2020-2021学年 华东师大版八年级数学下册 17.1 变量与函数 同步测试题
- 格式:docx
- 大小:28.46 KB
- 文档页数:5
17.1 变量与函数同步测试题
(满分120分;时间:90分钟)
一、选择题(本题共计6 小题,每题3 分,共计18分,)
1. 半径是R的圆的周长C=2πR,下列说法正确的是()
A.C、π、R是变量
B.C是变量,2、π、R是常量
C.R是变量,2、π、C是常量
D.C、R是变量,2、π是常量
2. 下面的图表列出了一项试验的统计数据,表示将皮球从高处ℎ落下,弹跳高度m与下落高度ℎ的关系
试问下面哪个式子能表示这种关系(单位:cm)()
A.m=ℎ2
B.m=2ℎ
C.m=ℎ
D.m=ℎ+25
2
3. 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与悬挂的物体的质量x(kg)间有下面的关系:
下列说法不正确的是()
A.x和y都是变量,且x是自变量,y是因变量
B.弹簧不悬挂重物时的长度为0
C.在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm
D.在弹性限度内,所挂物体的质量为7kg,弹簧长度为13.5cm
4. 1−6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)
和月龄x(月)之间的关系如表所示,则6个月大的婴儿的体重为()
A.7600克
B.7800克
C.8200克
D.8500克
5. 如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为
p(m),一边长为a(m),那么S,p,a中是变量的是()
A.S和p
B.S和a
C.p和a
D.S,p,a
6. 下面关于函数的三种表示方法叙述错误的是()
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用公式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
二、填空题(本题共计8 小题,每题3 分,共计24分,)
7. 潍坊市出租车计价方式如下:行驶距离在2.5km以内(含2.5km)付起步价6元,超过2.5km后,每多行驶1km加收1.4元,试写出乘车费用y(元)与乘车距离x(km)(x>2.5)之间的函数关系为________.
8. 设路程为s,人速度为v,时间为t,在关系式s=vt中,当t一定时,s随v的变化而变化,则________为函数值,________为自变量,________为常量.
9. 在下列关系式中:①长方形的宽一定时,其长与面积的关系;②等腰三角形的底边长与面积;③圆的面积与圆的半径.其中,是函数关系的是________(填序号).
10. 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(∘C)之间的关系如下从表中可知音速y随温度x的升高而________.在气温为20∘C的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.
11. 某书定价20元,如果一次购买25本以上,超过25本的部分打七五折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系________.
12. 圆的面积S=πr2中,自变量r的取值范围是________.
13. 设地面气温为20∘C,如果每升高1千米,气温下降6∘C,在这个变化过程中,自变量是________,因变量是________,如果高度用ℎ(千米)表示,气温用t(∘C)表示,那么t 随ℎ的变化而变化的关系式为________.
14. 直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为________.
三、解答题(本题共计8 小题,共计78分,)
15. 根据下列情境编制一个实际问题,说出其中的常量与变量,并说明变量的取值范围:
小王春节骑车去看望爷爷,小王家与爷爷家相距10千米,小王骑车的速度为每小时12千米.
16. 心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)
(1)上表中反映了哪两个变量之间的关系?
(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?
(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?
(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?
17. 在一次实验中,小华把一根弹簧上端固定,在其下端悬挂物体,弹簧挂上物体后的长度l(cm)与所挂物体的质量m(kg)之间的关系如下表:
(1)用关系式表示出弹簧的长度l(cm)与所挂物体的质量m(kg)之间的关系.
(2)当所挂物体质量为3千克时弹簧的长度为多少cm?没挂物体时呢?
(3)如果在允许范围内,弹簧的长度为36cm时,所挂物体的质量应为多少kg?
18. 一根弹簧原长13cm,它能挂重量不超过16kg的物体,并且每挂1kg重物弹簧伸长0.5cm.
(1)求挂重物的弹簧长度y(cm)与所挂重物x(kg)之间的函数关系;
(2)求自变量的取值范围;
(3)用图象法表示该函数.
19. 已知两个变量x、y满足关系2x−3y+1=0,试问:①y是x的函数吗?②x是y的函数吗?若是,写出y与x的关系式,若不是,说明理由.
20. 某批发商欲将一批海产品委托汽车运输公司由A地运往到B地,路程为120千米,汽车的速度为60千米/时.货运公司的收费项目及收费标准如下:运输量单价(2元/吨•千米)冷藏费单价(5元/吨•时)过路费(200元)设该批发商待运的海产品有x吨,货运公司要收取的费用为y元.试写出y与x之间的关系.