超声波电源驱动电路的设计
- 格式:ppt
- 大小:187.50 KB
- 文档页数:13
超声波发生器电源控制电路信息发布时间:(2008年8月7日22:02:40 ) 发布者IP地址:信息详细内容:第60324篇:基于PWM大功率超声波电源的设计发布时间:2006年12月30日点击次数:120 来源:电子设计应用作者:内蒙古科技大学机械工程学院苏凤岐汪建新孙建平摘要:本文详细介绍了为驱动磁滞伸缩换能器而设计的一种频率、功率可调式大功率超声波电源,该电源采用由IGBT构成的全桥式逆变主电路,实现了逆变降压和输出电压调控。
控制电路以脉宽调制电路为核心,通过给定信号和反馈信号电压的比较,获得宽度可变的脉冲信号,调节电源的输出电压,并实现对电源的闭环控制。
关键词:IGBT;波形发生器;超声换能器;脉宽调制引言近年来,随着全控制型电子器件和PWM技术的迅速发展,功率超声的应用及其驱动电源的开发已成为热点研究领域之一。
本文介绍的高频换能器驱动电源,采用全桥移相式串联电路拓扑,以单片脉宽调制电路为核心、IGBT功率管为功率开关器件,实现了大功率输出。
它具有效率高、性能稳定、体积小、质量轻和调节方便等优点。
超声波电源的设计超声波电源的组成及原理框图逆变式超声波电源主要由主电路和控制电路两部分组成,其基本原理框图如图1所示。
图1超声波发生器原理框图主电路是将电能从电网传递给负载的电路,其主要作用是减小变压器体积和改善电源的动态品质。
控制电路则主要为逆变主电路提供开关脉冲信号,驱动逆变主电路工作,并借助反馈电路和给定电路来实现对逆变器的闭环控制。
逆变主电路逆变主电路包括输入整流滤波、逆变器和输出滤波三个主要部分,而逆变器则是其核心部件。
逆变器本设计采用的逆变电路为全桥式逆变电路,其优点是:适用于大功率输出,主变压器只需一个原边绕组,通过正、反向的电压得到正、反向的磁通。
因此,变压器铁芯和绕组得到最佳利用,使效率得到提高。
另外,功率开关管在正常运行情况下,最大的反向电压不会超过电源电压,4个能量恢复二极管能消除一部分由漏感产生的瞬时电压,无须设置能量恢复绕组,反激能量便得到恢复利用。
1mhz超声波换能器收发驱动电路的设计由于超声波技术的不断发展,超声波换能器的应用越来越广泛,如现代的空调、安防、医疗、工业控制等行业中都有超声波换能器的踪影。
1MHz超声波换能器收发驱动电路是超声波换能器应用中一个关键性部件。
1MHz超声波换能器收发驱动电路是一种高电平电路,它可以将超声波信号转换为高电压电流,以用于驱动超声波发射器。
电路既可以控制超声波换能器的收发信号,又可以进行漏振控制,以调整超声波发射器的功率。
1MHz超声波换能器收发驱动电路的设计总体分为电路框架的构建、电路电源的设计、收发控制管理电路的设计、差分放大器的设计、驱动电路的设计以及漏振调节的设计等几个方面。
1、框架的构建:在电路框架的构建中,要考虑设计电路的性能和功能,最终确定电路的器件种类、布线流程和结构形式,确保电路有良好的连接性和稳定性。
2、电源设计:电源设计是1MHz超声波换能器收发驱动电路的重要组成部分。
根据驱动电路的工作电压、功耗以及发射功率的要求,应选择合适的电源器件。
3、收发控制管理电路设计:收发控制管理电路设计是1MHz超声波换能器收发驱动电路的核心部分,要根据应用需求,采用合适的元器件组合,组成可控制超声波换能器收发信号的模块,并结合相关锁相环设计出可进行可靠而有效的收发控制和管理电路。
4、差分放大器设计:差分放大器的设计是保证超声波换能器收发驱动电路的高精度放大和比较,使收发精度更高的重要环节,采用的放大器应具有较高的额定输入电压、较快的电流响应速度以及较低的噪声水平等特性。
5、驱动电路设计:驱动电路设计是控制超声波换能器发射脉冲宽度和频率的主要环节,要求驱动电路有较高的额定输入电压、较快的响应速度及较低的噪声水平,保证超声波发射器有较好的功率性能。
6、漏振调节:漏振调节是1MHz超声波换能器收发驱动电路的重要环节,通过调节漏振的方式可以调整超声波发射器的功率,以确保超声波换能器的收发性能。
由此可见,1MHz超声波换能器收发驱动电路的设计是一个具有挑战性和复杂性的技术,它需要不断尝试和改进,以实现超声波换能器应用中更好的性能。
超声波电源的设计超声波设备通常需要稳定的直流电源来驱动超声波发生器和传感器。
因此,超声波电源的设计需要满足以下要求:1.工作电压和电流:根据超声波设备的工作需求,确定适当的工作电压和电流。
一般来说,超声波设备的工作电压在10V到100V之间,电流在0.1A到1A之间。
2.稳定性:超声波电源需要提供稳定的电压和电流输出,以确保超声波设备的正常工作。
为了实现稳定性,可以采用电压稳压器、电流稳流器等电路设计。
3.过载和短路保护:超声波设备可能会遇到过载和短路情况,因此超声波电源需要具备过载和短路保护功能。
这通常可以通过采用过载保护电路和短路保护电路来实现。
4.效率:为了提高超声波电源的效率,可以采用高效率的功率变换器来降低能耗。
常用的功率变换器包括开关电源和开关模式电源等。
5.纹波和噪声:超声波电源需要降低输出电压和电流的纹波和噪声水平,以确保超声波设备的正常工作。
可以采用滤波器等电路设计来降低纹波和噪声。
6.温度保护:超声波电源需要具备温度保护功能,以防止过热损坏。
可以采取过温保护电路设计来实现温度保护。
1.分析超声波设备的工作需求,确定电源的工作电压、电流和其他特性。
2.设计电源的基本电路,包括整流电路、滤波电路、稳压电路和保护电路等。
3.选择适当的元器件,包括整流器、滤波电容、稳压器、保护元件等。
在选择元器件时,需要考虑其工作电压、电流以及供应商的信誉度。
4.进行电路仿真和优化,以确保电源设计的稳定性、效率和可靠性。
5.进行实验验证,测试电源的性能和可靠性。
6.优化设计并进行样机制作,最终完成超声波电源的设计。
总之,超声波电源的设计需要综合考虑超声波设备的工作需求,通过合理的电路设计和元器件选择,以实现稳定、高效、可靠的电源供应。
一种高频超声波换能器驱动电路的设计
高频超声波换能器驱动电路的设计主要包括以下几个方面:
1. 选择合适的驱动器件:高频超声波换能器通常采用压电陶瓷材料制成,因此需要选择适合驱动压电陶瓷的驱动器件,常见的有MOSFET、IGBT等。
2. 驱动信号发生电路:设计一个能够产生高频驱动信号的电路,通常采用谐振电路或者多谐振电路来产生高频信号。
谐振电路可以根据超声波换能器的谐振频率进行设计,多谐振电路可以产生多个频率的信号,以适应不同的工作模式。
3. 驱动信号放大电路:由于超声波换能器的驱动信号幅度较小,需要通过放大电路将信号放大到足够的幅度。
放大电路可以采用功率放大器或者运放放大器等。
4. 驱动信号保护电路:由于高频超声波换能器在工作过程中会产生较高的功率,需要设计相应的保护电路来保护驱动器件和超声波换能器,如过电流保护、过温保护等。
5. 驱动电源设计:为了提供稳定的驱动电流和电压,需要设计一个合适的电源电路,可以采用直流电源或者交流电源,根据具体的需求选择。
6. 控制电路设计:为了实现对超声波换能器的控制,可以设计一个
控制电路,可以根据需要调节驱动信号的频率、幅度等参数。
高频超声波换能器驱动电路的设计需要考虑到驱动器件的选择、驱动信号的发生、放大和保护,以及电源和控制等方面,需要根据具体的需求进行设计。
低压电源驱动的超声波发射接收电路设计摘要:本文通过分析常见的超声波发射电路,在此基础上,研究出由低压电源驱动的超声波发射接收电路。
本电路只需要较低直流电源供电,电路开关是场效应管的元件,其安全系数相对较高。
采用电压跟随电路、隔离电路设计,能够将无关电路对接受电路作用减弱。
本文结合LF256(野外驱鸟设备)震荡的问题实例开展分析,提出低压电源驱动的超声波发射接收电路设计,解决了原本存在的超声波信号接收问题。
关键词:超声波;发射接收电路;电压跟随;自激振荡;滤波引言:通过研究分析常见超声波发射电路原理,构建了性能可靠、稳定的发射超声波电路。
本文提出的这一电路,能够在储能电感瞬时放电时产生较高的功率脉冲,以此激励超声转换器,促使其发挥作用,脉冲电压最高可达几百V。
同时,超声波接受电路的电压跟随器,精准可靠,操作简单。
1超声波发射的电路1.1超声波发射的电路为切实满足实际需求,超声波产生的发射超声波电路形式多样化。
当前,常见的主要包括三种,分别为RLC谐振类方法、脉冲电源激励、电容瞬间放电法,本实验选取的是前两种。
1.1.1RLC谐振类法电路阻抗工作、升压工作是借助脉冲变压器完成,RLC并联谐振能够生成高频、高压脉冲激励信号。
这一方法电路占地面积较大,其可借助变压器,提升电压。
1.1.2脉冲电源激励法这类电路主要是通过换能器加载直流高电压瞬间,生成正高压脉冲。
正高压脉冲,能够促使换能器产生超声波。
换能器电阻影响较小,电源几乎与短路状态相似。
通过电源瞬时电流数值较大,对电源过载能力提出了较高的要求,其功率较大、损耗较大,会很大程度影响检测精准度。
1.2基于低压电源的超声波发射电路为确保超声波性能可靠、稳定,降低其能耗。
本文构建一种全新的发射电路,这一电路原理在于借助储能电感,瞬时放电产生高脉冲电流,这一电流可激励换能器。
借助调节控制信号频率、电感参数,能够促使换能器产生共振频率。
这一电路不需要高压电流,能够将电路体积缩小,可实现电路生成的节约,将各类危险因素消除。
超声波电路设计指导1.超声波发射电路τ图1 发射电路T IRFP840 耐压500V以上,额定功率10W以上的场效应管U1 IR4426注1电源电压用12V。
U1极忌长时间导通。
在U1与T之间可以插入限流电阻保护U1,电阻不宜大,否则输出脉冲边沿会变得过缓;在正常工作状态,U1只在极短时内导通,即使无限流电阻也不致损坏。
R1 50K~1MΩ电阻取值与两次发射的最小间隔时间有关,间隔越长则回路充放电时间可越长,R1可以越大。
建议取1MΩ,以便减小250V电源的输出电流。
C1 1000pF/1000V 高压瓷片电容RL 510Ω注1:若使用IR4427,应当注意其输入输出波形不反相,所以在本电路中输入使用正脉冲信号。
简要工作原理如下。
当T截止时,250V电压源通过R1和RL向C1充电。
一般认为,持续充电时间大于5倍的回路充放电常数,则C1两端电压能基本达到250V,为驱动超声波发射做好准备。
当T瞬时导通,T、C1和RL构成放电回路。
超声波传感器的阻抗约为50Ω,故C1中的电荷被快速释放,在超声波传感器上形成一个负向冲击脉冲,脉冲宽度约为0.5~1.5us。
图2 超声波传感器上信号波形示意2.超声波接收电路限幅限幅放大检波后级放大比较或1N60图3 接收电路图3中:(1)R1、R2取值一般为100~300Ω,与后级放大器输入阻抗大小有关。
(2)Ci不宜太大,否则超声波发射后电路会有一段时间无法正常接收回波信号,故一般可小于0.1uF;也不宜太小,否则信号损耗会比较大。
(3)通路上放大器的总增益应大于50dB,大于60dB则更佳。
(4)检波电路时间常数的选取要得当,太大则造成包络展宽,太小则单个回波脉冲会被检测成多个脉冲。
可根据超声波工作频率确定,并通过观测检波输出波形加以矫正。
(5)后级放大电路中运放无需再使用AD818,推荐使用NE5532。
3.脉冲间隔测量电路请参考并分析ultrasonic.ddb中图纸。
超声波电源驱动电路的设计1.确定系统需求:首先需要确定超声波电源需要工作的额定频率、输出电压和输出电流等参数。
这些参数将决定后续电路设计的具体方案。
2.选取功率器件:根据系统需求选择合适的功率器件,通常可以选择MOSFET或IGBT作为功率管。
考虑到超声波电源需要驱动较高频率的超声波换能器,因此功率器件需要具备快速开关特性和低开关损耗。
3.设计驱动电路:超声波电源的驱动电路一般采用半桥或全桥拓扑。
在半桥拓扑中,一个高侧和一个低侧功率管分别连接到超声波换能器的两端。
在全桥拓扑中,两个高侧功率管和两个低侧功率管都连接到超声波换能器的两端。
这两种拓扑各有优劣,选择时需要根据具体应用需求和功率管的成本来确定。
驱动电路的设计需要考虑到对功率器件的驱动信号的控制,保证合适的开关特性和工作频率。
4.设计保护电路:超声波电源在工作过程中可能会面临过电流、过温和短路等问题,因此需要设计相应的保护电路。
一般情况下,可以通过电流传感器和温度传感器等元件来实现对超声波电源的保护。
5.设计反馈控制回路:为了使超声波电源能够稳定输出设计的电压和电流,需要设计反馈控制回路。
该回路可以通过采集输出端的电压和电流信号,并调整驱动信号来实现对输出的精确控制,实现工作参数的稳定性和精度。
6.电路仿真和优化:在设计完成后,进行电路仿真和优化以确保电路的性能和可靠性。
常用的电路仿真软件有SPICE和PSIM等。
通过仿真可以评估电路的性能指标,并对电路参数进行调整和优化。
7.PCB设计和制作:根据最终确定的电路设计方案,进行PCB板的设计和制作。
在PCB设计中需要考虑电路布局、信号传输和电磁兼容性等问题,以确保电路的稳定性和可靠性。
8.电路测试:完成PCB制作后,对电路进行测试和调试,包括输出电压、输出电流、开关频率等参数的测试。
根据测试结果可以对电路进行调整和优化。
总结:超声波电源驱动电路的设计涉及到系统需求确定、功率器件选择、驱动电路设计、保护电路设计、反馈控制回路设计、电路仿真和优化、PCB设计和制作以及电路测试等多个步骤。
超声换能器驱动电路
超声换能器驱动电路是将交流信号转换为超声波信号的电路。
它主要包括以下几个关键组成部分:
1. 信号源:信号源产生交流信号,一般使用振荡电路或信号发生器。
交流信号的频率决定了超声波的频率。
2. 驱动电路:驱动电路将信号源的输出信号放大,并提供足够的电流和电压给超声换能器。
常见的驱动电路包括放大器、功率放大器和驱动电路。
3. 超声换能器:超声换能器是将电能转换为超声波能的装置。
通常使用压电材料,如压电陶瓷或压电聚合物等。
驱动电路提供的电信号使超声换能器振动,并产生超声波。
4. 耦合电路:耦合电路将驱动电路与超声换能器连接在一起,以实现能量的传递和匹配。
常见的耦合电路包括匹配电路、阻抗匹配网络等。
5. 控制电路:控制电路用于调节超声波的频率、幅度和工作模式等参数。
它可以实现信号的调制、调频和调幅等功能。
超声换能器驱动电路的设计需要考虑驱动电流和驱动电压的要求、功率传递的效率、信号的稳定性和超声波的质量等因素。
同时,还需考虑电路的稳定性和可靠性,以及与其他系统的兼容性。
因此,在设计超声换能器驱动电路时,需要综合考虑电路的各个方面因素,并进行合理的设计和优化。
一种高频超声波换能器驱动电路的设计-回复高频超声波换能器驱动电路是一种常用于医学诊断、工业应用和科学研究的装置。
它能将电能转化成超声波能量,实现超声波的产生和控制。
本文将详细介绍一种设计高频超声波换能器驱动电路的步骤和过程,以供读者参考和学习。
第一步:了解超声波换能器驱动电路的基本原理在设计之前,我们需要先了解超声波换能器驱动电路的基本原理。
换能器是将电能转化为机械振动或声能的设备。
而超声波换能器则是将电能转化为超声波能量的换能器。
超声波是频率高于人耳可听到范围(20kHz)的声波,具有穿透力强、分辨率高等特点,因此在医疗、工业和科学领域得到广泛应用。
第二步:确定工作频率和输出功率需求在设计高频超声波换能器驱动电路之前,需要确定工作频率和输出功率的需求。
超声波换能器的工作频率通常在多兆赫范围内,不同应用场景对频率和输出功率的需求有所差异。
例如,在医疗领域,常用的工作频率为1-20MHz,而输出功率则取决于具体应用要求。
第三步:选择合适的换能器和驱动电路元件根据工作频率和输出功率的需求,选择合适的超声波换能器和驱动电路元件。
换能器的选择要考虑其频率响应特性、灵敏度等因素,而驱动电路元件的选择要考虑其工作可靠性、效率等因素。
常用的超声波换能器包括压电换能器、磁致伸缩换能器等。
第四步:设计驱动电路的基本结构设计驱动电路的基本结构包括发生器、放大器和保护电路。
发生器用于产生高频信号,放大器将发生器输出的信号放大到足够的电压和电流水平以驱动换能器,而保护电路则用于保护换能器和电路免受过电压和过电流等因素的损害。
第五步:细化驱动电路的设计细节在设计驱动电路的过程中,需要注意以下几个关键问题:1. 发生器的选型和设计,包括选用合适的振荡电路和频率调节方式;2. 放大器的选型和设计,包括选用合适的功率放大器和放大方式;3. 保护电路的设计,包括过电压保护、过电流保护和温度保护等;4. 电路布线和连接方式的设计,包括尽可能减小导线的阻抗、降低干扰和提高信号传输质量。
《超声波测距仪电路设计》超声波测距仪电路设计超声波测距仪是一种常见的测距装置,它利用超声波的传播特性来测量目标物体与测距仪之间的距离。
其基本原理是利用超声波的发射和接收来计算目标物体与设备之间的距离。
超声波测距仪的电路设计包括发射电路和接收电路两部分。
1.发射电路设计超声波测距仪的发射电路主要包括发射器、脉冲发生电路和驱动电路。
发射器是将电能转换为声能的装置,一般采用压电陶瓷材料。
脉冲发生电路是用来产生发送的超声波脉冲信号的电路,常用的是555定时器芯片,通过设置合适的频率和占空比,可以实现超声波脉冲的产生。
驱动电路主要是将脉冲信号放大,并提供足够的电流和电压来驱动发射器。
2.接收电路设计超声波测距仪的接收电路主要包括接收器、放大电路和信号处理电路。
接收器是将接收到的声波信号转换为电信号的装置,常用的是压电陶瓷材料。
放大电路主要是将接收到的微弱信号放大到合适的电平,以便后续的信号处理。
信号处理电路包括滤波器和放大器,滤波器用于滤除杂散信号,放大器用于放大清晰的接收信号。
3.其他设计考虑除了发射电路和接收电路,还需要考虑一些其他设计因素。
第一,为了减小测量误差,需要加入合适的校准电路来对测量系统进行校准。
第二,为了方便使用,可以加入显示电路,将测量结果以数字或者模拟形式显示出来。
第三,为了提高抗干扰能力,可以加入滤波器和抗干扰电路来滤除干扰信号。
总之,超声波测距仪电路设计需要考虑发射电路、接收电路以及其他设计因素,合理配置各个部分的电路参数,并利用合适的元器件和电路拓扑结构,以提高测距仪的精度和稳定性。
在实际设计中,还需要考虑功耗、成本和尺寸等因素,以满足具体应用的要求。
硕士学位论文题目:超声波换能器特性分析及其电源设计研究生陈张平专业控制理论与控制工程指导教师王建中教授邹洪波讲师完成日期 2013年1月杭州电子科技大学学位论文原创性声明和使用授权说明原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
论文作者签名:日期:年月日学位论文使用授权说明本人完全了解杭州电子科技大学关于保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属杭州电子科技大学。
本人保证毕业离校后,发表论文或使用论文工作成果时署名单位仍然为杭州电子科技大学。
学校有权保留送交论文的复印件,允许查阅和借阅论文;学校可以公布论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存论文。
(保密论文在解密后遵守此规定)论文作者签名:日期:年月日指导教师签名:日期:年月日杭州电子科技大学硕士学位论文超声波换能器特性分析及其电源设计研究生:陈张平指导教师:王建中教授邹洪波讲师2013年1月Dissertation Submitted to Hangzhou Dianzi Universityfor the Degree of MasterAnalysis on the Features of the Ultrasonic Transducer and Design for the Power SupplyCandidate: Zhangping ChenSupervisor: Prof. Jianzhong Wang,Lecturer Hongbo ZhouJanuary,2013摘要超声波设备主要由超声波换能器、超声波发生电源(简称超声波电源,本文中介绍的超声波电源为数控式超声波电源)组成。
毕业设计6超声波用开关电源的设计引言:随着科技的不断发展,超声波技术在各个领域都得到了广泛的应用。
而超声波设备的供电则对于其正常运行起到了关键的作用。
开关电源是一种能够将交流电转换为直流电的电源设备,具有稳定性高、效率高、占空比可调等特点,因此被广泛应用于各种电子设备中。
本文将以设计超声波用开关电源为内容,介绍该设计的步骤和关键技术要点。
一、设计流程:1.确定需求:首先需要明确超声波设备的电源需求,包括工作电压、电流等参数。
2.选择开关电源拓扑结构:根据电源需求,选择合适的开关电源拓扑结构,如单端供电结构、双端供电结构等。
3.选择元件:根据选择的拓扑结构,选取合适的电容、电感、二极管、开关管等元件,并进行参数计算。
4.控制电路设计:根据开关电源拓扑结构的特点,设计合适的控制电路,实现稳定的开关动作。
5.PCB设计:将电源电路的原理图转化为PCB布局,保证电路中元件的合理布局和导线的优化布局。
6.电路调试和测试:完成电路的组装和焊接后,进行电路的调试和测试,包括输出电压、电流的稳定性等指标的测试。
二、关键技术要点:1.选择合适的开关管:开关电源的开关管负责将输入的交流电转换为直流电,因此对于超声波设备来说,要选择具有低开通电阻、高导通电流、低开通电压且耐受电压高的开关管。
2.控制电路的设计:控制电路的设计对于开关电源的稳定性和效率有着重要的影响,需要合理选择驱动电路和反馈电路的设计方案。
3.PCB布局设计:合理的PCB布局可以降低开关电源的噪声和干扰,提高整体的性能。
需要注意分离高压和低压区域,减少干扰的传导路径。
4.过渡和短路保护:为了保护超声波设备和开关电源本身的安全,需要设计过渡和短路保护电路,当出现异常情况时及时切断输入电源。
结论:本文以设计超声波用开关电源为目标,介绍了设计流程和关键技术要点。
通过选择合适的开关电源拓扑结构、元件和合理的控制电路设计,以及优化的PCB布局,可以设计出稳定高效的超声波用开关电源。
第27卷 第3期V o l .27 N o.3河南职技师院学报Jou rnal of H enan V ocati on 2T echn ical T eachers Co llege 1999年 9月Sep.1999超声波驱动电路的研究α洪新华(河南职技师院,新乡453003)吴慎山(河南师范大学)王庆国(新乡市肉联厂)郑 勇(新乡教育学院)摘要:研究了产生超声波的机理及器件性能,分析了超声源驱动电路的组成和工作原理。
关键词:压电效应;反压电效应;超声换能器;驱动电路中图分类号:O 462.11 前 言随着科学和技术的发展,超声波的应用越来越广泛。
在医学领域,A 超、B 超不仅解决了人眼看不到的体内病变的检测,而且消除了其它射线检查带来的辐射危害;利用超声对中、草药进行处理生产中成药,可大大地提高生产效率[3];广泛应用的智能超声探伤系统,对金属及材料内部的空洞,缺陷可进行准确的定位和检测,提高了机械生产的产品质量。
最近国内外广泛兴起的压电超声马达的研究,使机械加工工艺水平进入了纳米量级[4]。
超声技术的广泛应用,显示了广泛的应用前景和强大的生命力[1]。
超声的应用领域,一般分为超声检测和功率超声,功率超声的特点是功率强度大,如超声清洗、超声焊接、超声切割、超声粉碎等都属于功率超声的范畴。
1880年居里兄弟在Α石英晶体中发现了压电效应,具有这种特性的材料叫压电材料。
1883年,李普曼预言了逆压电效应的存在,此后,居里兄弟在石英中发现了这一现象。
逆压电效应是在压电材料的相应部位间加上电压,产生一定的电荷分布,材料会发生相应的形变,在此种压电材料上加上某种特定频率的交变正弦信号,材料就会产生随所加电压的变化规律而变化的机械形变。
这种机械形变推动周围介质振动,产生疏密相间的机械波,如果其振动频率在超声范围,这种机械波就叫超声波。
图1 喇叭形换能器2 超声换能器电路设计超声换能器是产生超声波必需的能量转换装置,它把超声电磁振荡的能量转换为声波。