数学分析简明教程答案数分6_不定积分
- 格式:doc
- 大小:638.95 KB
- 文档页数:24
第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
《高等数学》不定积分课后习题详解(总58页)不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数 52x-=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)22x x dx +⎰() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰() ★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x+⎰ 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。
第九章 再论实数系§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+- 求数列的上下确界若无上下确界则称,是的上下确界: sup 3,inf 0;(5) sup 2,inf 1;12(6)cos ; sup 1,inf .132n n n n n n n n x x x x x n n x x x n π=====-===-+2.(),(1)sup{()}inf (); (2)inf{()}sup ().(1)sup{()},.,();.0,()..,();.x Dx Dx Dx Dx Df x D f x f x f x f x A f x i x D f x A ii x D f x A i x D f x A ii εεε∈∈∈∈∈-=--=-=-∀∈-≤∀>∃∈->-∀∈≥-∀>设在上定义求证:证明:设即有对有 对使得 于是有对有 对0,().inf (),inf (),sup{()}inf ()x Dx Dx Dx Dx D f x A A f x A f x f x f x ε∈∈∈∈∃∈<-+-==--=-使得 那么即因此有成立。
(2)inf{()},.,();.0,()..,();.0,().sup (),sup (),x Dx Dx DB f x i x D f x B ii x D f x B i x D f x B ii x D f x B B f x A f x εεεε∈∈∈=-∀∈-≥∀>∃∈-<+∀∈≤-∀>∃∈>---==-设即有对有 对使得 于是有对有 对使得 那么即因此有inf{()}sup ()x Dx Df x f x ∈∈-=- 成立。
第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。
解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。
A 一、不定积分部分1.设()f x 具有可微的反函数()1fx -。
设()F x 是()f x 的一个原函数。
试证明()()()111f x dx xf x F f x C ---⎡⎤=-+⎣⎦⎰。
证 在公式右端对x 求导,我们有()(){}()()()()()()()()1111111111.df x df x d xf x F f x C f x x f f x dx dx dx df x df x f x x x f x dx dx----------⎡⎤⎡⎤-+=+-⎣⎦⎣⎦=+-=2. 设()f x 定义在(),a b 上,a c b <<,且有()()()()()()()()1212;;lim ,lim x cx cF x f x a x c F x f x c x b F x A F x B -+→→''=<<=<<==,若()f x 在x c =处连续,试证明()f x 在(),a b 上存在原函数。
证 作函数()F x 如下:()()()12,,,,,.F x a x c F x A x c F x B A c x b <<⎧⎪==⎨⎪-+<<⎩则()F x 在x c =处连续,由()f x 在x c =处连续知,()()lim lim x cx cF x F x -+→→=,故根据导函数的特征,即知()()F c f c '=。
因而()F x 是()f x 在(),a b 上的原函数。
3. 试证明下列命题:(1)(函数方程)设()f x 是(),-∞+∞上的可微函数,且满足()()()2,f x y f x f y xy x y +=++∈(),-∞+∞,则()()20f x x f x '=+;(2)设()f x 在[],a b 上连续,在(),a b 内可微,且()()0f a f b ==。
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。
解:532223x dx x C--==-+⎰★(2)思路:解:★(3)思路:解:★(4)思路:解:★★思路:解:42232233113arctan11x xdx x dx dx x x C x x++=+=++ ++⎰⎰⎰★★(6)221xdxx+⎰思路:注意到222221111111x xx x x+-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-2 思路:分项积分。
解:3411x dx --134(-+-) ★(8)思路:解:★★思路:解:★★思路:解:★(11)1x e -⎰ 解:21(1)(1)(1).11x x x x x x x e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。
显然33x x x e e =()。
解:333.ln(3)x x x xe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cotcsc 1x x =-”。
解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)2352x xx dx ⋅-⋅⎰思路:解:★★思路:解:★★思路:解:★(17)思路:解:★(18)22cos 2cos sin x dx x x ⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。
第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。
第二章函数§1 函数概念1.证明下列不等式:(1) y x y x -≥-;(2) n n xx x x x x +++≤+++ΛΛ2121;(3))(2121n n x x x x x x x x +++-≥++++ΛΛ.证明(1)由y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立.假设当k n =时,不等式成立,即k k xx x x x x +++≤+++ΛΛ2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x ΛΛΛΛΛ有数学归纳法原理,原不等式成立.(3)nn n x x x x x x x x x x x x +++-≥++++=++++ΛΛΛ212121)()(21n x x x x +++-≥Λ.2.求证bba ab a ba +++≤+++111.证明由不等式b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++111111.3.求证.求证22),max (b a b a b a -++=;22),min(ba ba b a --+=.证明 若b a ≥,则由于b a b a -=-,故有,故有22),max (b a b a a b a -++==,22),min(b a b a b b a --+==,若b a <,则由于)(b a b a --=-,故亦有,故亦有22),max (b a b a b b a -++==,22),min(b a b a a b a --+==,因此两等式均成立.因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积,因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;元;其余收费其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.函数图形如右图所示.8.判别下列函数的奇偶性:.判别下列函数的奇偶性: (1)12)(24-+=x x x f ;(2)x x x f sin )(+=; (3)22)(xex x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x xx f 是偶函数.是偶函数.(2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()()(222)(2x f ex ex x f x x ==-=----,即22)(xex x f -=是偶函数.是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期:.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin22cos)(x x x f +=;(3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12.(3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(x xx f +=在),(∞+-∞有界.有界. 证明 实际上,),(∞+-∞∈∀x ,都有,都有21112111)(2222=++⋅≤+=+=x x x xx xx f , 由定义,21)(x xx f +=在),(∞+-∞有界.有界. 11.用肯定语气叙述函数无界,并证明21)(xx f =在)1,0(无界.无界.解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.无界.0>∀M ,要使M xx f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M xx f MM >+==11)(2,所以21)(xx f =在)1,0(无界.无界.12.试证两个偶函数的乘积是偶函数,试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个一个奇函数和一个偶函数的乘积是奇函数.偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义.有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数;不是奇函数; (2) )(x f 不是单调上升函数;不是单调上升函数; (3) )(x f 无零点;无零点; (4) )(x f 无上界.无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;无零点; (4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.上界.§2 复合函数与反函数1.设xx x f +-=11)(,求证x x f f =))((.证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有,有()()()()x x x x x xx xx x x xf x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域:.求下列函数的反函数及其定义域:(1) +∞<<⎪⎭⎫ ⎝⎛+=x x x y 1,121;(2) ()+∞<<∞--=-x ee y xx,21;(3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x x x x x y成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y yx ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y.(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为.所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x <有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()xf 为增函数,而()xg 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.4.设.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g ,求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n 4434421οΛοο次.解 2222221111)(1)())((xxxx xxx f x f x f f +=+++=+=ο,归纳法假设,归纳法假设21))((kxxx f f f k +=4434421οΛοο次, 则有则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+4434421οΛοο4434421οΛοο次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=4434421οΛοο次.6.设x x x f --+=11)(,试求))((x f f f n 4434421οΛοο次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ο ,归纳法假设归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k k kk x x x x x f f f 4434421οΛοο次 ,则当1+=k n 时,有时,有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(k k k k k k k x x x x x f f f f x f f f 4434421οΛοο4434421οΛοο次次所以,所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n nn n x x x x x f f f 4434421οΛοο 7.设xx f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f .解 xx f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此,因此x xx x f f xf f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此,因此x x x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;的有界周期函数;(1)题图)题图 (2)题图)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;函数;(3)题图)题图 (4)题图)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;函数;(6)定义域),(∞+-∞=D ,是偶函数.,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.的周期函数.2.若已知函数)(x f y =的图形,作函数的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转ο180后即得;后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转ο180后得到的;后得到的; )(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转ο180后得到的.得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数的图形,试作函数 ])()()()([21x g x f x g x f y -±+= 的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.图形的关系.解 由于由于 )}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++, )}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.形,也知其关系.4. 作出下列函数的图形:作出下列函数的图形:(1) x x y sin =;(2) x y 1sin =. 解 图形如下.图形如下.(1)题图)题图 (2)题图)题图5.符号函数.符号函数 ⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y 试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.的图形.解x sgn)2sgn(x)2sgn(-x6.作出下列函数的图形:.作出下列函数的图形:(1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y . 解(1)(2)。
比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。
第六章 不定积分引 言我们知道,函数是数学分析研究的主要对象,前面几章我们已经学习了函数的微分学理论,主要内容包括导数的计算和导函数的分析性质,而其基本问题是导数的计算——给定已知函数,求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个函数,使其导数恰好是某一个给定的函数——这就是所谓的积分问题。
看一个例子:例1 一个静止的物体,其质量为m=1, 在力()sin F t t = 的作用下沿直线运动,给出物体的运动速度()v t 所满足的方程。
解、由所给的条件,可以利用Newton 第二定理计算出物体的加速度为sin F a t m==,因而,若设其速度为()v t ,则()sin v t a t ¢==。
因此,这个问题本质就是:已知导函数()v t ¢, 求原来的函数()v t 。
这类问题在实际应用和工程技术领域中还有很多,如几何问题中常见的已知切线求曲线问题、自然界中广泛存在的反应扩散现象等,因而,这类问题有很强的应用背景。
特别是在17世纪,这类问题是当时物理和几何学中急待解决的问题,是摆在数学家面前的重要的问题,经过3百多年的努力,今天,这类问题不仅已经得到彻底的解决,而且已经形成了完整且完美的数学理论――积分学理论:称这类由导函数()f x ¢ 求 原来函数)(x f 的运算为积分运算,研究这类运算及其相关的理论就是积分学理论。
我们将在本章和下一章引入这种理论。
为了引入这种理论,先引入基本概念。
§1不定积分概念与基本积分公式 一 、 原函数与不定积分我们引入积分理论中的基本概念。
定义1.1 设函数)(x f 与)(x F 在区间I 上有定义且)(x F 可导,若)()(x f x F =', Ix ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。
注、由定义,若)(x F 为)(x f 的一个原函数,则从导数角度,)(x f 为)(x F 的导函数,这也反映了原函数何导函数的紧密关系。
第六章 不定积分在不定积分的计算中,有很多方法是机械性的:有很多固定的模式和方法,还有一些常用的公式。
在本章里使用的积分公式除了课本161页给出的10个常用公式外,还有6个很有用的式子,罗列如下:22222211.ln ;212.arctan ;3.arcsin ;4.ln ;5.ln ;26.arcsin .2dx x aC x a a x a dx x C x a a a x C a x C a x C a x C a -=+-+=++=+=+=+=+⎰⎰这六个公式在答案中的使用次数很大,使用的时候没有进行说明,敬请读者仔细甄别。
当然答案计算过程中不免有不少错误,敬请原谅并修改。
第一节 不定积分的概念1.求下列不定积分:3353646422112111(1)(.4643*4646x x dx x x x C x x x C +-=+-+=+-+⎰ 3341(2)(5)(5)(5)(5).4x dx x d x x C -=---=--+⎰⎰114211313333222223(3)(32)63.34dx x x x x dx x x x x C --=+++=++++⎰⎰22424242422311111(4)()()(1)1111arctan .3dx x x dx dx dx dx x x dx x x x x x x x x x x C ------=+=+=-+++++=-+++⎰⎰⎰⎰⎰⎰22233(5)(3)33arctan .11x dx dx x x C x x =-=-+++⎰⎰1132222(6)().3x x dx x C -=+=+⎰(7)(2sin 4cos )2cos 4sin .x x dx x x C -=--+⎰ 221(8)(3sec )(3)3tan .cos x dx dx x x C x-=-=-+⎰⎰ 22222sin 3cos 1(9)(tan 3)(2)tan 2.cos cos x x x dx dx dx x x C x x ++==+=++⎰⎰⎰22222sin 3cos (10)3tan .cos cos x x dx dx x x C x x+-==-+⎰⎰222sin tan 11cos (11)(cos ).cos cos cos cos sin 22x x x dx dx d x C x x x x x ==-=+-⎰⎰⎰22cos 2cos sin (12)(cos sin )sin cos .cos sin cos sin x x xdx dx x x dx x x C x x x x-==+=-+--⎰⎰⎰2221(13)tan .1cos 21cos sin 2cos 2dx dx dx x C x x x x ===+++-⎰⎰⎰ 22252(14)(51)(52*51)5.2ln 5ln 5x xxxxdx dx x C +=++=+++⎰⎰ 121(15)(2()).35ln2ln 335xx xxxx e e dx C +-=--+⎰ (16)(1(.x xx x e dx e dx e C -=-=-⎰⎰ 221(17)(cos sin 2arctan arcsin .14x dx x x x C x -=--++⎰113724444(18).7x x dx x dx x C ===+⎰⎰212(19)2312.ln12xx xxdx dx C ==+⎰⎰3(20)sin )sin )arcsin cos .2x dx x dx x x C +=+=-+⎰⎰222.(),(,())2,(2,5).'()2,()'()2.(2)5,45,1,1y f x x f x x f x x f x f x dx C xdx C x C f C C y x ===+=+=+=+===+⎰⎰求一曲线它在点处的切线的斜率为且过点解:设那么令那么于是有因此函数曲线满足条件。
3.(),().f x f x 已知满足给定的关系式试求(1)'()1,(0);1'(),1()ln .xf x x f x xf x dx x C x =>===+⎰解:可得那么 2'()(2)1,(0);'(), ().2f x x xf x x x f x xdx C =>===+⎰解:可得那么有212(3)()'()1,(0);[()'()]1,(),2()f x f x x f x f x dx dx f x C x C f x =>=+=+=⎰⎰解:可知于是有 因此有 12'()(4)1,(()0);()'()1,()ln[()],().x f x f x f x f x dx dx f x f x C x C f x Ce =>=+=+=⎰⎰解:可知于是有 因此有 第二节 换元积分与分部积分法1.用凑微分法求下列不定积分:1(56)1(1)ln 56.565565dx d x x C x x -==-+--⎰⎰ 12(2)()ln ln 21.(12)21dx dx x x C x x x x =-=-++++⎰⎰33223322122(3)[(1)(1)]2331[(1)(1)].3x x Cx x C ==+--+=+--+(4)arcsin).dx dxC===+⎰⎰331(5)).323212dx dxCx x===+++⎰⎰222(6)2()2.2x x xxe dx e d e C---=--=-+⎰⎰222222111(7)()().222x x x xxe dx e d x e d x e C----==--=-+⎰⎰⎰1(8)()ln(1).11xx xx xedx d e e Ce e==++++⎰⎰22()1(9).212(1)1x xx x x x x xdx e dx d eCe e e e e e-===-+++++++⎰⎰⎰22()(10)arctan().11x xxx x x xdx e dx d ee Ce e e e-===++++⎰⎰⎰sin1(11)tan(cos)ln cos.cos cosxxdx dx d x x Cx x==-=-+⎰⎰⎰552562tan1(12)tan sec tan(tan)tan.cos6xx xdx dx xd x x Cx===+⎰⎰⎰1222212sin12sin12 (13)tan2(cos)tan.cos cos cos cos cos x xdx dx dx x d x C x C x x x x x -=-=++=-+⎰⎰⎰⎰2222221(tan)1(tan)cos(14)sin cos tan tan tan1).dxdx d x d xxAA xB x A x B A x B B xBx C===++++==+⎰⎰⎰⎰54222435(15)cos cos (sin )(1sin )(sin )(12sin sin )(sin )21sin sin sin .35xdx xd x x d x x x d x x x x C ==-=-+=-++⎰⎰⎰⎰2222221()2()cos (tan )222(16)2221sin 12sin cos sin cos 2sin cos tan 12tan22222222cos 2(tan 1)22 2.(tan 1)tan 122xd x x x d d dx x x x x x x x x x x x d C x x ===+++++++==-+++⎰⎰⎰⎰⎰cos 2cos 2cos 21(17)2(2)(sin 2)ln sin 2.sin cos sin 2sin 2sin 2x x x dx dx d x d x x C x x x x x ====+⎰⎰⎰⎰22444sin cos sin 111(18)(sin )(sin )arctan(sin ).1sin 1sin 21sin 2x x x dx d x d x x C x x x ===++++⎰⎰⎰ 22222211111(19)()(4)ln(4).424242x dx d x d x x C x x x ==+=+++++⎰⎰⎰ 222244211111(20)()()arctan().42442421()2x x x dx d x d C x x x ===++++⎰⎰⎰175444711473(21)()(3)ln 32.323323333239x dx dx x d x C x x C x x x -=-+=-++=-+-+---⎰⎰⎰ 1111(22)sin 2cos32sin 2cos3(sin 5sin )cos5cos .22102x xdx x xdx x x dx x x C ==-=-++⎰⎰⎰223(ln )1(23)(ln)(ln )ln .3x dx x d x x C x ==+⎰⎰21111(24)sinsin ()cos .dx d C x x x x x=-=+⎰⎰ 2231(25)(arcsin )(arcsin )arcsin .3x d xx C ==+⎰22arctan 1(26)arctan (arctan )arctan .12x dx xdx x C x ==++⎰⎰ (27)22.C ===(28)2.1dCx==++⎰(29)()arcsin().xx xe e C==+(30)2()2()222(sin cos)()2(sin cos).22222x xx x x x xd C===+=-+⎰22222222.(1)((22(ln.2229(7),dx dxaadxx CT=+=-=+-=++⎰⎰⎰用换元积分法求下列不定积分:可参考第四章第一节此题所得可以当做公式使用,即有2ln.2ax C=+2222sin222221224sin(2)(2sin)(2cos)4sin;2cossin,cos,(sin cos);1(cos sin)cos2x t tt t dt tdtxI tdt J tdtI J t t dt dt t CJ I t t dttdt======+=+==+-=-==⎰⎰⎰⎰⎰⎰⎰⎰令可得232sin2.21sin2.242sin22arcsin sin(2arcsin).22t CtI t Cx xt t C C+=-+=-+=-+⎰于是有因此222(2)424arcsin2arcsin)2arcsin.222xx x xC C==-=-=-+=211111 (3)()22111())]222xxxx x-+-==+-=-+-=11)]221arcsin.2x CC-+=1(4)()21921arcsin[()]832921arcsin.83xx CxC=-=-+-=+22222233332222222222222222213222222221222222111(5)()()()()111()2()()11111[321()(2dx x a x x a xdx dx dxa a ax a x a x a x axdx d x aa ax a x adx xda ax a x+-+==-++++=-+++=--++⎰⎰⎰⎰⎰⎰⎰122111122222222222212222])111111[]()()()1()adx x dx Ca a ax a x a x axCax a+=+-++++=++⎰⎰⎰222(6)((1)1ln.22xdx xdx xdxx xxx C-==-=---=-++⎰⎰⎰⎰21(7)(1)22()22222.tt t t t ttt te d t te dt td e te e dt Cte e C C-===-+=-+-+⎰⎰⎰⎰221244(8)(1)(1)2(2)(24)1111 44ln 114ln(1.t t t t dx d t tdt t dt t dtt t t t t t t C C --=-=-=-+++++=-++++-+⎰⎰⎰3866422227537/65/61/21/61/666(9)(6666)11166266arctan 756266arctan().75t t t t dx dt dt t t t dt t t t t t t t t Cx x x x x C ==-+-++++=-+-++-+-++⎰⎰2322323/2222(10)(222)22ln 1111322ln(1.3t t t t dt dt t t dt t t t t Ct t t x x C ==-+-=-+-+++++-+++⎰⎰54222222243535222211(1)(11)(1)(1)(12)222121 (1)(1).3535t t t d t t dt t t dt t t t t C x x C -=-=--=--+=-+-+---+⎰⎰⎰22332322(1)2(1)3(12).(1)(1)(1)111(1)2(1)3(1)1(1)(1)231ln 1.12(1)x x x dx d x x x d x d x d x x x x x C x x ++-++=+++=+-++++++=++-+++⎰⎰⎰⎰⎰3.用分部积分法求下列不定积分:222212121222(1)cos sin sin sin sin 2sin sin 2cos sin 2cos 2cos sin 2cos 2sin .x xdx x d xx x xdx C x x x xdx C x x xd x C x x x x xdx C x x x x x C ==-+=-+=++=+-+=+-+⎰⎰⎰⎰⎰⎰3444143144(2)ln 1ln 41ln (ln )441ln 441ln 416x xdxxdx x x x d x C x x x dx C x x x C ==-+=-+=-+⎰⎰⎰⎰ 11(3)ln ln (ln )ln ln .xdx x x xd x C x x dx C x x x C =-+=-+=-+⎰⎰⎰1122122(4)arc tan arctan (arctan )arctan 111arctan 211arctan ln(1).2xdxx x xd x C xx x dx C x x x dx C x x x x C =-+=-++=-++=-++⎰⎰⎰⎰111(5)2arcsin 2arcsin 2(arcsin )2arcsin 22arcsin 22arcsin .xd x x C x C x C x C =-=-++=-++=-++=-+⎰⎰⎰⎰22212221122211(6)arctan arctan arctan arctan 222111arctan arctan (1)221221arctan arctan .222x x xdx xdx x x d x C x x x x dx C x dx C x x x x xx C ==-+=-+=--+++=-++⎰⎰⎰⎰⎰1132222322ln 11111111(7)ln ()ln (ln )ln 22222ln 1.24x dx xd x d x C x dx C x x x x x x x C x x=-=-++=-++=--+⎰⎰⎰⎰1122(8)cos(ln )cos(ln )[cos(ln )]cos(ln )sin[ln ] cos(ln )sin(ln )[sin(ln )][cos(ln )sin(ln )]cos(ln )[cos(ln )sin(ln )]cos(ln ).2x dx x x xd x C x x x dx C x x x x xd x C x x x x dx C x x x x dx C =-+=++=+-+=+-++=+⎰⎰⎰⎰⎰⎰因此533312331145233515(9)sec sec (tan )sec tan tan (sec )sin sin sec tan 3tan sec tan 3cos cos 1cos sec tan 3sec tan 3sec cos xdx xd x x x xd x C x x x x x dx C x x dx C x x x x x dx C x x xdx x ==-+=-+=-+-=-+=-⎰⎰⎰⎰⎰⎰31335233233233sec ,sec tan 3sec sec ;4sec sec (tan )sec tan tan (sec )sin sin sec tan tan sec tan cos cos xdx C x x xdxxdx C xdx xd x x x xd x C x xx x x dx C x x dx C x x +++=+==-+=-+=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰因此有2333333341cos 1 sec tan sec tan sec cos cos sec tan sec ln sec tan ;sec tan ln sec tan sec .2x x x dx C x x xdx dx C x x x x xdx x x C x x x xxdx C -=-+=--+=--++-+=+⎰⎰⎰⎰⎰于是综上可得353(sec tan ln sec tan )sec tan sec .48x x x x x x xdx C -+=++⎰ 22222212111(10)ln()ln(1)ln(1)ln(1)()ln(1)()12211{ln(1)[ln(1)]}{ln(1)[ln(1)]}2211 ln(2x x dx x x dx x x dx x d x x d x x x x x d x x x x d x C x +=+--=+---=+-+----+=⎰⎰⎰⎰⎰⎰⎰22221122211222111)()ln()121121111111 ln()(1)ln()2112111111 ln()ln(2121x x x x x dx C x dx C x x x x x x x dxx dx C x x C x x x x x xx x x ++-++=-+-+---++=--+=+-+----++=+--⎰⎰⎰⎰).C x+-222212223(11)sin sin ,cos ;21(cos sin )cos 2(sin 2)2sin 21sin 2cos 2 sin 2.2224x xdx I x xdxJ x xdx x I J xdx C J I x x x dx x xdx xd x x x x x xxdx C C ⎧=⎪⎨=⎪⎩+==+-=-===-+=++⎰⎰⎰⎰⎰⎰⎰⎰解:取那么于2222sin 2cos 2sin 448.sin 2cos 2cos 448x x x x I x xdx C x x x x J x xdx C⎧==--+⎪⎪⎨⎪==+++⎪⎩⎰⎰是有222sin 2cos 2(12)cos ,cos .448x x x xx xdx x xdx C =+++⎰⎰依上题可知1(13)[ln(ln )]ln(ln )ln(ln )[ln(ln )]ln ln ln 11 ln(ln )ln(ln )ln ln ln ln ln dx dxx dx x dx x x xd x C x x xx dx dxx x dx C x x dx Cx x x x xx +=+=-++=-++=-++=⎰⎰⎰⎰⎰⎰⎰⎰⎰(ln ).x C +2222222(11)(14)(1)(1)1(1)1(1)1 ()11(1)1 ()1(1)1(1)1x x x x x xx x xx x x xxe x e e e de e dx dx dx dx dx x x x x x x e e e d dx C x x x e e e e d dx C x x x x x +-==-=-++++++=--++++=+-+=+++++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.C +arcsin 222221122122(15)(arcsin )(sin )sin sin ()sin 2sin sin 2(cos )sin 2cos 2cos sin 2c x tx dxt d t t t td t C t t t tdt C t t td t C t t t t tdt C t t t ===-+=-+=++=+-+=+⎰⎰⎰⎰⎰⎰arcsin 2os 2sin (arcsin )2.x tt t Cx x x x C =-+=+++1121cos (16)(cot )cot cot cot sin sin (sin )cot cot ln sin .sin x xdx xd x x x xdx C x x dx C xx d x x x dx C x x x C x=-=-++=-++=-++=-++⎰⎰⎰⎰⎰111(17)ln(ln([ln(ln(ln(x dx x x xd x Cx x Cx x C=-++=-+=-+⎰⎰21ln(ln(.x x Cx x C=-+=-333222222213133222222113333222222222(18)ln()ln(ln)3332228ln2ln ln ln()33392882ln ln(ln)ln3993xdx xd x x x x d x Cx x x xdx C x x xd x Cx x x x x d x C x==-+=-+=-+=-++=⎰⎰⎰⎰⎰⎰312222333222288ln992816ln ln.3927x x x x dx C x x x x x C-++ =-++⎰4.求下列不定积分的递推公式:11 11111(1)()().n kx n kx n kx kx n n kx kx n n kx n nn nI x e dx x d e x e e d x x e e x dx x e Ik k k k k k k--===-=-=-⎰⎰⎰⎰11(2)(ln)(ln)(ln)(ln)(ln)(ln).n n n n n nn nI x dx x x xd x x x n x dx x x nI--==-=-=-⎰⎰⎰2222222221222sin(1cos)tan(3)tan tan tan tancos cos costantan(tan)tan.1nn n n n nnn nnx x xI xdx x dx xdx dx xdxx x xxxd x xdx In---------====-=-=--⎰⎰⎰⎰⎰⎰⎰1111(4)(arcsin)(arcsin)(arcsin)(arcsin)(arcsin)(arcsin)(arcsin)(arcsin))[(arcsin)](arcsin)n n n n n nn nn n nI x dx x x xd x x x xx x n x dx x x xx x----==-=-=+=+-=⎰⎰⎰⎰⎰1212)(1)(arcsin)(arcsin))(1).n n nn nnx n n x dxx x x n n I----+--=+--⎰5.求下列有理函数的积分:5423328843(1)(1)118ln 4ln 13ln 1.32x x dx x x dx x x x x x x x x x x x C +-=+++---+-=+++-+--+⎰⎰2222221111111(2)()(1)(1)2121412121111ln 1arctan ln 1.422dx x dx dx dxdx x x x x x x x x x x C -=-+=-+++++++++=-+++++⎰⎰⎰⎰⎰2422111111(3).()ln arctan .1211412x x dx dx x C x x x x +=-=-+--+-⎰⎰1322121112112(4)()ln 1131133113111 ln 1()3321()1111 ln 1()3622 dx x x dx x dx C x x x x x x x x x C d x x x C -+-=+=+-+++-+-+--=+-++-=+-+++⎰⎰⎰22111ln 1ln 1)]36211 ln 1ln 1.36x x x x Cx x x C =+--++-+=+--+++2222737127132222(5)()ln 712ln 7171712222()2422134ln 712ln 2ln 4ln 3.223x x x dx d x x x C x x x x x x x C x x C x -+---=-=-+++-+---+-=-+++=---+-⎰⎰241954352(6)()ln 1ln 1ln 2.(1)(2)6112263x dx dx x x x C x x x x x +-=++=-++-+++-++-+⎰⎰41111(7)11)1)8448x x x x dxdx dx xC+++++ ==++=+++-+=⎰⎰⎰1)1).44C+++-+222232(1)55(8)ln(21).21(1)1x xdx dx x x Cx x x x-+-==++++++++⎰⎰22(2)(9).42(2)2dx d xCx x x+==++++-⎰⎰2112(10)()ln.826(2)(4)62464dx dx dx dx xCx x x x x x x-=-=--=-+ ---+-++⎰⎰⎰⎰6.求下列三角函数有理式积分:222222222()()22(1)2245cos4cos4sin5cos5sin9cos sin2222221()2cos(tan)tan3122222ln.39tan9tan tan3222x xd ddxx x x x x xxxdx x xdCx x x==+++---===-+--+⎰⎰⎰⎰⎰222222221cos(2)54sin25sin5cos8sin cos5tan58tan(tan)1(tan)1(tan)8435tan58tan55tan tan1(tan)()55515arcta53dxdx dx xx x x x x x xd x d x d xx x x x x==+++++===++++++=⎰⎰⎰⎰⎰⎰45(tan)1545n arctan(tan).3333xC x C++=++222(tan )1(tan )(3))22sin 3tan 23tan 3).dx d x d x x Cx x x x C ===++++=+⎰⎰⎰22222221sec 1cos cos (4)11(1sec )(cos 1)(1)(cos 1)(1)cos cos ()()1122 22cos 1(cos 1)2cos (2cos )22tan 2x x x dx dx dx dx x x x x xx x d d dx dx x x x x x ===+++++=-=-++=-⎰⎰⎰⎰⎰⎰⎰⎰11222231222(tan )tan 1122tan tan ()2222cos 2cos cos222tan tan tan 11222 tan tan tan .222322cos cos 2cos 222x x d x x C d C x x x x x x x x x dx C C x x x +=-++=-++=-++⎰⎰⎰cos (5),1tan cos sin cos cos sin ,sin cos sin ;cos sin (cos sin )ln cos sin cos sin cos sin dx xdx x x xx I dx x x x J dx x x I J dx x Cx x d x x I J dx x x C x x x x =++⎧=⎪⎪+⎨⎪=⎪+⎩⎧+==+⎪⎨-+-===++⎪++⎩⎰⎰⎰⎰⎰⎰⎰取那么有于是ln cos sin cos cos sin 2.ln cos sin sin cos sin 2x x x x I dx C x x x x x x J dx C x x ⎧++==+⎪⎪+⎨-+⎪==+⎪+⎩⎰⎰121sin 2cos 1(cos )21(sin )(6)()(2cos )sin 32cos sin 32cos 3sin 3sin 12sin 1ln 2cos ln sin 331cos 312 ln 3dx x x d x dx d x dx x x x x x x xxdx x x C x --=+=+-+++=++-+-=⎰⎰⎰⎰⎰⎰cos 11cos ln .sin 31cos x xC x x++-+-22sin cos 112sin cos (7)()sin cos 2sin cos sin cos 12cos 1(sin cos )2 (2)2sin cos 2tan 1tan 2211 sin cos 224x x x x dx dx dx x x x x x xxd x x x dx x x x x x x +=-++++=-++-=--⎰⎰⎰⎰⎰.C +3222222sin sin 1cos 2(8)(cos )(cos )(1)(cos )1cos 1cos 1cos 1cos cos 2arctan(cos )x x x dx d x d x d x xx x x x x C-=-=-=-++++=-+⎰⎰⎰⎰4(3)322111(9)tan tan tan tan ln cos .22T xdxx xdx C x x C =-+=++⎰⎰参见sin 222222222sin 1cos sin 11(10)()sin cos sin cos sin (1sin )(1)111111sin 1 ln ln 21sin 2sin 1x t x t x d x dt dx dx dt x x x x x x t t t t t x C Ct t x x ======+-----=--+=--+++⎰⎰⎰⎰⎰cos (11)sin 2cos cos sin 2cos ,sin sin 2cos 2;cos 2sin (sin 2cos )2ln sin 2cos sin 2cos sin 2cos xdxx xx I dx x x x J dx x x I J dx x Cx x d x x I J dx x x C x x x x +⎧=⎪⎪+⎨⎪=⎪+⎩⎧+==+⎪⎨-+-===++⎪++⎩⎰⎰⎰⎰⎰⎰取那么于是cos 21ln sin 2cos .sin 2cos 55x I dx x x x C x x ==++++⎰221222212sin sin 2(12)(1)21cos 2sin 2sin 2sin (tan ) 2tan ).tan 22x x dxdx dx dx x C x x x x d x x C x x C x ==-+=-+++---=-++=-+++⎰⎰⎰⎰⎰1/6563222127.634161(1)6()(12)(1)(21)2121116()3342 6ln ln 11724()416x t t dt dt t dx t t t t t t t t t t t t t t dt C t =-===--+++-++-+-+=-+-+-+⎰⎰⎰⎰求下列无理函数的积分:1/621/61/61/31/639116ln ln 1ln )]242243911 ln ln 1ln )]24224x tt t t t t Cx x x x x C==-+--+-+=-+--+--+2(2)1 (ln .22x x dx x C ====-+⎰⎰111()(3)221()122211.22txtxdd tt CCx====-=-+=-=-+++=-+++⎰2322(4)[(1(1)211(22)ln1.32x dxxx x x C =-=-+=-+-⎰⎰⎰2(5)11()()11ln.2d dCx====-+=+1(6)ln.2x C==++⎰22213() (7)1112()2()5132arcsin ln1arcsin2822122xx x xx x Cx-+ =-+=-+---=--+---=--⎰⎰212()111ln1.82xx x C-++-+13(8)ln.8x C==++222242441111(9)22441(1)arctan11ln4(1)(1)2412x t t syyd y y dy y yCy y y y=======--==++--++⎰⎰22114241ln.4t sxC CC===++ =++2442341()41(10)(1)18[))8111[8(8ttd t dttt ttCtxxx+===-+=--+++++--⎰⎰3/4)C-++++8.(1)2()22arcsin arcsin.a bx x a bC Ca b a b==+---=+=+--⎰求下列不定积分:221()()11(2).22d dCββ==-=-=(3)sin (cos )cos cos ()cos cos ()sin sin sin (sin )sin (sin cos )sin cos cos cos x x x x x x x x x x x x x x x x xe xdx xe d x xe x xd xe xe x x e xe dx xe xdx x xde x xe e d x x x xe e x x x dx xe xdx xe xdx xe x xe =-=-+=-++==-=-+-=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由于有于是有;sin cos sin sin (sin cos )cos 2,(sin cos )cos 2(sin cos )sin sin 22cos x x x x xx xxx x x xx dxxe xdx xe xdx xe x xe dxe x x xe dx e x x xe dx xe x x e x xe xdx C xe xd ⎧⎪⎨+=-⎪⎩⎧-=⎪⎪⎨+⎪=⎪⎩-=-++⎰⎰⎰⎰⎰⎰⎰可以求得于是有.(sin cos )cos 22x xxe x x e x x C ⎧⎪⎪⎨+⎪=-+⎪⎩⎰(4)cos x xe xdx ⎰ 可见上题!sin()sin()(5)sin()sin()sin()sin()sin()sin()sin()sin()sin()cos()sin()cos()sin()sin()sin() dx b a dx x b x a dx x a x b b a x a x b b a x a x b x b x a x a x b dxb a x a x b -+--==++-++-++++-++=-++⎰⎰⎰⎰cos()cos() sin()sin()sin()sin()11ln sin()ln sin()sin()sin() x a dx x b dxb a x a b a x b x a x b Cb a b a ++=--+-+=+-++--⎰⎰1sin()ln .sin()sin()x a C b a x b +=+-+112sin sin()cos cos()sin sin()(6)tan tan()[1]cos cos()cos cos()cos cos cos cos()cos cos sin cos sin x x a x x a x x a x x a dx dx dxx x a x x a a adxx dx C x C x x a x a x x a +++++==-++=-++=-+++-⎰⎰⎰⎰⎰1cos (tan )cos ln sin tan cos .cos tan sin sin ad x ax C x a x a C a x a a=-++=---++-⎰32222222111(7)()()()22211 (1)(1)2212 arcco 23x x x xd x x ==-+=---=⎰3223322221s (1)arccos 11 arccos (1)(1)(arccos )33arccos (arccos )1 arcco 3xd x xd x x x d x x x C --=----++=⎰⎰⎰322213232321s (1)(1)arccos 3111 arccos (1)()arccos 33321 2)arccos .39x x x dx x dx C x x x x x x Cx x x x C -+---+=-+---+=----+⎰⎰222122tan sin cos sin cos (8)1tan tan cos sin cos sin 1sin cos 1sin cos 1sin cos 1sin cos cos sin cos sin x x x x x dx dx dx x xx x x x x x x x dx dxdx x C x x x x x x x x==++++++=-=-+++++⎰⎰⎰⎰⎰⎰1122(tan )(tan )131tan tan (tan )241(tan )].332d x d x x C x C x x x x x C =-+=-+++++=-++⎰⎰11112(9)22222()222122242ln 11xx x e t x x yxd C d e C dt C e ty y y dy C y Cy y ====+=+=+-+=-+-+⎰⎰⎰⎰2.yC +1sin (10)1cos 1sin 1cos ,'(),'()1cos sin 1cos '()ln sin .sin 1(), 4.3(())','()1s '()x xdxxx x xf x f x x x xxf x dx dx x x C x xf x f x f x x dx f x -++++==+++==+++=+=⎰⎰⎰⎰ 取即那么有由于单调递增由定理可以知道因此有1in (),1cos ()ln sin .xdx f x x f x x x C -=+=++⎰其中22222222sin (10)1cos 2sin 1,1cos 122arctan sin 221(2arctan )11cos 1111 x xdxx t x t t x t tt x x t t dx dt t dt t x t t t ++⎧=⎪⎪+⎨-⎪=⎪+⎩+++==+-+++++⎰⎰⎰⎰ 令于是有2122122tan2()2arctan 2(arctan )1()2arctan 2(arctan )11 2arctan 2tan arctan(tan )22x t d t t t td t C tt d t t t d t C t t x x t t C ==-+++=-++++=+=+⎰⎰⎰⎰tan .2xC x C =+1tan cos sin (cos sin )(11)ln cos sin .1tan cos sin cos sin x x x d x x dx dx x x C x x x x x--+===+++++⎰⎰⎰sin sin sin sin sin sin sin sin 1(12)sin 22sin cos 2sin (sin )2sin ()2sin 2(sin )2sin 2.x x x x x x x x e xdx e x xdx e xd x xd e xe e d x C xe e C ====-+=-+⎰⎰⎰⎰⎰111(13)arctan(1arctan(1(arctan(12arctan(11arctan(12dxx xd Cxxx dx Cx C+=-++=+-+=+-+⎰⎰⎰122121212arctan(1222arctan(12222arctan(1(1)22t t tx dt Ct ttx dt Ct ttx dt Ct t+-+++=+-++++=+--+++⎰⎰⎰2122(2)arctan(122arctan(1ln22arctan(1ln2.td t tx t Ct tx t t t Cx x C+=+-++++=+-+++++-++⎰2444432423ln221(2)1(14)(12)ln22(12)ln22(12)ln2(1)11(1)(1)(1)1()ln2(1)1111[ln ln1]ln212(1)3(1)xx x tx x x x xdx dx d dtt tt t tdtt tt tt t t====++++++++++=-+=-++++++++⎰⎰⎰⎰⎰2231111[ln2ln(21)].ln2212(21)3(21)x tx xx x xCC ==-++++++++此文只供参考,写作请独立思考,不要人云亦云,本文并不针对某个人(单位),祝您工作愉快!一是主要精力要放在自身专业能力的提升上,二是业余时间坚持写作总结,这是一个长期的积累过程,剩下的,不用过于浮躁,交给时间就好了。