pi,6*pi],'Ytick',[0.95,1,1.05,max(y)]) grid on
title('\it y = 1 - e^{ -\alphat}cos{\omegat}')
text(13.5,1.2,'\fontsize{12}{\alpha}=0.3')
text(13.5,1.1,'\fontsize{12}{\omega}=0.7')
hold on;plot(ts,0.95,'bo','MarkerSize',10);hold off
cell_string{1}='\fontsize{12}\uparrow';
cell_string{2}='\fontsize{16} \fontname{隶书}镇定时间'; cell_string{3}='\fontsize{6} ';
cell_string{4}=['\fontsize{14}\rmt_{s} = ' num2str(ts)];
text(ts,0.85,cell_string)
xlabel('\fontsize{14} \bft \rightarrow')
ylabel('\fontsize{14} \bfy \rightarrow')
四、问答题
1. MATLAB软件有哪些功能特点?MATLAB与C语言语法有和相同之处?
2. 在MATLAB语言中“:”和“;”的含义什么?
3. 回答命令clc、clear的功能和作用
实验原始记录
指导教师:
年月日
实验二:控制系统模型与转换
一、实验目的
1、掌握控制系统数学模型的基本描述方法和相互转化 ;
2、了解控制系统的稳定性分析方法 ;
3、掌握控制系统频域与时域分析基本方法 二、实验仪器和设备
计算机、Matlab6.5软件
三、实验内容
1、请将下面的传递函数模型输入到matlab 环境。
]52)1)[(2(24)(32233++++++=s s s s s s s G ,)
99.02.0)(1(568
.0)(2
2+--+=z z z z z H ,T=0.1s 2、请将下面的零极点模型输入到matlab 环境。
请求出上述模型的零极点,并绘制其位置。
)
1)(6)(5()1)(1(8)(2
2+++-+++=s s s s j s j s s G ,)2.8()6.2)(2.3()(1511-++=----z z z z z H ,T=0.05s 3、考虑图1所示的反馈系统。
图1
1)利用函数series 与feedback 函数,计算闭环传递函数,并用printsys 函数显示结果;
2)用step 函数求取闭环系统的单位阶跃响应,并验证输出终值为2/5。
4、考虑图2所示的方框图。
5. 一个单位负反馈开环传递函数为
()(0.51)(41)k
G s s s s =
++
试绘出系统闭环的根轨迹图;并在跟轨迹图上任选一点,试计算该点的增k 益及其所有极点的位置。
6. 求下面系统在阶跃信号为0.11(t)时系统的响应。
43220
()8364020
G s s s s s =
++++
并求系统性能指标:稳态值、上升时间、调节时间、超调量。
实验原始记录
指导教师:
年月日
实验三:Simulink 仿真应用
一、实验目的
1、掌握控制系统的数学描述、建模方法;
2、掌握数学模型的转换与连接方法;
二、实验仪器和设备
计算机、Matlab6.5软件
三、实验内容
四、问答题
实验原始记录
指导教师:
年月日
实验四:控制系统工具箱的使用
一、实验目的
1、掌握控制系统的数学描述、建模方法;
2、掌握数学模型的转换与连接方法;
二、实验仪器和设备
计算机、Matlab6.5软件
三、实验内容
四、问答题
实验原始记录
指导教师:
年月日
实验五:磁盘驱动系统综合分析
一、实验目的
1、掌握控制系统的数学描述、建模方法;
2、掌握数学模型的转换与连接方法;
二、实验仪器和设备
计算机、Matlab6.5软件
三、实验内容
四、问答题
实验原始记录
指导教师:
年月日
实验六:单级倒立摆控制仿真设计
一、实验目的
1、掌握控制系统的数学描述、建模方法;
2、掌握数学模型的转换与连接方法;
二、实验仪器和设备
计算机、Matlab6.5软件
三、实验内容
四、问答题
实验原始记录
指导教师:
年月日。