余角和补角的定义和性质解析
- 格式:ppt
- 大小:1.12 MB
- 文档页数:45
《余角和补角》知识解析课标要求:1. 理解余角、补角、互余、互补等概念,在具体的现实情境中,认识一个角的余角与补角。
理解余角(补角)与互余(互补)的区别和联系,会求已知角的余角或补角.2.理解余角(补角)的性质,并能用它解决相关问题。
会用方程的思想方法求有关角的度数.3.理解互余(及互补)两角的等式表示方法,初步掌握图形语言与符号语言之间的相互转化.知识结构:内容解析:本节课主要学习余角、补角概念,余角、补角的性质,方位角. 余角和补角是在学习了角的度量及角的比较与运算的基础上,对角的数量关系作进一步探讨,在后面学习对顶角相等及平行线的判定和性质时即将用到,并为今后证明角的相等提供一种依据和方法.另外教材在此已开始对学生提出“简单说理”的要求,为以后推理证明题作准备.方位角的知识学生在小学就有所了解,但根据题意画出方位角以及运用方位角的知识确定点的位置是学生不熟悉的.方位角的知识在“解直角三角形”等内容有广泛的应用,并且为今后学习平面直角坐标系、极坐标等知识奠定基础.教学重点:1. 理解余角、补角的概念,会求已知角的余角或补角.2. 理解余角(补角)的性质,会用性质及建立方程的思想方法求有关角的度数. 教学难点:1.理解余角(补角)的性质,会用性质及建立方程的思想方法求有关角的度数.2. 理解互余(及互补)两角的等式表示方法.教法导引:现代教学论认为数学应加强学生的数学活动,如果能让学生在“做数学”的过程中获得知识和技能,掌握基本数学思想和规律,那将是课堂教学中最理想的境界,也是新课程改革的一个重要目标。
根据以上认识,我的教学思路是:老师的“教”体现在创设情境,激发兴趣,组织探索,引导发现。
学生的“学”体现在操作讨论,探索发现,归纳结论。
另外针对发展学生的逻辑推理能力,教学时注重让学生发表自己的见解,引导学生用数学语言表达自己的思考过程。
本节课主要采用“教师创设问题情境—学生自主探索与小组合作交流—概括明晰”的教学思路,把探索知识的主动权完全交给学生.通过问题情境的设置,激发学生的学习兴趣,营造师生间民主、和谐的学习氛围和每个学生平等参与学习的机会.这种合作学习的方式,使得全体学生都能在横向交流中各尽所能,取长补短,各有所获,共同发展.在教学中,要关注概念的实际背景与形成过程,采用直观导入的方法,借助直观形象,让学生能够理解概念并初步学会应用.并给学生提供探索和交流的空间,使数学活动不是单纯地依赖、模仿与记忆,而是一个生动活泼、积极主动和富有个性的过程,围绕本节课所学的知识,设置有现实意义的具有挑战性的问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验。
关于余角和补角的知识点1.什么是角度角度是指由两条射线相交形成的图形,一般用字母来表示,如∠A BC。
角度由两条射线的起点A、公共顶点B和终点C确定。
2.角的度量单位角的度量单位有两种常用表示方法:度(°)和弧度(ra d)。
其中,1弧度等于57.3°,1°等于π/180弧度。
在数学中,常用度作为角的度量单位。
3.余角和补角的概念余角指的是两个角的度数之和等于90°时,这两个角互为余角。
补角则是两个角的度数之和等于180°时,这两个角互为补角。
4.余角和补角的计算方法4.1余角的计算方法当已知角度α时,可以通过计算90°减去α得到其余角的度数。
例子:若角α的度数为60°,则其余角的度数为90°-60°=30°。
4.2补角的计算方法已知角度β时,可以通过计算180°减去β得到其补角的度数。
例子:若角β的度数为45°,则其补角的度数为180°-45°=135°。
5.余角和补角的性质5.1余角和补角的和等于90°(或180°)根据余角和补角的定义,两个互为余角的角的度数之和等于90°,而互为补角的角的度数之和等于180°。
例子:若角θ的余角的度数为40°,则角θ的补角的度数为90°-40°=50°。
5.2余角和补角的度数不唯一一个角的余角和补角的度数并不唯一,因为角的度数可以是任意实数。
例子:若角ω的度数为30°,则其余角的度数可以是60°、120°等,其补角的度数可以是150°、210°等。
结论余角和补角是角度的重要概念,它们不仅在几何图形的角度计算中有重要作用,而且在物理和工程问题中也具有广泛应用。
通过理解余角和补角的定义、计算方法和性质,我们能够更好地解决与角度相关的问题,并在实际应用中灵活运用。
余角和补角的定义和性质
什么是余角和补角:
余角和补角是两个平行四边形中两个角间的性质,在一条平行四边形中,所有相邻的两个角相加总和为360°,其中有一个角称为余角,另外一个角称为补角。
余角的性质:
余角是平行四边形中所有相邻的两个角相加,余出的那个角,余角小于180°,在正六边形、正八边形、正十边形等多边形中,所有的角都是余角。
补角的性质:
补角是平行四边形中所有相邻的两个角相加,补到360°的那个角,补角大于180°,在正六边形、正八边形、正十边形等多边形中,所有的角有一个是补角。
余角和补角的关系:
余角与补角是平行四边形中一种互补的关系,它们的总和总是等于360°。
例如,如果一个角为100°,它的余角是100°,它的补角就是260°;如果一个角是240°,它的补角就是240°,它的余角就是120°。
余角和补角是平行四边形中两个相邻角之间的性质,它们的总和等于360°,其中一个角被称为余角,另一个角被称为补角,余角小于180°,而补角大于180°,它们之间有着一种互补的关系。